| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 This bit of code was derived from the UFC-crypt package which | |
| 3 carries the following copyright | |
| 4 | |
| 5 Modified for use by Samba by Andrew Tridgell, October 1994 | |
| 6 | |
| 7 Note that this routine is only faster on some machines. Under Linux 1.1.51 | |
| 8 libc 4.5.26 I actually found this routine to be slightly slower. | |
| 9 | |
| 10 Under SunOS I found a huge speedup by using these routines | |
| 11 (a factor of 20 or so) | |
| 12 | |
| 13 Warning: I've had a report from Steve Kennedy <steve@gbnet.org> | |
| 14 that this crypt routine may sometimes get the wrong answer. Only | |
| 15 use UFC_CRYT if you really need it. | |
| 16 | |
| 17 */ | |
| 18 | |
| 19 #include "replace.h" | |
| 20 | |
| 21 #ifndef HAVE_CRYPT | |
| 22 | |
| 23 /* | |
| 24 * UFC-crypt: ultra fast crypt(3) implementation | |
| 25 * | |
| 26 * Copyright (C) 1991-1998, Free Software Foundation, Inc. | |
| 27 * | |
| 28 * This library is free software; you can redistribute it and/or | |
| 29 * modify it under the terms of the GNU Lesser General Public | |
| 30 * License as published by the Free Software Foundation; either | |
| 31 * version 3 of the License, or (at your option) any later version. | |
| 32 * | |
| 33 * This library is distributed in the hope that it will be useful, | |
| 34 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 35 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
| 36 * Library General Public License for more details. | |
| 37 * | |
| 38 * You should have received a copy of the GNU Lesser General Public | |
| 39 * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
| 40 * | |
| 41 * @(#)crypt_util.c 2.31 02/08/92 | |
| 42 * | |
| 43 * Support routines | |
| 44 * | |
| 45 */ | |
| 46 | |
| 47 | |
| 48 #ifndef long32 | |
| 49 #define long32 int32 | |
| 50 #endif | |
| 51 | |
| 52 #ifndef long64 | |
| 53 #define long64 int64 | |
| 54 #endif | |
| 55 | |
| 56 #ifndef ufc_long | |
| 57 #define ufc_long unsigned | |
| 58 #endif | |
| 59 | |
| 60 #ifndef _UFC_64_ | |
| 61 #define _UFC_32_ | |
| 62 #endif | |
| 63 | |
| 64 /* | |
| 65 * Permutation done once on the 56 bit | |
| 66 * key derived from the original 8 byte ASCII key. | |
| 67 */ | |
| 68 static int pc1[56] = { | |
| 69 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, | |
| 70 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, | |
| 71 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, | |
| 72 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 | |
| 73 }; | |
| 74 | |
| 75 /* | |
| 76 * How much to rotate each 28 bit half of the pc1 permutated | |
| 77 * 56 bit key before using pc2 to give the i' key | |
| 78 */ | |
| 79 static int rots[16] = { | |
| 80 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 | |
| 81 }; | |
| 82 | |
| 83 /* | |
| 84 * Permutation giving the key | |
| 85 * of the i' DES round | |
| 86 */ | |
| 87 static int pc2[48] = { | |
| 88 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, | |
| 89 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, | |
| 90 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, | |
| 91 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 | |
| 92 }; | |
| 93 | |
| 94 /* | |
| 95 * The E expansion table which selects | |
| 96 * bits from the 32 bit intermediate result. | |
| 97 */ | |
| 98 static int esel[48] = { | |
| 99 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, | |
| 100 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, | |
| 101 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, | |
| 102 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 | |
| 103 }; | |
| 104 static int e_inverse[64]; | |
| 105 | |
| 106 /* | |
| 107 * Permutation done on the | |
| 108 * result of sbox lookups | |
| 109 */ | |
| 110 static int perm32[32] = { | |
