OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "platform/time.h" |
| 29 |
| 30 #if V8_OS_POSIX |
| 31 #include <sys/time.h> |
| 32 #endif |
| 33 #if V8_OS_MACOSX |
| 34 #include <mach/mach_time.h> |
| 35 #endif |
| 36 |
| 37 #include <cstring> |
| 38 |
| 39 #include "checks.h" |
| 40 #include "cpu.h" |
| 41 #include "platform.h" |
| 42 #if V8_OS_WIN |
| 43 #include "win32-headers.h" |
| 44 #endif |
| 45 |
| 46 namespace v8 { |
| 47 namespace internal { |
| 48 |
| 49 TimeDelta TimeDelta::FromDays(int days) { |
| 50 return TimeDelta(days * Time::kMicrosecondsPerDay); |
| 51 } |
| 52 |
| 53 |
| 54 TimeDelta TimeDelta::FromHours(int hours) { |
| 55 return TimeDelta(hours * Time::kMicrosecondsPerHour); |
| 56 } |
| 57 |
| 58 |
| 59 TimeDelta TimeDelta::FromMinutes(int minutes) { |
| 60 return TimeDelta(minutes * Time::kMicrosecondsPerMinute); |
| 61 } |
| 62 |
| 63 |
| 64 TimeDelta TimeDelta::FromSeconds(int64_t seconds) { |
| 65 return TimeDelta(seconds * Time::kMicrosecondsPerSecond); |
| 66 } |
| 67 |
| 68 |
| 69 TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { |
| 70 return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); |
| 71 } |
| 72 |
| 73 |
| 74 TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { |
| 75 return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); |
| 76 } |
| 77 |
| 78 |
| 79 int TimeDelta::InDays() const { |
| 80 return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); |
| 81 } |
| 82 |
| 83 |
| 84 int TimeDelta::InHours() const { |
| 85 return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); |
| 86 } |
| 87 |
| 88 |
| 89 int TimeDelta::InMinutes() const { |
| 90 return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); |
| 91 } |
| 92 |
| 93 |
| 94 double TimeDelta::InSecondsF() const { |
| 95 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; |
| 96 } |
| 97 |
| 98 |
| 99 int64_t TimeDelta::InSeconds() const { |
| 100 return delta_ / Time::kMicrosecondsPerSecond; |
| 101 } |
| 102 |
| 103 |
| 104 double TimeDelta::InMillisecondsF() const { |
| 105 return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; |
| 106 } |
| 107 |
| 108 |
| 109 int64_t TimeDelta::InMilliseconds() const { |
| 110 return delta_ / Time::kMicrosecondsPerMillisecond; |
| 111 } |
| 112 |
| 113 |
| 114 int64_t TimeDelta::InNanoseconds() const { |
| 115 return delta_ * Time::kNanosecondsPerMicrosecond; |
| 116 } |
| 117 |
| 118 |
| 119 #if V8_OS_WIN |
| 120 |
| 121 // We implement time using the high-resolution timers so that we can get |
| 122 // timeouts which are smaller than 10-15ms. To avoid any drift, we |
| 123 // periodically resync the internal clock to the system clock. |
| 124 class Clock V8_FINAL { |
| 125 public: |
| 126 Clock() : initial_time_(CurrentWallclockTime()), |
| 127 initial_ticks_(TimeTicks::Now()), |
| 128 mutex_(OS::CreateMutex()) {} |
| 129 |
| 130 ~Clock() { delete mutex_; } |
| 131 |
| 132 Time Now() { |
| 133 // This must be executed under lock. |
| 134 ScopedLock sl(mutex_); |
| 135 |
| 136 // Calculate the time elapsed since we started our timer. |
| 137 TimeDelta elapsed = TimeTicks::Now() - initial_ticks_; |
| 138 |
| 139 // Check if we don't need to synchronize with the wallclock yet. |
| 140 if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) { |
| 141 return initial_time_ + elapsed; |
| 142 } |
| 143 |
| 144 // Resynchronize with the wallclock. |
| 145 initial_ticks_ = TimeTicks::Now(); |
| 146 initial_time_ = CurrentWallclockTime(); |
| 147 return initial_time_; |
| 148 } |
| 149 |
| 150 Time NowFromSystemTime() { |
| 151 ScopedLock sl(mutex_); |
| 152 initial_ticks_ = TimeTicks::Now(); |
| 153 initial_time_ = CurrentWallclockTime(); |
| 154 return initial_time_; |
| 155 } |
| 156 |
| 157 private: |
| 158 // Time between resampling the un-granular clock for this API (1 minute). |
