Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(15)

Side by Side Diff: src/utils/SkCurveMeasure.cpp

Issue 2233683004: Revert 386ba54 and 4ab47e0 : perf debug assert. (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/utils/SkCurveMeasure.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2016 Google Inc. 2 * Copyright 2016 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkCurveMeasure.h" 8 #include "SkCurveMeasure.h"
9 #include "SkGeometry.h"
10 9
11 // for abs 10 // for abs
12 #include <cmath> 11 #include <cmath>
13 12
14 #define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__))
15
16 /// Used inside SkCurveMeasure::getTime's Newton's iteration
17 static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType,
18 SkScalar t) {
19 SkPoint pos;
20 switch (segType) {
21 case kQuad_SegType:
22 pos = SkEvalQuadAt(pts, t);
23 break;
24 case kLine_SegType:
25 pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t),
26 SkScalarInterp(pts[0].y(), pts[1].y(), t));
27 break;
28 case kCubic_SegType:
29 SkEvalCubicAt(pts, t, &pos, nullptr, nullptr);
30 break;
31 case kConic_SegType: {
32 SkConic conic(pts, pts[3].x());
33 conic.evalAt(t, &pos);
34 }
35 break;
36 default:
37 UNIMPLEMENTED;
38 }
39
40 return pos;
41 }
42
43 /// Used inside SkCurveMeasure::getTime's Newton's iteration
44 static inline SkVector evaluateDerivative(const SkPoint pts[4],
45 SkSegType segType, SkScalar t) {
46 SkVector tan;
47 switch (segType) {
48 case kQuad_SegType:
49 tan = SkEvalQuadTangentAt(pts, t);
50 break;
51 case kLine_SegType:
52 tan = pts[1] - pts[0];
53 break;
54 case kCubic_SegType:
55 SkEvalCubicAt(pts, t, nullptr, &tan, nullptr);
56 break;
57 case kConic_SegType: {
58 SkConic conic(pts, pts[3].x());
59 conic.evalAt(t, nullptr, &tan);
60 }
61 break;
62 default:
63 UNIMPLEMENTED;
64 }
65
66 return tan;
67 }
68 /// Used in ArcLengthIntegrator::computeLength
69 static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, 13 static inline Sk8f evaluateDerivativeLength(const Sk8f& ts,
70 const Sk8f (&xCoeff)[3], 14 const Sk8f (&xCoeff)[3],
71 const Sk8f (&yCoeff)[3], 15 const Sk8f (&yCoeff)[3],
72 const SkSegType segType) { 16 const SkSegType segType) {
73 Sk8f x; 17 Sk8f x;
74 Sk8f y; 18 Sk8f y;
75 switch (segType) { 19 switch (segType) {
76 case kQuad_SegType: 20 case kQuad_SegType:
77 x = xCoeff[0]*ts + xCoeff[1]; 21 x = xCoeff[0]*ts + xCoeff[1];
78 y = yCoeff[0]*ts + yCoeff[1]; 22 y = yCoeff[0]*ts + yCoeff[1];
79 break; 23 break;
24 case kLine_SegType:
25 SkDebugf("Unimplemented");
26 break;
80 case kCubic_SegType: 27 case kCubic_SegType:
81 x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2]; 28 x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2];
82 y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2]; 29 y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2];
83 break; 30 break;
84 case kConic_SegType: 31 case kConic_SegType:
85 UNIMPLEMENTED; 32 SkDebugf("Unimplemented");
86 break; 33 break;
87 default: 34 default:
88 UNIMPLEMENTED; 35 SkDebugf("Unimplemented");
89 } 36 }