| 111 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, | |
| 112 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 | |
| 113 }; | |
| 114 | |
| 115 /* | |
| 116 * The sboxes | |
| 117 */ | |
| 118 static int sbox[8][4][16]= { | |
| 119 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, | |
| 120 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, | |
| 121 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, | |
| 122 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } | |
| 123 }, | |
| 124 | |
| 125 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, | |
| 126 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, | |
| 127 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, | |
| 128 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } | |
| 129 }, | |
| 130 | |
| 131 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, | |
| 132 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, | |
| 133 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, | |
| 134 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } | |
| 135 }, | |
| 136 | |
| 137 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, | |
| 138 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, | |
| 139 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, | |
| 140 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } | |
| 141 }, | |
| 142 | |
| 143 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, | |
| 144 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, | |
| 145 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, | |
| 146 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } | |
| 147 }, | |
| 148 | |
| 149 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, | |
| 150 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, | |
| 151 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, | |
| 152 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } | |
| 153 }, | |
| 154 | |
| 155 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, | |
| 156 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, | |
| 157 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, | |
| 158 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } | |
| 159 }, | |
| 160 | |
| 161 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, | |
| 162 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, | |
| 163 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, | |
| 164 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } | |
| 165 } | |
| 166 }; | |
| 167 | |
| 168 /* | |
| 169 * This is the final | |
| 170 * permutation matrix | |
| 171 */ | |
| 172 static int final_perm[64] = { | |
| 173 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, | |
| 174 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, | |
| 175 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, | |
| 176 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 | |
| 177 }; | |
| 178 | |
| 179 /* | |
| 180 * The 16 DES keys in BITMASK format | |
| 181 */ | |
| 182 #ifdef _UFC_32_ | |
| 183 long32 _ufc_keytab[16][2]; | |
| 184 #endif | |
| 185 | |
| 186 #ifdef _UFC_64_ | |
| 187 long64 _ufc_keytab[16]; | |
| 188 #endif | |
| 189 | |
| 190 | |
| 191 #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') | |
| 192 #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') | |
| 193 | |
| 194 /* Macro to set a bit (0..23) */ | |
| 195 #define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) ) | |
| 196 | |
| 197 /* | |
| 198 * sb arrays: | |
| 199 * | |
| 200 * Workhorses of the inner loop of the DES implementation. | |
| 201 * They do sbox lookup, shifting of this value, 32 bit | |
| 202 * permutation and E permutation for the next round. | |
| 203 * | |
| 204 * Kept in 'BITMASK' format. | |
| 205 */ | |
| 206 | |
| 207 #ifdef _UFC_32_ | |
