Index: third_party/talloc/libreplace/crypt.c |
diff --git a/third_party/talloc/libreplace/crypt.c b/third_party/talloc/libreplace/crypt.c |
deleted file mode 100644 |
index 22341ce511d53a668aa72484140482c434566e15..0000000000000000000000000000000000000000 |
--- a/third_party/talloc/libreplace/crypt.c |
+++ /dev/null |
@@ -1,770 +0,0 @@ |
-/* |
- This bit of code was derived from the UFC-crypt package which |
- carries the following copyright |
- |
- Modified for use by Samba by Andrew Tridgell, October 1994 |
- |
- Note that this routine is only faster on some machines. Under Linux 1.1.51 |
- libc 4.5.26 I actually found this routine to be slightly slower. |
- |
- Under SunOS I found a huge speedup by using these routines |
- (a factor of 20 or so) |
- |
- Warning: I've had a report from Steve Kennedy <steve@gbnet.org> |
- that this crypt routine may sometimes get the wrong answer. Only |
- use UFC_CRYT if you really need it. |
- |
-*/ |
- |
-#include "replace.h" |
- |
-#ifndef HAVE_CRYPT |
- |
-/* |
- * UFC-crypt: ultra fast crypt(3) implementation |
- * |
- * Copyright (C) 1991-1998, Free Software Foundation, Inc. |
- * |
- * This library is free software; you can redistribute it and/or |
- * modify it under the terms of the GNU Lesser General Public |
- * License as published by the Free Software Foundation; either |
- * version 3 of the License, or (at your option) any later version. |
- * |
- * This library is distributed in the hope that it will be useful, |
- * but WITHOUT ANY WARRANTY; without even the implied warranty of |
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
- * Library General Public License for more details. |
- * |
- * You should have received a copy of the GNU Lesser General Public |
- * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
- * |
- * @(#)crypt_util.c 2.31 02/08/92 |
- * |
- * Support routines |
- * |
- */ |
- |
- |
-#ifndef long32 |
-#define long32 int32 |
-#endif |
- |
-#ifndef long64 |
-#define long64 int64 |
-#endif |
- |
-#ifndef ufc_long |
-#define ufc_long unsigned |
-#endif |
- |
-#ifndef _UFC_64_ |
-#define _UFC_32_ |
-#endif |
- |
-/* |
- * Permutation done once on the 56 bit |
- * key derived from the original 8 byte ASCII key. |
- */ |
-static int pc1[56] = { |
- 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
- 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, |
- 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, |
- 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 |
-}; |
- |
-/* |
- * How much to rotate each 28 bit half of the pc1 permutated |
- * 56 bit key before using pc2 to give the i' key |
- */ |
-static int rots[16] = { |
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
-}; |
- |
-/* |
- * Permutation giving the key |
- * of the i' DES round |
- */ |
-static int pc2[48] = { |
- 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
- 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, |
- 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, |
- 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 |
-}; |
- |
-/* |
- * The E expansion table which selects |
- * bits from the 32 bit intermediate result. |
- */ |
-static int esel[48] = { |
- 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, |
- 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, |
- 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, |
- 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 |
-}; |
-static int e_inverse[64]; |
- |
-/* |
- * Permutation done on the |
- * result of sbox lookups |
- */ |
-static int perm32[32] = { |
- 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
- 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 |
-}; |
- |
-/* |
- * The sboxes |
- */ |
-static int sbox[8][4][16]= { |
- { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, |
- { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, |
- { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, |
- { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } |
- }, |
- |
- { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, |
- { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, |
- { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, |
- { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } |
- }, |
- |
- { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, |
- { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, |
- { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, |
- { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } |
- }, |
- |
- { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, |
- { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, |
- { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, |
- { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } |
- }, |
- |
- { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, |
- { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, |
- { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, |
- { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } |
- }, |
- |
- { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, |
- { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, |
- { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, |
- { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } |
- }, |
- |
- { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, |
- { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, |
- { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, |
- { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } |
- }, |
- |
- { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, |
- { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, |
- { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, |
- { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } |
- } |
-}; |
- |
-/* |
- * This is the final |
- * permutation matrix |
- */ |
-static int final_perm[64] = { |
- 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, |
- 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, |
- 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, |
- 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 |
-}; |
- |
-/* |
- * The 16 DES keys in BITMASK format |
- */ |
-#ifdef _UFC_32_ |
-long32 _ufc_keytab[16][2]; |
-#endif |
- |
-#ifdef _UFC_64_ |
-long64 _ufc_keytab[16]; |
-#endif |
- |
- |
-#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') |
-#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') |
- |
-/* Macro to set a bit (0..23) */ |
-#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) ) |
- |
-/* |
- * sb arrays: |
- * |
- * Workhorses of the inner loop of the DES implementation. |
- * They do sbox lookup, shifting of this value, 32 bit |
- * permutation and E permutation for the next round. |
- * |
- * Kept in 'BITMASK' format. |
- */ |
- |
-#ifdef _UFC_32_ |
-long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192]; |
-static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; |
-#endif |
- |
-#ifdef _UFC_64_ |
-long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096]; |
-static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; |
-#endif |
- |
-/* |
- * eperm32tab: do 32 bit permutation and E selection |
- * |
- * The first index is the byte number in the 32 bit value to be permuted |
- * - second - is the value of this byte |
- * - third - selects the two 32 bit values |
- * |
- * The table is used and generated internally in init_des to speed it up |
- */ |
-static ufc_long eperm32tab[4][256][2]; |
- |
-/* |
- * do_pc1: permform pc1 permutation in the key schedule generation. |
- * |
- * The first index is the byte number in the 8 byte ASCII key |
- * - second - - the two 28 bits halfs of the result |
- * - third - selects the 7 bits actually used of each byte |
- * |
- * The result is kept with 28 bit per 32 bit with the 4 most significant |
- * bits zero. |
- */ |
-static ufc_long do_pc1[8][2][128]; |
- |
-/* |
- * do_pc2: permform pc2 permutation in the key schedule generation. |
- * |
- * The first index is the septet number in the two 28 bit intermediate values |
- * - second - - - septet values |
- * |
- * Knowledge of the structure of the pc2 permutation is used. |
- * |
- * The result is kept with 28 bit per 32 bit with the 4 most significant |
- * bits zero. |
- */ |
-static ufc_long do_pc2[8][128]; |
- |
-/* |
- * efp: undo an extra e selection and do final |
- * permutation giving the DES result. |
- * |
- * Invoked 6 bit a time on two 48 bit values |
- * giving two 32 bit longs. |
- */ |
-static ufc_long efp[16][64][2]; |
- |
-static unsigned char bytemask[8] = { |
- 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 |
-}; |
- |
-static ufc_long longmask[32] = { |
- 0x80000000, 0x40000000, 0x20000000, 0x10000000, |
- 0x08000000, 0x04000000, 0x02000000, 0x01000000, |
- 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
- 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
- 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
- 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
- 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
