Index: src/utils/SkCurveMeasure.cpp |
diff --git a/src/utils/SkCurveMeasure.cpp b/src/utils/SkCurveMeasure.cpp |
index 2a74a49c22e6fd41d1541bdcbe3ad1b37422285a..fc2aa84faa119558d5dce1c30f6bdd826c3eb890 100644 |
--- a/src/utils/SkCurveMeasure.cpp |
+++ b/src/utils/SkCurveMeasure.cpp |
@@ -6,66 +6,10 @@ |
*/ |
#include "SkCurveMeasure.h" |
-#include "SkGeometry.h" |
// for abs |
#include <cmath> |
-#define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__)) |
- |
-/// Used inside SkCurveMeasure::getTime's Newton's iteration |
-static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType, |
- SkScalar t) { |
- SkPoint pos; |
- switch (segType) { |
- case kQuad_SegType: |
- pos = SkEvalQuadAt(pts, t); |
- break; |
- case kLine_SegType: |
- pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t), |
- SkScalarInterp(pts[0].y(), pts[1].y(), t)); |
- break; |
- case kCubic_SegType: |
- SkEvalCubicAt(pts, t, &pos, nullptr, nullptr); |
- break; |
- case kConic_SegType: { |
- SkConic conic(pts, pts[3].x()); |
- conic.evalAt(t, &pos); |
- } |
- break; |
- default: |
- UNIMPLEMENTED; |
- } |
- |
- return pos; |
-} |
- |
-/// Used inside SkCurveMeasure::getTime's Newton's iteration |
-static inline SkVector evaluateDerivative(const SkPoint pts[4], |
- SkSegType segType, SkScalar t) { |
- SkVector tan; |
- switch (segType) { |
- case kQuad_SegType: |
- tan = SkEvalQuadTangentAt(pts, t); |
- break; |
- case kLine_SegType: |
- tan = pts[1] - pts[0]; |
- break; |
- case kCubic_SegType: |
- SkEvalCubicAt(pts, t, nullptr, &tan, nullptr); |
- break; |
- case kConic_SegType: { |
- SkConic conic(pts, pts[3].x()); |
- conic.evalAt(t, nullptr, &tan); |
- } |
- break; |
- default: |
- UNIMPLEMENTED; |
- } |
- |
- return tan; |
-} |
-/// Used in ArcLengthIntegrator::computeLength |
static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
const Sk8f (&xCoeff)[3], |
const Sk8f (&yCoeff)[3], |
@@ -77,15 +21,18 @@ static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
x = xCoeff[0]*ts + xCoeff[1]; |
y = yCoeff[0]*ts + yCoeff[1]; |
break; |
+ case kLine_SegType: |
+ SkDebugf("Unimplemented"); |
+ break; |
case kCubic_SegType: |
x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2]; |
y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2]; |
break; |
case kConic_SegType: |
- UNIMPLEMENTED; |
+ SkDebugf("Unimplemented"); |
break; |
default: |
- UNIMPLEMENTED; |
+ SkDebugf("Unimplemented"); |
} |
x = x * x; |
@@ -93,7 +40,6 @@ static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
return (x + y).sqrt(); |
} |
- |
ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
: fSegType(segType) { |
switch (fSegType) { |
@@ -113,6 +59,9 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
yCoeff[1] = Sk8f(2.0f*(By - Ay)); |
} |
break; |
+ case kLine_SegType: |
+ SkDEBUGF(("Unimplemented")); |
+ break; |
case kCubic_SegType: |
{ |
float Ax = pts[0].x(); |
@@ -124,7 +73,6 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
float Cy = pts[2].y(); |
float Dy = pts[3].y(); |
- // precompute coefficients for derivative |
xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx)); |
xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx))); |
xCoeff[2] = Sk8f(3.0f*(-Ax + Bx)); |
@@ -135,10 +83,10 @@ ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
} |
break; |
case kConic_SegType: |
- UNIMPLEMENTED; |
+ SkDEBUGF(("Unimplemented")); |
break; |
default: |
- UNIMPLEMENTED; |
+ SkDEBUGF(("Unimplemented")); |
} |
} |
@@ -169,9 +117,7 @@ SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) |
} |
break; |