| 208 long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192]; | |
| 209 static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; | |
| 210 #endif | |
| 211 | |
| 212 #ifdef _UFC_64_ | |
| 213 long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096]; | |
| 214 static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; | |
| 215 #endif | |
| 216 | |
| 217 /* | |
| 218 * eperm32tab: do 32 bit permutation and E selection | |
| 219 * | |
| 220 * The first index is the byte number in the 32 bit value to be permuted | |
| 221 * - second - is the value of this byte | |
| 222 * - third - selects the two 32 bit values | |
| 223 * | |
| 224 * The table is used and generated internally in init_des to speed it up | |
| 225 */ | |
| 226 static ufc_long eperm32tab[4][256][2]; | |
| 227 | |
| 228 /* | |
| 229 * do_pc1: permform pc1 permutation in the key schedule generation. | |
| 230 * | |
| 231 * The first index is the byte number in the 8 byte ASCII key | |
| 232 * - second - - the two 28 bits halfs of the result | |
| 233 * - third - selects the 7 bits actually used of each byte | |
| 234 * | |
| 235 * The result is kept with 28 bit per 32 bit with the 4 most significant | |
| 236 * bits zero. | |
| 237 */ | |
| 238 static ufc_long do_pc1[8][2][128]; | |
| 239 | |
| 240 /* | |
| 241 * do_pc2: permform pc2 permutation in the key schedule generation. | |
| 242 * | |
| 243 * The first index is the septet number in the two 28 bit intermediate values | |
| 244 * - second - - - septet values | |
| 245 * | |
| 246 * Knowledge of the structure of the pc2 permutation is used. | |
| 247 * | |
| 248 * The result is kept with 28 bit per 32 bit with the 4 most significant | |
| 249 * bits zero. | |
| 250 */ | |
| 251 static ufc_long do_pc2[8][128]; | |
| 252 | |
| 253 /* | |
| 254 * efp: undo an extra e selection and do final | |
| 255 * permutation giving the DES result. | |
| 256 * | |
| 257 * Invoked 6 bit a time on two 48 bit values | |
| 258 * giving two 32 bit longs. | |
| 259 */ | |
| 260 static ufc_long efp[16][64][2]; | |
| 261 | |
| 262 static unsigned char bytemask[8] = { | |
| 263 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 | |
| 264 }; | |
| 265 | |
| 266 static ufc_long longmask[32] = { | |
| 267 0x80000000, 0x40000000, 0x20000000, 0x10000000, | |
| 268 0x08000000, 0x04000000, 0x02000000, 0x01000000, | |
| 269 0x00800000, 0x00400000, 0x00200000, 0x00100000, | |
| 270 0x00080000, 0x00040000, 0x00020000, 0x00010000, | |
| 271 0x00008000, 0x00004000, 0x00002000, 0x00001000, | |
| 272 0x00000800, 0x00000400, 0x00000200, 0x00000100, | |
| 273 0x00000080, 0x00000040, 0x00000020, 0x00000010, | |
| 274 0x00000008, 0x00000004, 0x00000002, 0x00000001 | |
| 275 }; | |
| 276 | |
| 277 | |
| 278 /* | |
| 279 * Silly rewrite of 'bzero'. I do so | |
| 280 * because some machines don't have | |
| 281 * bzero and some don't have memset. | |
| 282 */ | |
| 283 | |
| 284 static void clearmem(char *start, int cnt) | |
| 285 { while(cnt--) | |
| 286 *start++ = '\0'; | |
| 287 } | |
| 288 | |
| 289 static int initialized = 0; | |
| 290 | |
| 291 /* lookup a 6 bit value in sbox */ | |
| 292 | |
| 293 #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; | |
| 294 | |
| 295 /* | |
| 296 * Initialize unit - may be invoked directly | |
| 297 * by fcrypt users. | |
| 298 */ | |
| 299 | |
| 300 static void ufc_init_des(void) | |
| 301 { int comes_from_bit; | |
| 302 int bit, sg; | |
| 303 ufc_long j; | |
| 304 ufc_long mask1, mask2; | |
| 305 | |
| 306 /* | |
| 307 * Create the do_pc1 table used | |
| 308 * to affect pc1 permutation | |
| 309 * when generating keys | |
| 310 */ | |
| 311 for(bit = 0; bit < 56; bit++) { | |
| 312 comes_from_bit = pc1[bit] - 1; | |
| 313 mask1 = bytemask[comes_from_bit % 8 + 1]; | |
| 314 mask2 = longmask[bit % 28 + 4]; | |
| 315 for(j = 0; j < 128; j++) { | |
| 316 if(j & mask1) | |