| 159 static const int64_t kMaxMicrosecondsToAvoidDrift = |
| 160 Time::kMicrosecondsPerMinute; |
| 161 |
| 162 static Time CurrentWallclockTime() { |
| 163 FILETIME ft; |
| 164 ::GetSystemTimeAsFileTime(&ft); |
| 165 return Time::FromFiletime(ft); |
| 166 } |
| 167 |
| 168 TimeTicks initial_ticks_; |
| 169 Time initial_time_; |
| 170 Mutex* mutex_; |
| 171 }; |
| 172 |
| 173 |
| 174 static LazyDynamicInstance<Clock, |
| 175 DefaultCreateTrait<Clock>, |
| 176 ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
| 177 |
| 178 |
| 179 Time Time::Now() { |
| 180 return clock.Pointer()->Now(); |
| 181 } |
| 182 |
| 183 |
| 184 Time Time::NowFromSystemTime() { |
| 185 return clock.Pointer()->NowFromSystemTime(); |
| 186 } |
| 187 |
| 188 |
| 189 // Time between windows epoch and standard epoch. |
| 190 static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); |
| 191 |
| 192 |
| 193 Time Time::FromFiletime(FILETIME ft) { |
| 194 if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { |
| 195 return Time(); |
| 196 } |
| 197 if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && |
| 198 ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { |
| 199 return Max(); |
| 200 } |
| 201 int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + |
| 202 (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; |
| 203 return Time(us - kTimeToEpochInMicroseconds); |
| 204 } |
| 205 |
| 206 |
| 207 FILETIME Time::ToFiletime() const { |
| 208 ASSERT(us_ >= 0); |
| 209 FILETIME ft; |
| 210 if (IsNull()) { |
| 211 ft.dwLowDateTime = 0; |
| 212 ft.dwHighDateTime = 0; |
| 213 return ft; |
| 214 } |
| 215 if (IsMax()) { |
| 216 ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
| 217 ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
| 218 return ft; |
| 219 } |
| 220 uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; |
| 221 ft.dwLowDateTime = static_cast<DWORD>(us); |
| 222 ft.dwHighDateTime = static_cast<DWORD>(us >> 32); |
| 223 return ft; |
| 224 } |
| 225 |
| 226 #elif V8_OS_POSIX |
| 227 |
| 228 Time Time::Now() { |
| 229 struct timeval tv; |
| 230 int result = gettimeofday(&tv, NULL); |
| 231 ASSERT_EQ(0, result); |
| 232 USE(result); |
| 233 return FromTimeval(tv); |
| 234 } |
| 235 |
| 236 |
| 237 Time Time::NowFromSystemTime() { |
| 238 return Now(); |
| 239 } |
| 240 |
| 241 |
| 242 Time Time::FromTimeval(struct timeval tv) { |
| 243 ASSERT(tv.tv_usec >= 0); |
| 244 ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); |
| 245 if (tv.tv_usec == 0 && tv.tv_sec == 0) { |
| 246 return Time(); |
| 247 } |
| 248 if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && |
| 249 tv.tv_sec == std::numeric_limits<time_t>::max()) { |
| 250 return Max(); |
| 251 } |
| 252 return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); |
| 253 } |
| 254 |
| 255 |
| 256 struct timeval Time::ToTimeval() const { |
| 257 struct timeval tv; |
| 258 if (IsNull()) { |
| 259 tv.tv_sec = 0; |
| 260 tv.tv_usec = 0; |
| 261 return tv; |
| 262 } |
| 263 if (IsMax()) { |
| 264 tv.tv_sec = std::numeric_limits<time_t>::max(); |
| 265 tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); |
| 266 return tv; |
| 267 } |
| 268 tv.tv_sec = us_ / kMicrosecondsPerSecond; |
| 269 tv.tv_usec = us_ % kMicrosecondsPerSecond; |
| 270 return tv; |
| 271 } |
| 272 |
| 273 #endif // V8_OS_WIN |
| 274 |
| 275 |
| 276 Time Time::FromJsTime(double ms_since_epoch) { |
| 277 // The epoch is a valid time, so this constructor doesn't interpret |
| 278 // 0 as the null time. |
| 279 if (ms_since_epoch == std::numeric_limits<double>::max()) { |
| 280 return Max(); |
| 281 } |
| 282 return Time( |
| 283 static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); |
| 284 } |
| 285 |
| 286 |
| 287 double Time::ToJsTime() const { |
| 288 if (IsNull()) { |
