| Index: src/zone.cc
|
| diff --git a/src/zone.cc b/src/zone.cc
|
| deleted file mode 100644
|
| index a10b63612e484962870ab2004c6bf2a7ff44f49a..0000000000000000000000000000000000000000
|
| --- a/src/zone.cc
|
| +++ /dev/null
|
| @@ -1,280 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/zone.h"
|
| -
|
| -#include <cstring>
|
| -
|
| -#include "src/v8.h"
|
| -
|
| -#ifdef V8_USE_ADDRESS_SANITIZER
|
| -#include <sanitizer/asan_interface.h>
|
| -#endif // V8_USE_ADDRESS_SANITIZER
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -namespace {
|
| -
|
| -#if V8_USE_ADDRESS_SANITIZER
|
| -
|
| -const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8.
|
| -
|
| -#else
|
| -
|
| -#define ASAN_POISON_MEMORY_REGION(start, size) \
|
| - do { \
|
| - USE(start); \
|
| - USE(size); \
|
| - } while (false)
|
| -
|
| -#define ASAN_UNPOISON_MEMORY_REGION(start, size) \
|
| - do { \
|
| - USE(start); \
|
| - USE(size); \
|
| - } while (false)
|
| -
|
| -const size_t kASanRedzoneBytes = 0;
|
| -
|
| -#endif // V8_USE_ADDRESS_SANITIZER
|
| -
|
| -} // namespace
|
| -
|
| -
|
| -// Segments represent chunks of memory: They have starting address
|
| -// (encoded in the this pointer) and a size in bytes. Segments are
|
| -// chained together forming a LIFO structure with the newest segment
|
| -// available as segment_head_. Segments are allocated using malloc()
|
| -// and de-allocated using free().
|
| -
|
| -class Segment {
|
| - public:
|
| - void Initialize(Segment* next, size_t size) {
|
| - next_ = next;
|
| - size_ = size;
|
| - }
|
| -
|
| - Segment* next() const { return next_; }
|
| - void clear_next() { next_ = nullptr; }
|
| -
|
| - size_t size() const { return size_; }
|
| - size_t capacity() const { return size_ - sizeof(Segment); }
|
| -
|
| - Address start() const { return address(sizeof(Segment)); }
|
| - Address end() const { return address(size_); }
|
| -
|
| - private:
|
| - // Computes the address of the nth byte in this segment.
|
| - Address address(size_t n) const { return Address(this) + n; }
|
| -
|
| - Segment* next_;
|
| - size_t size_;
|
| -};
|
| -
|
| -Zone::Zone(base::AccountingAllocator* allocator)
|
| - : allocation_size_(0),
|
| - segment_bytes_allocated_(0),
|
| - position_(0),
|
| - limit_(0),
|
| - allocator_(allocator),
|
| - segment_head_(nullptr) {}
|
| -
|
| -Zone::~Zone() {
|
| - DeleteAll();
|
| - DeleteKeptSegment();
|
| -
|
| - DCHECK(segment_bytes_allocated_ == 0);
|
| -}
|
| -
|
| -
|
| -void* Zone::New(size_t size) {
|
| - // Round up the requested size to fit the alignment.
|
| - size = RoundUp(size, kAlignment);
|
| -
|
| - // If the allocation size is divisible by 8 then we return an 8-byte aligned
|
| - // address.
|
| - if (kPointerSize == 4 && kAlignment == 4) {
|
| - position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
|
| - } else {
|
| - DCHECK(kAlignment >= kPointerSize);
|
| - }
|
| -
|
| - // Check if the requested size is available without expanding.
|
| - Address result = position_;
|
| -
|
| - const size_t size_with_redzone = size + kASanRedzoneBytes;
|
| - const uintptr_t limit = reinterpret_cast<uintptr_t>(limit_);
|
| - const uintptr_t position = reinterpret_cast<uintptr_t>(position_);
|
| - // position_ > limit_ can be true after the alignment correction above.
|
| - if (limit < position || size_with_redzone > limit - position) {
|
| - result = NewExpand(size_with_redzone);
|
| - } else {
|
| - position_ += size_with_redzone;
|
| - }
|
| -
|
| - Address redzone_position = result + size;
|
| - DCHECK(redzone_position + kASanRedzoneBytes == position_);
|
| - ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
|
| -
|
| - // Check that the result has the proper alignment and return it.
|
| - DCHECK(IsAddressAligned(result, kAlignment, 0));
|
| - allocation_size_ += size;
|
| - return reinterpret_cast<void*>(result);
|
| -}
|
| -
|
| -
|
| -void Zone::DeleteAll() {
|
| -#ifdef DEBUG
|
| - // Constant byte value used for zapping dead memory in debug mode.
|
| - static const unsigned char kZapDeadByte = 0xcd;
|
| -#endif
|
| -
|
| - // Find a segment with a suitable size to keep around.
|
| - Segment* keep = nullptr;
|
| - // Traverse the chained list of segments, zapping (in debug mode)
|
| - // and freeing every segment except the one we wish to keep.
|
| - for (Segment* current = segment_head_; current;) {
|
| - Segment* next = current->next();
|
| - if (!keep && current->size() <= kMaximumKeptSegmentSize) {
|
| - // Unlink the segment we wish to keep from the list.
|
| - keep = current;
|
| - keep->clear_next();
|
| - } else {
|
| - size_t size = current->size();
|
| -#ifdef DEBUG
|
| - // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| - ASAN_UNPOISON_MEMORY_REGION(current, size);
|
| - // Zap the entire current segment (including the header).