| 317 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; | |
| 318 } | |
| 319 } | |
| 320 | |
| 321 /* | |
| 322 * Create the do_pc2 table used | |
| 323 * to affect pc2 permutation when | |
| 324 * generating keys | |
| 325 */ | |
| 326 for(bit = 0; bit < 48; bit++) { | |
| 327 comes_from_bit = pc2[bit] - 1; | |
| 328 mask1 = bytemask[comes_from_bit % 7 + 1]; | |
| 329 mask2 = BITMASK(bit % 24); | |
| 330 for(j = 0; j < 128; j++) { | |
| 331 if(j & mask1) | |
| 332 do_pc2[comes_from_bit / 7][j] |= mask2; | |
| 333 } | |
| 334 } | |
| 335 | |
| 336 /* | |
| 337 * Now generate the table used to do combined | |
| 338 * 32 bit permutation and e expansion | |
| 339 * | |
| 340 * We use it because we have to permute 16384 32 bit | |
| 341 * longs into 48 bit in order to initialize sb. | |
| 342 * | |
| 343 * Looping 48 rounds per permutation becomes | |
| 344 * just too slow... | |
| 345 * | |
| 346 */ | |
| 347 | |
| 348 clearmem((char*)eperm32tab, sizeof(eperm32tab)); | |
| 349 | |
| 350 for(bit = 0; bit < 48; bit++) { | |
| 351 ufc_long inner_mask1,comes_from; | |
| 352 | |
| 353 comes_from = perm32[esel[bit]-1]-1; | |
| 354 inner_mask1 = bytemask[comes_from % 8]; | |
| 355 | |
| 356 for(j = 256; j--;) { | |
| 357 if(j & inner_mask1) | |
| 358 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24); | |
| 359 } | |
| 360 } | |
| 361 | |
| 362 /* | |
| 363 * Create the sb tables: | |
| 364 * | |
| 365 * For each 12 bit segment of an 48 bit intermediate | |
| 366 * result, the sb table precomputes the two 4 bit | |
| 367 * values of the sbox lookups done with the two 6 | |
| 368 * bit halves, shifts them to their proper place, | |
| 369 * sends them through perm32 and finally E expands | |
| 370 * them so that they are ready for the next | |
| 371 * DES round. | |
| 372 * | |
| 373 */ | |
| 374 for(sg = 0; sg < 4; sg++) { | |
| 375 int j1, j2; | |
| 376 int s1, s2; | |
| 377 | |
| 378 for(j1 = 0; j1 < 64; j1++) { | |
| 379 s1 = s_lookup(2 * sg, j1); | |
| 380 for(j2 = 0; j2 < 64; j2++) { | |
| 381 ufc_long to_permute, inx; | |
| 382 | |
| 383 s2 = s_lookup(2 * sg + 1, j2); | |
| 384 to_permute = ((s1 << 4) | s2) << (24 - 8 * sg); | |
| 385 | |
| 386 #ifdef _UFC_32_ | |
| 387 inx = ((j1 << 6) | j2) << 1; | |
| 388 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; | |
| 389 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; | |
| 390 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; | |
| 391 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; | |
| 392 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; | |
| 393 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; | |
| 394 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; | |
| 395 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; | |
| 396 #endif | |
| 397 #ifdef _UFC_64_ | |
| 398 inx = ((j1 << 6) | j2); | |
| 399 sb[sg][inx] = | |
| 400 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | | |
| 401 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; | |
| 402 sb[sg][inx] |= | |
| 403 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | | |
| 404 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; | |
| 405 sb[sg][inx] |= | |
| 406 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | | |
| 407 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; | |
| 408 sb[sg][inx] |= | |
| 409 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | | |
| 410 (long64)eperm32tab[3][(to_permute) & 0xff][1]; | |
| 411 #endif | |
| 412 } | |
| 413 } | |
| 414 } | |
| 415 | |
| 416 /* | |
| 417 * Create an inverse matrix for esel telling | |
| 418 * where to plug out bits if undoing it | |
| 419 */ | |
| 420 for(bit=48; bit--;) { | |
| 421 e_inverse[esel[bit] - 1 ] = bit; | |
| 422 e_inverse[esel[bit] - 1 + 32] = bit + 48; | |
| 423 } | |
| 424 | |
| 425 /* | |