- 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
-}; |
- |
- |
-/* |
- * Silly rewrite of 'bzero'. I do so |
- * because some machines don't have |
- * bzero and some don't have memset. |
- */ |
- |
-static void clearmem(char *start, int cnt) |
- { while(cnt--) |
- *start++ = '\0'; |
- } |
- |
-static int initialized = 0; |
- |
-/* lookup a 6 bit value in sbox */ |
- |
-#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; |
- |
-/* |
- * Initialize unit - may be invoked directly |
- * by fcrypt users. |
- */ |
- |
-static void ufc_init_des(void) |
- { int comes_from_bit; |
- int bit, sg; |
- ufc_long j; |
- ufc_long mask1, mask2; |
- |
- /* |
- * Create the do_pc1 table used |
- * to affect pc1 permutation |
- * when generating keys |
- */ |
- for(bit = 0; bit < 56; bit++) { |
- comes_from_bit = pc1[bit] - 1; |
- mask1 = bytemask[comes_from_bit % 8 + 1]; |
- mask2 = longmask[bit % 28 + 4]; |
- for(j = 0; j < 128; j++) { |
- if(j & mask1) |
- do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; |
- } |
- } |
- |
- /* |
- * Create the do_pc2 table used |
- * to affect pc2 permutation when |
- * generating keys |
- */ |
- for(bit = 0; bit < 48; bit++) { |
- comes_from_bit = pc2[bit] - 1; |
- mask1 = bytemask[comes_from_bit % 7 + 1]; |
- mask2 = BITMASK(bit % 24); |
- for(j = 0; j < 128; j++) { |
- if(j & mask1) |
- do_pc2[comes_from_bit / 7][j] |= mask2; |
- } |
- } |
- |
- /* |
- * Now generate the table used to do combined |
- * 32 bit permutation and e expansion |
- * |
- * We use it because we have to permute 16384 32 bit |
- * longs into 48 bit in order to initialize sb. |
- * |
- * Looping 48 rounds per permutation becomes |
- * just too slow... |
- * |
- */ |
- |
- clearmem((char*)eperm32tab, sizeof(eperm32tab)); |
- |
- for(bit = 0; bit < 48; bit++) { |
- ufc_long inner_mask1,comes_from; |
- |
- comes_from = perm32[esel[bit]-1]-1; |
- inner_mask1 = bytemask[comes_from % 8]; |
- |
- for(j = 256; j--;) { |
- if(j & inner_mask1) |
- eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24); |
- } |
- } |
- |
- /* |
- * Create the sb tables: |
- * |
- * For each 12 bit segment of an 48 bit intermediate |
- * result, the sb table precomputes the two 4 bit |
- * values of the sbox lookups done with the two 6 |
- * bit halves, shifts them to their proper place, |
- * sends them through perm32 and finally E expands |
- * them so that they are ready for the next |
- * DES round. |
- * |
- */ |
- for(sg = 0; sg < 4; sg++) { |
- int j1, j2; |
- int s1, s2; |
- |
- for(j1 = 0; j1 < 64; j1++) { |
- s1 = s_lookup(2 * sg, j1); |
- for(j2 = 0; j2 < 64; j2++) { |
- ufc_long to_permute, inx; |
- |
- s2 = s_lookup(2 * sg + 1, j2); |
- to_permute = ((s1 << 4) | s2) << (24 - 8 * sg); |
- |
-#ifdef _UFC_32_ |
- inx = ((j1 << 6) | j2) << 1; |
- sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; |
- sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; |
- sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; |
- sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; |
- sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; |
- sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; |
- sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; |
- sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; |
-#endif |
-#ifdef _UFC_64_ |
- inx = ((j1 << 6) | j2); |
- sb[sg][inx] = |
- ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | |
- (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; |
- sb[sg][inx] |= |
- ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | |
- (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; |
- sb[sg][inx] |= |
- ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | |
- (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; |
- sb[sg][inx] |= |
- ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | |
- (long64)eperm32tab[3][(to_permute) & 0xff][1]; |
-#endif |
- } |
- } |
- } |
- |
- /* |
- * Create an inverse matrix for esel telling |
- * where to plug out bits if undoing it |
- */ |
- for(bit=48; bit--;) { |
- e_inverse[esel[bit] - 1 ] = bit; |
- e_inverse[esel[bit] - 1 + 32] = bit + 48; |
- } |
- |
- /* |
- * create efp: the matrix used to |
- * undo the E expansion and effect final permutation |
- */ |
- clearmem((char*)efp, sizeof efp); |
- for(bit = 0; bit < 64; bit++) { |
- int o_bit, o_long; |
- ufc_long word_value, inner_mask1, inner_mask2; |
- int comes_from_f_bit, comes_from_e_bit; |
- int comes_from_word, bit_within_word; |
- |