90 37
91 x = x * x; 38 x = x * x;
92 y = y * y; 39 y = y * y;
93 40
94 return (x + y).sqrt(); 41 return (x + y).sqrt();
95 } 42 }
96
97 ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) 43 ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType)
98 : fSegType(segType) { 44 : fSegType(segType) {
99 switch (fSegType) { 45 switch (fSegType) {
100 case kQuad_SegType: { 46 case kQuad_SegType: {
101 float Ax = pts[0].x(); 47 float Ax = pts[0].x();
102 float Bx = pts[1].x(); 48 float Bx = pts[1].x();
103 float Cx = pts[2].x(); 49 float Cx = pts[2].x();
104 float Ay = pts[0].y(); 50 float Ay = pts[0].y();
105 float By = pts[1].y(); 51 float By = pts[1].y();
106 float Cy = pts[2].y(); 52 float Cy = pts[2].y();
107 53
108 // precompute coefficients for derivative 54 // precompute coefficients for derivative
109 xCoeff[0] = Sk8f(2.0f*(Ax - 2*Bx + Cx)); 55 xCoeff[0] = Sk8f(2.0f*(Ax - 2*Bx + Cx));
110 xCoeff[1] = Sk8f(2.0f*(Bx - Ax)); 56 xCoeff[1] = Sk8f(2.0f*(Bx - Ax));
111 57
112 yCoeff[0] = Sk8f(2.0f*(Ay - 2*By + Cy)); 58 yCoeff[0] = Sk8f(2.0f*(Ay - 2*By + Cy));
113 yCoeff[1] = Sk8f(2.0f*(By - Ay)); 59 yCoeff[1] = Sk8f(2.0f*(By - Ay));
114 } 60 }
115 break; 61 break;
62 case kLine_SegType:
63 SkDEBUGF(("Unimplemented"));
64 break;
116 case kCubic_SegType: 65 case kCubic_SegType:
117 { 66 {
118 float Ax = pts[0].x(); 67 float Ax = pts[0].x();
119 float Bx = pts[1].x(); 68 float Bx = pts[1].x();
120 float Cx = pts[2].x(); 69 float Cx = pts[2].x();
121 float Dx = pts[3].x(); 70 float Dx = pts[3].x();
122 float Ay = pts[0].y(); 71 float Ay = pts[0].y();
123 float By = pts[1].y(); 72 float By = pts[1].y();
124 float Cy = pts[2].y(); 73 float Cy = pts[2].y();
125 float Dy = pts[3].y(); 74 float Dy = pts[3].y();
126 75
127 // precompute coefficients for derivative
128 xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx)); 76 xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx));
129 xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx))); 77 xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx)));
130 xCoeff[2] = Sk8f(3.0f*(-Ax + Bx)); 78 xCoeff[2] = Sk8f(3.0f*(-Ax + Bx));
131 79
132 yCoeff[0] = Sk8f(3.0f*(-Ay + 3.0f*(By - Cy) + Dy)); 80 yCoeff[0] = Sk8f(3.0f*(-Ay + 3.0f*(By - Cy) + Dy));
133 yCoeff[1] = Sk8f(3.0f * -Ay + By + 2.0f*(Ay - 2.0f*By + Cy)); 81 yCoeff[1] = Sk8f(3.0f * -Ay + By + 2.0f*(Ay - 2.0f*By + Cy));
134 yCoeff[2] = Sk8f(3.0f*(-Ay + By)); 82 yCoeff[2] = Sk8f(3.0f*(-Ay + By));
135 } 83 }
136 break; 84 break;
137 case kConic_SegType: 85 case kConic_SegType:
138 UNIMPLEMENTED; 86 SkDEBUGF(("Unimplemented"));
139 break; 87 break;
140 default: 88 default:
141 UNIMPLEMENTED; 89 SkDEBUGF(("Unimplemented"));
142 } 90 }
143 } 91 }
144 92
145 // We use Gaussian quadrature 93 // We use Gaussian quadrature
146 // (https://en.wikipedia.org/wiki/Gaussian_quadrature) 94 // (https://en.wikipedia.org/wiki/Gaussian_quadrature)
147 // to approximate the arc length integral here, because it is amenable to SIMD. 95 // to approximate the arc length integral here, because it is amenable to SIMD.