| 426 * create efp: the matrix used to | |
| 427 * undo the E expansion and effect final permutation | |
| 428 */ | |
| 429 clearmem((char*)efp, sizeof efp); | |
| 430 for(bit = 0; bit < 64; bit++) { | |
| 431 int o_bit, o_long; | |
| 432 ufc_long word_value, inner_mask1, inner_mask2; | |
| 433 int comes_from_f_bit, comes_from_e_bit; | |
| 434 int comes_from_word, bit_within_word; | |
| 435 | |
| 436 /* See where bit i belongs in the two 32 bit long's */ | |
| 437 o_long = bit / 32; /* 0..1 */ | |
| 438 o_bit = bit % 32; /* 0..31 */ | |
| 439 | |
| 440 /* | |
| 441 * And find a bit in the e permutated value setting this bit. | |
| 442 * | |
| 443 * Note: the e selection may have selected the same bit several | |
| 444 * times. By the initialization of e_inverse, we only look | |
| 445 * for one specific instance. | |
| 446 */ | |
| 447 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ | |
| 448 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ | |
| 449 comes_from_word = comes_from_e_bit / 6; /* 0..15 */ | |
| 450 bit_within_word = comes_from_e_bit % 6; /* 0..5 */ | |
| 451 | |
| 452 inner_mask1 = longmask[bit_within_word + 26]; | |
| 453 inner_mask2 = longmask[o_bit]; | |
| 454 | |
| 455 for(word_value = 64; word_value--;) { | |
| 456 if(word_value & inner_mask1) | |
| 457 efp[comes_from_word][word_value][o_long] |= inner_mask2; | |
| 458 } | |
| 459 } | |
| 460 initialized++; | |
| 461 } | |
| 462 | |
| 463 /* | |
| 464 * Process the elements of the sb table permuting the | |
| 465 * bits swapped in the expansion by the current salt. | |
| 466 */ | |
| 467 | |
| 468 #ifdef _UFC_32_ | |
| 469 static void shuffle_sb(long32 *k, ufc_long saltbits) | |
| 470 { ufc_long j; | |
| 471 long32 x; | |
| 472 for(j=4096; j--;) { | |
| 473 x = (k[0] ^ k[1]) & (long32)saltbits; | |
| 474 *k++ ^= x; | |
| 475 *k++ ^= x; | |
| 476 } | |
| 477 } | |
| 478 #endif | |
| 479 | |
| 480 #ifdef _UFC_64_ | |
| 481 static void shuffle_sb(long64 *k, ufc_long saltbits) | |
| 482 { ufc_long j; | |
| 483 long64 x; | |
| 484 for(j=4096; j--;) { | |
| 485 x = ((*k >> 32) ^ *k) & (long64)saltbits; | |
| 486 *k++ ^= (x << 32) | x; | |
| 487 } | |
| 488 } | |
| 489 #endif | |
| 490 | |
| 491 /* | |
| 492 * Setup the unit for a new salt | |
| 493 * Hopefully we'll not see a new salt in each crypt call. | |
| 494 */ | |
| 495 | |
| 496 static unsigned char current_salt[3] = "&&"; /* invalid value */ | |
| 497 static ufc_long current_saltbits = 0; | |
| 498 static int direction = 0; | |
| 499 | |
| 500 static void setup_salt(const char *s1) | |
| 501 { ufc_long i, j, saltbits; | |
| 502 const unsigned char *s2 = (const unsigned char *)s1; | |
| 503 | |
| 504 if(!initialized) | |
| 505 ufc_init_des(); | |
| 506 | |
| 507 if(s2[0] == current_salt[0] && s2[1] == current_salt[1]) | |
| 508 return; | |
| 509 current_salt[0] = s2[0]; current_salt[1] = s2[1]; | |
| 510 | |
| 511 /* | |
| 512 * This is the only crypt change to DES: | |
| 513 * entries are swapped in the expansion table | |
| 514 * according to the bits set in the salt. | |
| 515 */ | |
| 516 saltbits = 0; | |
| 517 for(i = 0; i < 2; i++) { | |
| 518 long c=ascii_to_bin(s2[i]); | |
| 519 if(c < 0 || c > 63) | |
| 520 c = 0; | |
| 521 for(j = 0; j < 6; j++) { | |
| 522 if((c >> j) & 0x1) | |
| 523 saltbits |= BITMASK(6 * i + j); | |
| 524 } | |
| 525 } | |
| 526 | |
| 527 /* | |
| 528 * Permute the sb table values | |
| 529 * to reflect the changed e | |
| 530 * selection table | |
| 531 */ | |
| 532 shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); | |
| 533 shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits); | |
| 534 shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits); | |
| 535 shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits); | |
| 536 | |
| 537 current_saltbits = saltbits; | |
| 538 } | |
| 539 | |