- /* See where bit i belongs in the two 32 bit long's */ |
- o_long = bit / 32; /* 0..1 */ |
- o_bit = bit % 32; /* 0..31 */ |
- |
- /* |
- * And find a bit in the e permutated value setting this bit. |
- * |
- * Note: the e selection may have selected the same bit several |
- * times. By the initialization of e_inverse, we only look |
- * for one specific instance. |
- */ |
- comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ |
- comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ |
- comes_from_word = comes_from_e_bit / 6; /* 0..15 */ |
- bit_within_word = comes_from_e_bit % 6; /* 0..5 */ |
- |
- inner_mask1 = longmask[bit_within_word + 26]; |
- inner_mask2 = longmask[o_bit]; |
- |
- for(word_value = 64; word_value--;) { |
- if(word_value & inner_mask1) |
- efp[comes_from_word][word_value][o_long] |= inner_mask2; |
- } |
- } |
- initialized++; |
- } |
- |
-/* |
- * Process the elements of the sb table permuting the |
- * bits swapped in the expansion by the current salt. |
- */ |
- |
-#ifdef _UFC_32_ |
-static void shuffle_sb(long32 *k, ufc_long saltbits) |
- { ufc_long j; |
- long32 x; |
- for(j=4096; j--;) { |
- x = (k[0] ^ k[1]) & (long32)saltbits; |
- *k++ ^= x; |
- *k++ ^= x; |
- } |
- } |
-#endif |
- |
-#ifdef _UFC_64_ |
-static void shuffle_sb(long64 *k, ufc_long saltbits) |
- { ufc_long j; |
- long64 x; |
- for(j=4096; j--;) { |
- x = ((*k >> 32) ^ *k) & (long64)saltbits; |
- *k++ ^= (x << 32) | x; |
- } |
- } |
-#endif |
- |
-/* |
- * Setup the unit for a new salt |
- * Hopefully we'll not see a new salt in each crypt call. |
- */ |
- |
-static unsigned char current_salt[3] = "&&"; /* invalid value */ |
-static ufc_long current_saltbits = 0; |
-static int direction = 0; |
- |
-static void setup_salt(const char *s1) |
- { ufc_long i, j, saltbits; |
- const unsigned char *s2 = (const unsigned char *)s1; |
- |
- if(!initialized) |
- ufc_init_des(); |
- |
- if(s2[0] == current_salt[0] && s2[1] == current_salt[1]) |
- return; |
- current_salt[0] = s2[0]; current_salt[1] = s2[1]; |
- |
- /* |
- * This is the only crypt change to DES: |
- * entries are swapped in the expansion table |
- * according to the bits set in the salt. |
- */ |
- saltbits = 0; |
- for(i = 0; i < 2; i++) { |
- long c=ascii_to_bin(s2[i]); |
- if(c < 0 || c > 63) |
- c = 0; |
- for(j = 0; j < 6; j++) { |
- if((c >> j) & 0x1) |
- saltbits |= BITMASK(6 * i + j); |
- } |
- } |
- |
- /* |
- * Permute the sb table values |
- * to reflect the changed e |
- * selection table |
- */ |
- shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); |
- shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits); |
- shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits); |
- shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits); |
- |
- current_saltbits = saltbits; |
- } |
- |
-static void ufc_mk_keytab(char *key) |
- { ufc_long v1, v2, *k1; |
- int i; |
-#ifdef _UFC_32_ |
- long32 v, *k2 = &_ufc_keytab[0][0]; |
-#endif |
-#ifdef _UFC_64_ |
- long64 v, *k2 = &_ufc_keytab[0]; |
-#endif |
- |
- v1 = v2 = 0; k1 = &do_pc1[0][0][0]; |
- for(i = 8; i--;) { |
- v1 |= k1[*key & 0x7f]; k1 += 128; |
- v2 |= k1[*key++ & 0x7f]; k1 += 128; |
- } |
- |
- for(i = 0; i < 16; i++) { |
- k1 = &do_pc2[0][0]; |
- |
- v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); |
- v = k1[(v1 >> 21) & 0x7f]; k1 += 128; |
- v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; |
- v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; |
- v |= k1[(v1 ) & 0x7f]; k1 += 128; |
- |
-#ifdef _UFC_32_ |
- *k2++ = v; |
- v = 0; |
-#endif |
-#ifdef _UFC_64_ |
- v <<= 32; |
-#endif |
- |
- v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); |
- v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; |
- v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; |
- v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; |
- v |= k1[(v2 ) & 0x7f]; |
- |
- *k2++ = v; |
- } |
- |
- direction = 0; |
- } |
- |
-/* |
- * Undo an extra E selection and do final permutations |
- */ |
- |
-ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2) |
- { ufc_long v1, v2, x; |
- static ufc_long ary[2]; |
- |
- x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x; |
- x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x; |
- |
- v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; |
- |
- v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; |
- v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; |
- v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; |
- v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; |