148 SkScalar ArcLengthIntegrator::computeLength(SkScalar t) { 96 SkScalar ArcLengthIntegrator::computeLength(SkScalar t) {
149 SkScalar length = 0.0f; 97 SkScalar length = 0.0f;
150 98
151 Sk8f lengths = evaluateDerivativeLength(absc*t, xCoeff, yCoeff, fSegType); 99 Sk8f lengths = evaluateDerivativeLength(absc*t, xCoeff, yCoeff, fSegType);
(...skipping 10 matching lines...) Expand all
162 110
163 SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) 111 SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType)
164 : fSegType(segType) { 112 : fSegType(segType) {
165 switch (fSegType) { 113 switch (fSegType) {
166 case SkSegType::kQuad_SegType: 114 case SkSegType::kQuad_SegType:
167 for (size_t i = 0; i < 3; i++) { 115 for (size_t i = 0; i < 3; i++) {
168 fPts[i] = pts[i]; 116 fPts[i] = pts[i];
169 } 117 }
170 break; 118 break;
171 case SkSegType::kLine_SegType: 119 case SkSegType::kLine_SegType:
172 fPts[0] = pts[0]; 120 SkDebugf("Unimplemented");
173 fPts[1] = pts[1];
174 fLength = (fPts[1] - fPts[0]).length();
175 break; 121 break;
176 case SkSegType::kCubic_SegType: 122 case SkSegType::kCubic_SegType:
177 for (size_t i = 0; i < 4; i++) { 123 for (size_t i = 0; i < 4; i++) {
178 fPts[i] = pts[i]; 124 fPts[i] = pts[i];
179 } 125 }
180 break; 126 break;
181 case SkSegType::kConic_SegType: 127 case SkSegType::kConic_SegType:
182 for (size_t i = 0; i < 4; i++) { 128 SkDebugf("Unimplemented");
183 fPts[i] = pts[i];
184 }
185 break; 129 break;
186 default: 130 default:
187 UNIMPLEMENTED; 131 SkDEBUGF(("Unimplemented"));
188 break; 132 break;
189 } 133 }
190 if (kLine_SegType != segType) { 134 fIntegrator = ArcLengthIntegrator(fPts, fSegType);
191 fIntegrator = ArcLengthIntegrator(fPts, fSegType);
192 }
193 } 135 }
194 136
195 SkScalar SkCurveMeasure::getLength() { 137 SkScalar SkCurveMeasure::getLength() {
196 if (-1.0f == fLength) { 138 if (-1.0f == fLength) {
197 fLength = fIntegrator.computeLength(1.0f); 139 fLength = fIntegrator.computeLength(1.0f);
198 } 140 }
199 return fLength; 141 return fLength;
200 } 142 }
201 143
202 // Given an arc length targetLength, we want to determine what t 144 // Given an arc length targetLength, we want to determine what t
203 // gives us the corresponding arc length along the curve. 145 // gives us the corresponding arc length along the curve.
204 // We do this by letting the arc length integral := f(t) and 146 // We do this by letting the arc length integral := f(t) and
205 // solving for the root of the equation f(t) - targetLength = 0 147 // solving for the root of the equation f(t) - targetLength = 0
206 // using Newton's method and lerp-bisection. 148 // using Newton's method and lerp-bisection.
207 // The computationally expensive parts are the integral approximation 149 // The computationally expensive parts are the integral approximation
208 // at each step, and computing the derivative of the arc length integral, 150 // at each step, and computing the derivative of the arc length integral,
209 // which is equal to the length of the tangent (so we have to do a sqrt). 151 // which is equal to the length of the tangent (so we have to do a sqrt).
210 152
211 SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { 153 SkScalar SkCurveMeasure::getTime(SkScalar targetLength) {
212 if (targetLength == 0.0f) { 154 if (targetLength == 0.0f) {
213 return 0.0f; 155 return 0.0f;
214 } 156 }
215 157
216 SkScalar currentLength = getLength(); 158 SkScalar currentLength = getLength();
217 159
218 if (SkScalarNearlyEqual(targetLength, currentLength)) { 160 if (SkScalarNearlyEqual(targetLength, currentLength)) {
219 return 1.0f; 161 return 1.0f;
220 } 162 }
221 if (kLine_SegType == fSegType) {
222 return targetLength / currentLength;
223 }
224 163
225 // initial estimate of t is percentage of total length 164 // initial estimate of t is percentage of total length
226 SkScalar currentT = targetLength / currentLength; 165 SkScalar currentT = targetLength / currentLength;
227 SkScalar prevT = -1.0f; 166 SkScalar prevT = -1.0f;
228 SkScalar newT; 167 SkScalar newT;
229 168
230 SkScalar minT = 0.0f; 169 SkScalar minT = 0.0f;
231 SkScalar maxT = 1.0f; 170 SkScalar maxT = 1.0f;
232 171
233 int iterations = 0; 172 int iterations = 0;
(...skipping 19 matching lines...) Expand all
253 // on the t value 192 // on the t value
254 // because we may not have enough precision in the t to get close enough 193 // because we may not have enough precision in the t to get close enough
255 // in the length. 194 // in the length.
256 if ((std::abs(lengthDiff) < kTolerance) || 195 if ((std::abs(lengthDiff) < kTolerance) ||
257 (std::abs(prevT - currentT) < kTolerance)) { 196 (std::abs(prevT - currentT) < kTolerance)) {
258 break; 197 break;
259 } 198 }
260 199
261 prevT = currentT; 200 prevT = currentT;
262 if (iterations < kNewtonIters) { 201 if (iterations < kNewtonIters) {
202 // TODO(hstern) switch here on curve type.