| 540 static void ufc_mk_keytab(char *key) | |
| 541 { ufc_long v1, v2, *k1; | |
| 542 int i; | |
| 543 #ifdef _UFC_32_ | |
| 544 long32 v, *k2 = &_ufc_keytab[0][0]; | |
| 545 #endif | |
| 546 #ifdef _UFC_64_ | |
| 547 long64 v, *k2 = &_ufc_keytab[0]; | |
| 548 #endif | |
| 549 | |
| 550 v1 = v2 = 0; k1 = &do_pc1[0][0][0]; | |
| 551 for(i = 8; i--;) { | |
| 552 v1 |= k1[*key & 0x7f]; k1 += 128; | |
| 553 v2 |= k1[*key++ & 0x7f]; k1 += 128; | |
| 554 } | |
| 555 | |
| 556 for(i = 0; i < 16; i++) { | |
| 557 k1 = &do_pc2[0][0]; | |
| 558 | |
| 559 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); | |
| 560 v = k1[(v1 >> 21) & 0x7f]; k1 += 128; | |
| 561 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; | |
| 562 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; | |
| 563 v |= k1[(v1 ) & 0x7f]; k1 += 128; | |
| 564 | |
| 565 #ifdef _UFC_32_ | |
| 566 *k2++ = v; | |
| 567 v = 0; | |
| 568 #endif | |
| 569 #ifdef _UFC_64_ | |
| 570 v <<= 32; | |
| 571 #endif | |
| 572 | |
| 573 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); | |
| 574 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; | |
| 575 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; | |
| 576 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; | |
| 577 v |= k1[(v2 ) & 0x7f]; | |
| 578 | |
| 579 *k2++ = v; | |
| 580 } | |
| 581 | |
| 582 direction = 0; | |
| 583 } | |
| 584 | |
| 585 /* | |
| 586 * Undo an extra E selection and do final permutations | |
| 587 */ | |
| 588 | |
| 589 ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2) | |
| 590 { ufc_long v1, v2, x; | |
| 591 static ufc_long ary[2]; | |
| 592 | |
| 593 x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x; | |
| 594 x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x; | |
| 595 | |
| 596 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; | |
| 597 | |
| 598 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; | |
| 599 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; | |
| 600 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; | |
| 601 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; | |
| 602 | |
| 603 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; | |
| 604 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; | |
| 605 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; | |
| 606 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; | |
| 607 | |
| 608 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; | |
| 609 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; | |
| 610 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; | |
| 611 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; | |
| 612 | |
| 613 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; | |
| 614 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; | |
| 615 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; | |
| 616 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; | |
| 617 | |
| 618 ary[0] = v1; ary[1] = v2; | |
| 619 return ary; | |
| 620 } | |
| 621 | |
| 622 /* | |
| 623 * crypt only: convert from 64 bit to 11 bit ASCII | |
| 624 * prefixing with the salt | |
| 625 */ | |
| 626 | |
| 627 static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt) | |
| 628 { static char outbuf[14]; | |
| 629 int i, s; | |
| 630 | |
| 631 outbuf[0] = salt[0]; | |
| 632 outbuf[1] = salt[1] ? salt[1] : salt[0]; | |
| 633 | |
| 634 for(i = 0; i < 5; i++) | |
| 635 outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f); | |
| 636 | |
| 637 s = (v2 & 0xf) << 2; | |
| 638 v2 = (v2 >> 2) | ((v1 & 0x3) << 30); | |
| 639 | |
| 640 for(i = 5; i < 10; i++) | |
| 641 outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f); | |
| 642 | |
| 643 outbuf[12] = bin_to_ascii(s); | |
| 644 outbuf[13] = 0; | |
| 645 | |
| 646 return outbuf; | |
| 647 } | |
| 648 | |
| 649 /* | |
| 650 * UNIX crypt function | |