- |
- v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; |
- v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; |
- v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; |
- v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; |
- |
- v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; |
- v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; |
- v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; |
- v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; |
- |
- v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; |
- v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; |
- v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; |
- v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; |
- |
- ary[0] = v1; ary[1] = v2; |
- return ary; |
- } |
- |
-/* |
- * crypt only: convert from 64 bit to 11 bit ASCII |
- * prefixing with the salt |
- */ |
- |
-static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt) |
- { static char outbuf[14]; |
- int i, s; |
- |
- outbuf[0] = salt[0]; |
- outbuf[1] = salt[1] ? salt[1] : salt[0]; |
- |
- for(i = 0; i < 5; i++) |
- outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f); |
- |
- s = (v2 & 0xf) << 2; |
- v2 = (v2 >> 2) | ((v1 & 0x3) << 30); |
- |
- for(i = 5; i < 10; i++) |
- outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f); |
- |
- outbuf[12] = bin_to_ascii(s); |
- outbuf[13] = 0; |
- |
- return outbuf; |
- } |
- |
-/* |
- * UNIX crypt function |
- */ |
- |
-static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long); |
- |
-char *ufc_crypt(const char *key,const char *salt) |
- { ufc_long *s; |
- char ktab[9]; |
- |
- /* |
- * Hack DES tables according to salt |
- */ |
- setup_salt(salt); |
- |
- /* |
- * Setup key schedule |
- */ |
- clearmem(ktab, sizeof ktab); |
- StrnCpy(ktab, key, 8); |
- ufc_mk_keytab(ktab); |
- |
- /* |
- * Go for the 25 DES encryptions |
- */ |
- s = _ufc_doit((ufc_long)0, (ufc_long)0, |
- (ufc_long)0, (ufc_long)0, (ufc_long)25); |
- |
- /* |
- * And convert back to 6 bit ASCII |
- */ |
- return output_conversion(s[0], s[1], salt); |
- } |
- |
- |
-#ifdef _UFC_32_ |
- |
-/* |
- * 32 bit version |
- */ |
- |
-extern long32 _ufc_keytab[16][2]; |
-extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; |
- |
-#define SBA(sb, v) (*(long32*)((char*)(sb)+(v))) |
- |
-static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) |
- { int i; |
- long32 s, *k; |
- |
- while(itr--) { |
- k = &_ufc_keytab[0][0]; |
- for(i=8; i--; ) { |
- s = *k++ ^ r1; |
- l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); |
- l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4); |
- s = *k++ ^ r2; |
- l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); |
- l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4); |
- |
- s = *k++ ^ l1; |
- r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); |
- r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4); |
- s = *k++ ^ l2; |
- r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); |
- r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4); |
- } |
- s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s; |
- } |
- return _ufc_dofinalperm(l1, l2, r1, r2); |
- } |
- |
-#endif |
- |
-#ifdef _UFC_64_ |
- |
-/* |
- * 64 bit version |
- */ |
- |
-extern long64 _ufc_keytab[16]; |
-extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; |
- |
-#define SBA(sb, v) (*(long64*)((char*)(sb)+(v))) |
- |
-static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) |
- { int i; |
- long64 l, r, s, *k; |
- |
- l = (((long64)l1) << 32) | ((long64)l2); |
- r = (((long64)r1) << 32) | ((long64)r2); |
- |
- while(itr--) { |
- k = &_ufc_keytab[0]; |
- for(i=8; i--; ) { |
- s = *k++ ^ r; |
- l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); |
- l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); |
- l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); |
- l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); |
- |
- s = *k++ ^ l; |
- r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); |
- r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); |
- r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); |
- r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); |
- } |
- s=l; l=r; r=s; |
- } |
- |
- l1 = l >> 32; l2 = l & 0xffffffff; |
- r1 = r >> 32; r2 = r & 0xffffffff; |
- return _ufc_dofinalperm(l1, l2, r1, r2); |
- } |
- |
-#endif |
- |
- |
-#else |
- int ufc_dummy_procedure(void); |
- int ufc_dummy_procedure(void) {return 0;} |
-#endif |