case SkSegType::kLine_SegType: |
- fPts[0] = pts[0]; |
- fPts[1] = pts[1]; |
- fLength = (fPts[1] - fPts[0]).length(); |
+ SkDebugf("Unimplemented"); |
break; |
case SkSegType::kCubic_SegType: |
for (size_t i = 0; i < 4; i++) { |
@@ -179,17 +125,13 @@ SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) |
} |
break; |
case SkSegType::kConic_SegType: |
- for (size_t i = 0; i < 4; i++) { |
- fPts[i] = pts[i]; |
- } |
+ SkDebugf("Unimplemented"); |
break; |
default: |
- UNIMPLEMENTED; |
+ SkDEBUGF(("Unimplemented")); |
break; |
} |
- if (kLine_SegType != segType) { |
- fIntegrator = ArcLengthIntegrator(fPts, fSegType); |
- } |
+ fIntegrator = ArcLengthIntegrator(fPts, fSegType); |
} |
SkScalar SkCurveMeasure::getLength() { |
@@ -218,9 +160,6 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
if (SkScalarNearlyEqual(targetLength, currentLength)) { |
return 1.0f; |
} |
- if (kLine_SegType == fSegType) { |
- return targetLength / currentLength; |
- } |
// initial estimate of t is percentage of total length |
SkScalar currentT = targetLength / currentLength; |
@@ -260,8 +199,9 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
prevT = currentT; |
if (iterations < kNewtonIters) { |
+ // TODO(hstern) switch here on curve type. |
// This is just newton's formula. |
- SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length(); |
+ SkScalar dt = evaluateQuadDerivative(currentT).length(); |
newT = currentT - (lengthDiff / dt); |
// If newT is out of bounds, bisect inside newton. |
@@ -278,7 +218,7 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
newT = (minT + maxT) * 0.5f; |
} else { |
SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", |
- currentT, currentLength)); |
+ currentT, currentLength)); |
break; |
} |
currentT = newT; |
@@ -295,16 +235,52 @@ SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
} |
void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos, |
- SkVector* tan, SkScalar* time) { |
+ SkVector* tan, SkScalar* time) { |
SkScalar t = getTime(targetLength); |
if (time) { |
*time = t; |
} |
if (pos) { |
- *pos = evaluate(fPts, fSegType, t); |
+ // TODO(hstern) switch here on curve type. |
+ *pos = evaluateQuad(t); |
} |
if (tan) { |
- *tan = evaluateDerivative(fPts, fSegType, t); |
+ // TODO(hstern) switch here on curve type. |
+ *tan = evaluateQuadDerivative(t); |
} |
} |
+ |
+// this is why I feel that the ArcLengthIntegrator should be combined |
+// with some sort of evaluator that caches the constants computed from the |
+// control points. this is basically the same code in ArcLengthIntegrator |
+SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) { |
+ SkScalar ti = 1.0f - t; |
+ |
+ SkScalar Ax = fPts[0].x(); |
+ SkScalar Bx = fPts[1].x(); |
+ SkScalar Cx = fPts[2].x(); |
+ SkScalar Ay = fPts[0].y(); |
+ SkScalar By = fPts[1].y(); |
+ SkScalar Cy = fPts[2].y(); |
+ |
+ SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t; |
+ SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t; |
+ return SkPoint::Make(x, y); |
+} |
+ |
+SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) { |
+ SkScalar Ax = fPts[0].x(); |
+ SkScalar Bx = fPts[1].x(); |
+ SkScalar Cx = fPts[2].x(); |
+ SkScalar Ay = fPts[0].y(); |
+ SkScalar By = fPts[1].y(); |
+ SkScalar Cy = fPts[2].y(); |
+ |
+ SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx); |
+ SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy); |
+ SkScalar ABx = 2.0f*(Bx - Ax); |
+ SkScalar ABy = 2.0f*(By - Ay); |
+ |
+ return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy); |
+} |