| 651 */ | |
| 652 | |
| 653 static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long); | |
| 654 | |
| 655 char *ufc_crypt(const char *key,const char *salt) | |
| 656 { ufc_long *s; | |
| 657 char ktab[9]; | |
| 658 | |
| 659 /* | |
| 660 * Hack DES tables according to salt | |
| 661 */ | |
| 662 setup_salt(salt); | |
| 663 | |
| 664 /* | |
| 665 * Setup key schedule | |
| 666 */ | |
| 667 clearmem(ktab, sizeof ktab); | |
| 668 StrnCpy(ktab, key, 8); | |
| 669 ufc_mk_keytab(ktab); | |
| 670 | |
| 671 /* | |
| 672 * Go for the 25 DES encryptions | |
| 673 */ | |
| 674 s = _ufc_doit((ufc_long)0, (ufc_long)0, | |
| 675 (ufc_long)0, (ufc_long)0, (ufc_long)25); | |
| 676 | |
| 677 /* | |
| 678 * And convert back to 6 bit ASCII | |
| 679 */ | |
| 680 return output_conversion(s[0], s[1], salt); | |
| 681 } | |
| 682 | |
| 683 | |
| 684 #ifdef _UFC_32_ | |
| 685 | |
| 686 /* | |
| 687 * 32 bit version | |
| 688 */ | |
| 689 | |
| 690 extern long32 _ufc_keytab[16][2]; | |
| 691 extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; | |
| 692 | |
| 693 #define SBA(sb, v) (*(long32*)((char*)(sb)+(v))) | |
| 694 | |
| 695 static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, u
fc_long itr) | |
| 696 { int i; | |
| 697 long32 s, *k; | |
| 698 | |
| 699 while(itr--) { | |
| 700 k = &_ufc_keytab[0][0]; | |
| 701 for(i=8; i--; ) { | |
| 702 s = *k++ ^ r1; | |
| 703 l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); | |
| 704 l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4); | |
| 705 s = *k++ ^ r2; | |
| 706 l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); | |
| 707 l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4); | |
| 708 | |
| 709 s = *k++ ^ l1; | |
| 710 r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); | |
| 711 r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4); | |
| 712 s = *k++ ^ l2; | |
| 713 r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); | |
| 714 r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4); | |
| 715 } | |
| 716 s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s; | |
| 717 } | |
| 718 return _ufc_dofinalperm(l1, l2, r1, r2); | |
| 719 } | |
| 720 | |
| 721 #endif | |
| 722 | |
| 723 #ifdef _UFC_64_ | |
| 724 | |
| 725 /* | |
| 726 * 64 bit version | |
| 727 */ | |
| 728 | |
| 729 extern long64 _ufc_keytab[16]; | |
| 730 extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; | |
| 731 | |
| 732 #define SBA(sb, v) (*(long64*)((char*)(sb)+(v))) | |
| 733 | |
| 734 static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, u
fc_long itr) | |
| 735 { int i; | |
| 736 long64 l, r, s, *k; | |
| 737 | |
| 738 l = (((long64)l1) << 32) | ((long64)l2); | |
| 739 r = (((long64)r1) << 32) | ((long64)r2); | |
| 740 | |
| 741 while(itr--) { | |
| 742 k = &_ufc_keytab[0]; | |
| 743 for(i=8; i--; ) { | |
| 744 s = *k++ ^ r; | |
| 745 l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); | |
| 746 l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); | |
| 747 l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); | |
| 748 l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); | |
| 749 | |
| 750 s = *k++ ^ l; | |
| 751 r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); | |
| 752 r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); | |
| 753 r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); | |
| 754 r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); | |
| 755 } | |
| 756 s=l; l=r; r=s; | |
| 757 } | |
| 758 | |
| 759 l1 = l >> 32; l2 = l & 0xffffffff; | |
| 760 r1 = r >> 32; r2 = r & 0xffffffff; | |
| 761 return _ufc_dofinalperm(l1, l2, r1, r2); | |
| 762 } | |
| 763 | |
| 764 #endif | |
| 765 | |
| 766 | |
| 767 #else | |
| 768 int ufc_dummy_procedure(void); | |
| 769 int ufc_dummy_procedure(void) {return 0;} | |
| 770 #endif | |
| OLD | NEW |