|
| - memset(current, kZapDeadByte, size);
|
| -#endif
|
| - DeleteSegment(current, size);
|
| - }
|
| - current = next;
|
| - }
|
| -
|
| - // If we have found a segment we want to keep, we must recompute the
|
| - // variables 'position' and 'limit' to prepare for future allocate
|
| - // attempts. Otherwise, we must clear the position and limit to
|
| - // force a new segment to be allocated on demand.
|
| - if (keep) {
|
| - Address start = keep->start();
|
| - position_ = RoundUp(start, kAlignment);
|
| - limit_ = keep->end();
|
| - // Un-poison so we can re-use the segment later.
|
| - ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
|
| -#ifdef DEBUG
|
| - // Zap the contents of the kept segment (but not the header).
|
| - memset(start, kZapDeadByte, keep->capacity());
|
| -#endif
|
| - } else {
|
| - position_ = limit_ = 0;
|
| - }
|
| -
|
| - allocation_size_ = 0;
|
| - // Update the head segment to be the kept segment (if any).
|
| - segment_head_ = keep;
|
| -}
|
| -
|
| -
|
| -void Zone::DeleteKeptSegment() {
|
| -#ifdef DEBUG
|
| - // Constant byte value used for zapping dead memory in debug mode.
|
| - static const unsigned char kZapDeadByte = 0xcd;
|
| -#endif
|
| -
|
| - DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
|
| - if (segment_head_ != nullptr) {
|
| - size_t size = segment_head_->size();
|
| -#ifdef DEBUG
|
| - // Un-poison first so the zapping doesn't trigger ASan complaints.
|
| - ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
|
| - // Zap the entire kept segment (including the header).
|
| - memset(segment_head_, kZapDeadByte, size);
|
| -#endif
|
| - DeleteSegment(segment_head_, size);
|
| - segment_head_ = nullptr;
|
| - }
|
| -
|
| - DCHECK(segment_bytes_allocated_ == 0);
|
| -}
|
| -
|
| -
|
| -// Creates a new segment, sets it size, and pushes it to the front
|
| -// of the segment chain. Returns the new segment.
|
| -Segment* Zone::NewSegment(size_t size) {
|
| - Segment* result = reinterpret_cast<Segment*>(allocator_->Allocate(size));
|
| - segment_bytes_allocated_ += size;
|
| - if (result != nullptr) {
|
| - result->Initialize(segment_head_, size);
|
| - segment_head_ = result;
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -
|
| -// Deletes the given segment. Does not touch the segment chain.
|
| -void Zone::DeleteSegment(Segment* segment, size_t size) {
|
| - segment_bytes_allocated_ -= size;
|
| - allocator_->Free(segment, size);
|
| -}
|
| -
|
| -
|
| -Address Zone::NewExpand(size_t size) {
|
| - // Make sure the requested size is already properly aligned and that
|
| - // there isn't enough room in the Zone to satisfy the request.
|
| - DCHECK_EQ(size, RoundDown(size, kAlignment));
|
| - DCHECK(limit_ < position_ ||
|
| - reinterpret_cast<uintptr_t>(limit_) -
|
| - reinterpret_cast<uintptr_t>(position_) <
|
| - size);
|
| -
|
| - // Compute the new segment size. We use a 'high water mark'
|
| - // strategy, where we increase the segment size every time we expand
|
| - // except that we employ a maximum segment size when we delete. This
|
| - // is to avoid excessive malloc() and free() overhead.
|
| - Segment* head = segment_head_;
|
| - const size_t old_size = (head == nullptr) ? 0 : head->size();
|
| - static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
|
| - const size_t new_size_no_overhead = size + (old_size << 1);
|
| - size_t new_size = kSegmentOverhead + new_size_no_overhead;
|
| - const size_t min_new_size = kSegmentOverhead + size;
|
| - // Guard against integer overflow.
|
| - if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| - if (new_size < kMinimumSegmentSize) {
|
| - new_size = kMinimumSegmentSize;
|
| - } else if (new_size > kMaximumSegmentSize) {
|
| - // Limit the size of new segments to avoid growing the segment size
|
| - // exponentially, thus putting pressure on contiguous virtual address space.
|
| - // All the while making sure to allocate a segment large enough to hold the
|
| - // requested size.
|
| - new_size = Max(min_new_size, kMaximumSegmentSize);
|
| - }
|
| - if (new_size > INT_MAX) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| - Segment* segment = NewSegment(new_size);
|
| - if (segment == nullptr) {
|
| - V8::FatalProcessOutOfMemory("Zone");
|
| - return nullptr;
|
| - }
|
| -
|
| - // Recompute 'top' and 'limit' based on the new segment.
|
| - Address result = RoundUp(segment->start(), kAlignment);
|
| - position_ = result + size;
|
| - // Check for address overflow.
|
| - // (Should not happen since the segment is guaranteed to accomodate
|
| - // size bytes + header and alignment padding)
|
| - DCHECK(reinterpret_cast<uintptr_t>(position_) >=
|
| - reinterpret_cast<uintptr_t>(result));
|
| - limit_ = segment->end();
|
| - DCHECK(position_ <= limit_);
|
| - return result;
|
| -}
|
| -
|
| -} // namespace internal
|
| -} // namespace v8
|
|
|