| 289 // Preserve 0 so the invalid result doesn't depend on the platform. |
| 290 return 0; |
| 291 } |
| 292 if (IsMax()) { |
| 293 // Preserve max without offset to prevent overflow. |
| 294 return std::numeric_limits<double>::max(); |
| 295 } |
| 296 return static_cast<double>(us_) / kMicrosecondsPerMillisecond; |
| 297 } |
| 298 |
| 299 |
| 300 #if V8_OS_WIN |
| 301 |
| 302 class TickClock { |
| 303 public: |
| 304 virtual ~TickClock() {} |
| 305 virtual int64_t Now() = 0; |
| 306 }; |
| 307 |
| 308 |
| 309 // Overview of time counters: |
| 310 // (1) CPU cycle counter. (Retrieved via RDTSC) |
| 311 // The CPU counter provides the highest resolution time stamp and is the least |
| 312 // expensive to retrieve. However, the CPU counter is unreliable and should not |
| 313 // be used in production. Its biggest issue is that it is per processor and it |
| 314 // is not synchronized between processors. Also, on some computers, the counters |
| 315 // will change frequency due to thermal and power changes, and stop in some |
| 316 // states. |
| 317 // |
| 318 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
| 319 // resolution (100 nanoseconds) time stamp but is comparatively more expensive |
| 320 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
| 321 // (with some help from ACPI). |
| 322 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
| 323 // in the worst case, it gets the counter from the rollover interrupt on the |
| 324 // programmable interrupt timer. In best cases, the HAL may conclude that the |
| 325 // RDTSC counter runs at a constant frequency, then it uses that instead. On |
| 326 // multiprocessor machines, it will try to verify the values returned from |
| 327 // RDTSC on each processor are consistent with each other, and apply a handful |
| 328 // of workarounds for known buggy hardware. In other words, QPC is supposed to |
| 329 // give consistent result on a multiprocessor computer, but it is unreliable in |
| 330 // reality due to bugs in BIOS or HAL on some, especially old computers. |
| 331 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
| 332 // it should be used with caution. |
| 333 // |
| 334 // (3) System time. The system time provides a low-resolution (typically 10ms |
| 335 // to 55 milliseconds) time stamp but is comparatively less expensive to |
| 336 // retrieve and more reliable. |
| 337 class HighResolutionTickClock V8_FINAL : public TickClock { |
| 338 public: |
| 339 explicit HighResolutionTickClock(int64_t ticks_per_second) |
| 340 : ticks_per_second_(ticks_per_second) { |
| 341 ASSERT_NE(0, ticks_per_second); |
| 342 } |
| 343 virtual ~HighResolutionTickClock() {} |
| 344 |
| 345 virtual int64_t Now() V8_OVERRIDE { |
| 346 LARGE_INTEGER now; |
| 347 BOOL result = QueryPerformanceCounter(&now); |
| 348 ASSERT(result); |
| 349 USE(result); |
| 350 |
| 351 // Intentionally calculate microseconds in a round about manner to avoid |
| 352 // overflow and precision issues. Think twice before simplifying! |
| 353 int64_t whole_seconds = now.QuadPart / ticks_per_second_; |
| 354 int64_t leftover_ticks = now.QuadPart % ticks_per_second_; |
| 355 int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + |
| 356 ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); |
| 357 |
| 358 // Make sure we never return 0 here, so that TimeTicks::HighResNow() |
| 359 // will never return 0. |
| 360 return ticks + 1; |
| 361 } |
| 362 |
| 363 private: |
| 364 int64_t ticks_per_second_; |
| 365 }; |
| 366 |
| 367 |
| 368 class RolloverProtectedTickClock V8_FINAL : public TickClock { |
| 369 public: |
| 370 RolloverProtectedTickClock() |
| 371 : mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) { |
| 372 // We initialize rollover_ms_ to 1 to ensure that we will never |
| 373 // return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below. |