263 // This is just newton's formula. 203 // This is just newton's formula.
264 SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length(); 204 SkScalar dt = evaluateQuadDerivative(currentT).length();
265 newT = currentT - (lengthDiff / dt); 205 newT = currentT - (lengthDiff / dt);
266 206
267 // If newT is out of bounds, bisect inside newton. 207 // If newT is out of bounds, bisect inside newton.
268 if ((newT < 0.0f) || (newT > 1.0f)) { 208 if ((newT < 0.0f) || (newT > 1.0f)) {
269 newT = (minT + maxT) * 0.5f; 209 newT = (minT + maxT) * 0.5f;
270 } 210 }
271 } else if (iterations < kNewtonIters + kBisectIters) { 211 } else if (iterations < kNewtonIters + kBisectIters) {
272 if (lengthDiff > 0.0f) { 212 if (lengthDiff > 0.0f) {
273 maxT = currentT; 213 maxT = currentT;
274 } else { 214 } else {
275 minT = currentT; 215 minT = currentT;
276 } 216 }
277 // TODO(hstern) do a lerp here instead of a bisection 217 // TODO(hstern) do a lerp here instead of a bisection
278 newT = (minT + maxT) * 0.5f; 218 newT = (minT + maxT) * 0.5f;
279 } else { 219 } else {
280 SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", 220 SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n",
281 currentT, currentLength)); 221 currentT, currentLength));
282 break; 222 break;
283 } 223 }
284 currentT = newT; 224 currentT = newT;
285 225
286 SkASSERT(minT <= maxT); 226 SkASSERT(minT <= maxT);
287 227
288 iterations++; 228 iterations++;
289 } 229 }
290 230
291 // debug. is there an SKDEBUG or something for ifdefs? 231 // debug. is there an SKDEBUG or something for ifdefs?
292 fIters = iterations; 232 fIters = iterations;
293 233
294 return currentT; 234 return currentT;
295 } 235 }
296 236
297 void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos, 237 void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos,
298 SkVector* tan, SkScalar* time) { 238 SkVector* tan, SkScalar* time) {
299 SkScalar t = getTime(targetLength); 239 SkScalar t = getTime(targetLength);
300 240
301 if (time) { 241 if (time) {
302 *time = t; 242 *time = t;
303 } 243 }
304 if (pos) { 244 if (pos) {
305 *pos = evaluate(fPts, fSegType, t); 245 // TODO(hstern) switch here on curve type.
246 *pos = evaluateQuad(t);
306 } 247 }
307 if (tan) { 248 if (tan) {
308 *tan = evaluateDerivative(fPts, fSegType, t); 249 // TODO(hstern) switch here on curve type.
250 *tan = evaluateQuadDerivative(t);
309 } 251 }
310 } 252 }
253
254 // this is why I feel that the ArcLengthIntegrator should be combined
255 // with some sort of evaluator that caches the constants computed from the
256 // control points. this is basically the same code in ArcLengthIntegrator
257 SkPoint SkCurveMeasure::evaluateQuad(SkScalar t) {
258 SkScalar ti = 1.0f - t;
259
260 SkScalar Ax = fPts[0].x();
261 SkScalar Bx = fPts[1].x();
262 SkScalar Cx = fPts[2].x();
263 SkScalar Ay = fPts[0].y();
264 SkScalar By = fPts[1].y();
265 SkScalar Cy = fPts[2].y();
266
267 SkScalar x = Ax*ti*ti + 2.0f*Bx*t*ti + Cx*t*t;
268 SkScalar y = Ay*ti*ti + 2.0f*By*t*ti + Cy*t*t;
269 return SkPoint::Make(x, y);
270 }
271
272 SkVector SkCurveMeasure::evaluateQuadDerivative(SkScalar t) {
273 SkScalar Ax = fPts[0].x();
274 SkScalar Bx = fPts[1].x();
275 SkScalar Cx = fPts[2].x();
276 SkScalar Ay = fPts[0].y();
277 SkScalar By = fPts[1].y();
278 SkScalar Cy = fPts[2].y();
279
280 SkScalar A2BCx = 2.0f*(Ax - 2*Bx + Cx);
281 SkScalar A2BCy = 2.0f*(Ay - 2*By + Cy);
282 SkScalar ABx = 2.0f*(Bx - Ax);
283 SkScalar ABy = 2.0f*(By - Ay);
284
285 return SkPoint::Make(A2BCx*t + ABx, A2BCy*t + ABy);
286 }
OLDNEW
« no previous file with comments | « src/utils/SkCurveMeasure.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698