| 374 } |
| 375 virtual ~RolloverProtectedTickClock() { delete mutex_; } |
| 376 |
| 377 virtual int64_t Now() V8_OVERRIDE { |
| 378 ScopedLock sl(mutex_); |
| 379 // We use timeGetTime() to implement TimeTicks::Now(), which rolls over |
| 380 // every ~49.7 days. We try to track rollover ourselves, which works if |
| 381 // TimeTicks::Now() is called at least every 49 days. |
| 382 // Note that we do not use GetTickCount() here, since timeGetTime() gives |
| 383 // more predictable delta values, as described here: |
| 384 // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-diffe
rence-between-gettickcount-and-timegettime.aspx |
| 385 DWORD now = timeGetTime(); |
| 386 if (now < last_seen_now_) { |
| 387 rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days. |
| 388 } |
| 389 last_seen_now_ = now; |
| 390 return now + rollover_ms_; |
| 391 } |
| 392 |
| 393 private: |
| 394 Mutex* mutex_; |
| 395 DWORD last_seen_now_; |
| 396 int64_t rollover_ms_; |
| 397 }; |
| 398 |
| 399 |
| 400 static LazyDynamicInstance<RolloverProtectedTickClock, |
| 401 DefaultCreateTrait<RolloverProtectedTickClock>, |
| 402 ThreadSafeInitOnceTrait>::type tick_clock = |
| 403 LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
| 404 |
| 405 |
| 406 struct CreateHighResTickClockTrait { |
| 407 static TickClock* Create() { |
| 408 // Check if the installed hardware supports a high-resolution performance |
| 409 // counter, and if not fallback to the low-resolution tick clock. |
| 410 LARGE_INTEGER ticks_per_second; |
| 411 if (!QueryPerformanceFrequency(&ticks_per_second)) { |
| 412 return tick_clock.Pointer(); |
| 413 } |
| 414 |
| 415 // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter |
| 416 // is unreliable, fallback to the low-resolution tick clock. |
| 417 CPU cpu; |
| 418 if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) { |
| 419 return tick_clock.Pointer(); |
| 420 } |
| 421 |
| 422 return new HighResolutionTickClock(ticks_per_second.QuadPart); |
| 423 } |
| 424 }; |
| 425 |
| 426 |
| 427 static LazyDynamicInstance<TickClock, |
| 428 CreateHighResTickClockTrait, |
| 429 ThreadSafeInitOnceTrait>::type high_res_tick_clock = |
| 430 LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
| 431 |
| 432 |
| 433 TimeTicks TimeTicks::Now() { |
| 434 // Make sure we never return 0 here. |
| 435 TimeTicks ticks(tick_clock.Pointer()->Now()); |
| 436 ASSERT(!ticks.IsNull()); |
| 437 return ticks; |
| 438 } |
| 439 |
| 440 |
| 441 TimeTicks TimeTicks::HighResNow() { |
| 442 // Make sure we never return 0 here. |
| 443 TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); |
| 444 ASSERT(!ticks.IsNull()); |
| 445 return ticks; |
| 446 } |
| 447 |
| 448 #else // V8_OS_WIN |
| 449 |
| 450 TimeTicks TimeTicks::Now() { |
| 451 return HighResNow(); |
| 452 } |
| 453 |
| 454 |
| 455 TimeTicks TimeTicks::HighResNow() { |
| 456 int64_t ticks; |
| 457 #if V8_OS_MACOSX |
| 458 static struct mach_timebase_info info; |
| 459 if (info.denom == 0) { |
| 460 kern_return_t result = mach_timebase_info(&info); |
| 461 ASSERT_EQ(KERN_SUCCESS, result); |
| 462 USE(result); |
| 463 } |
| 464 ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * |
| 465 info.numer / info.denom); |
| 466 #elif V8_OS_SOLARIS |
| 467 ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); |
| 468 #elif V8_OS_POSIX |
| 469 struct timespec ts; |
| 470 int result = clock_gettime(CLOCK_MONOTONIC, &ts); |
| 471 ASSERT_EQ(0, result); |
| 472 USE(result); |
| 473 ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond + |
| 474 ts.tv_nsec / Time::kNanosecondsPerMicrosecond); |
| 475 #endif // V8_OS_MACOSX |
| 476 // Make sure we never return 0 here. |
| 477 return TimeTicks(ticks + 1); |
| 478 } |
| 479 |
| 480 #endif // V8_OS_WIN |
| 481 |
| 482 } } // namespace v8::internal |
OLD | NEW |