Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(20)

Unified Diff: src/IceCfg.cpp

Issue 2177033002: Subzero: Local variable splitting. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Cleanup Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/IceCfg.h ('k') | src/IceClFlags.h » ('j') | src/IceInst.h » ('J')
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/IceCfg.cpp
diff --git a/src/IceCfg.cpp b/src/IceCfg.cpp
index 23c363fa7791938a5a05a0edfc6adaf72167f48b..42ed2173b8a0dea75ad3dba286695fabb640d3ce 100644
--- a/src/IceCfg.cpp
+++ b/src/IceCfg.cpp
@@ -788,6 +788,362 @@ void Cfg::shortCircuitJumps() {
Nodes = NewList;
}
+namespace {
+
+/// VariableMap is a simple helper class for splitLocalVars(), that keeps track
+/// of the latest split version of the original Variables.
+class VariableMap {
+private:
+ VariableMap() = delete;
+ VariableMap(const VariableMap &) = delete;
+ VariableMap &operator=(const VariableMap &) = delete;
+
+public:
+ explicit VariableMap(Cfg *Func)
+ : Func(Func), NumVars(Func->getNumVariables()) {}
+ /// Reset the mappings at the start of a block.
+ void reset() { Map.assign(NumVars, nullptr); }
+ /// Get Var's current mapping (or Var itself if it has no mapping yet).
+ Variable *get(Variable *Var) const {
+ const SizeT VarNum = getVarNum(Var);
+ Variable *MappedVar = Map[VarNum];
+ return MappedVar == nullptr ? Var : MappedVar;
+ }
+ /// Create a new linked Variable in the LinkedTo chain, and set it as Var's
+ /// latest mapping.
+ Variable *makeLinked(Variable *Var) {
+ Variable *NewVar = Func->makeVariable(Var->getType());
+ NewVar->setRegClass(Var->getRegClass());
+ NewVar->setLinkedTo(get(Var));
+ const SizeT VarNum = getVarNum(Var);
+ Map[VarNum] = NewVar;
+ return NewVar;
+ }
+
+private:
+ Cfg *const Func;
+ // NumVars is for the size of the Map array. It can be const because any new
+ // Variables created during the splitting pass don't need to be mapped.
+ const SizeT NumVars;
+ CfgVector<Variable *> Map;
+ /// Get Var's VarNum, and do some validation.
+ SizeT getVarNum(Variable *Var) const {
+ const SizeT VarNum = Var->getIndex();
+ assert(VarNum < NumVars);
+ assert(Var->mayHaveReg());
+ return VarNum;
+ }
+};
+
+/// A Variable is "normal" if it is a register allocation candidate but doesn't
+/// already have a register.
+bool isNormal(const Variable *Var) {
Eric Holk 2016/07/25 19:59:22 I'm not sure "normal" is the best name here, but I
Jim Stichnoth 2016/07/26 05:59:09 Done - using the shorter "allocable".
+ if (Var == nullptr)
+ return false;
+ return !Var->hasReg() && Var->mayHaveReg();
+}
+
+/// A Variable is "inf" if it already has a register or is infinite-weight.
+bool isInf(const Variable *Var) {
+ if (Var == nullptr)
+ return false;
+ return Var->hasReg() || Var->mustHaveReg();
+}
+
+} // end of anonymous namespace
+
+/// Within each basic block, rewrite Variable references in terms of chained
+/// copies of the original Variable. For example:
+/// A = B + C
+/// might be rewritten as:
+/// B1 = B
+/// C1 = C
+/// A = B + C
Eric Holk 2016/07/25 19:59:22 Should this be `A = B1 + C1`?
Jim Stichnoth 2016/07/26 05:59:09 No... see also the description in lines 1100-1101
+/// A1 = A
+/// and then:
+/// D = A + B
+/// might be rewritten as:
+/// A2 = A1
+/// B2 = B1
+/// D = A1 + B1
+/// D1 = D
+///
+/// The purpose is to present the linear-scan register allocator with smaller
+/// live ranges, to help mitigate its "all or nothing" allocation strategy,
+/// while counting on its preference mechanism to keep the split versions in the
+/// same register when possible.
+///
+/// When creating new Variables, A2 is linked to A1 which is linked to A, and
+/// similar for the other Variable linked-to chains. Rewrites apply only to
+/// Variables where mayHaveReg() is true.
+///
+/// At code emission time, redundant linked-to stack assignments will be
+/// recognized and elided. To illustrate using the above example, if A1 gets a
+/// register but A and A2 are on the stack, the "A2=A1" store instruction is
+/// redundant since A and A2 share the same stack slot and A1 originated from A.
+///
+/// Simple assignment instructions are rewritten slightly differently, to take
+/// maximal advantage of Variables known to have registers.
+///
+/// In general, there may be several valid ways to rewrite an instruction: add
+/// the new assignment instruction either before or after the original
+/// instruction, and rewrite the original instruction with either the old or the
+/// new variable mapping. We try to pick a strategy most likely to avoid
+/// potential performance problems. For example, try to avoid storing to the
+/// stack and then immediately reloading from the same location. One
+/// consequence is that code might be generated that loads a register from a
+/// stack location, followed almost immediately by another use of the same stack
+/// location, despite its value already being available in a register as a
+/// result of the first instruction. However, the performance impact here is
+/// likely to be negligible, and a simple availability peephole optimization
+/// could clean it up.
+///
+/// This pass potentially adds a lot of new instructions and variables, and as
+/// such there are compile-time performance concerns, particularly with liveness
+/// analysis and register allocation. Note that for liveness analysis, the new
+/// variables have single-block liveness, so they don't increase the size of the
+/// liveness bit vectors that need to be merged across blocks. As a result, the
+/// performance impact is likely to be linearly related to the number of new
+/// instructions, without the quadratic nature that liveness analysis usually
Eric Holk 2016/07/25 19:59:22 Does this mean that splitting live ranges totally
Jim Stichnoth 2016/07/26 05:59:09 I rephrased the "quadratic" part in the comment.
+/// has.
+void Cfg::splitLocalVars() {
+ if (!getFlags().getSplitLocalVars())
+ return;
+ TimerMarker _(TimerStack::TT_splitLocalVars, this);
+ VariableMap VarMap(this);
+ for (CfgNode *Node : getNodes()) {
+ // Clear the VarMap at the start of every block.
+ VarMap.reset();
+ auto &Insts = Node->getInsts();
+ auto Iter = Insts.begin();
+ auto IterEnd = Insts.end();
+ // TODO(stichnot): Also create assignments/mappings for phi dest variables.
+ InstList::iterator NextIter;
+ const Inst *WaitingForLabel = nullptr;
+ const Inst *WaitingForBranchTo = nullptr;
+ for (; Iter != IterEnd; Iter = NextIter) {
+ NextIter = Iter;
+ ++NextIter;
+ Inst *Instr = iteratorToInst(Iter);
+ if (Instr->isDeleted())
+ continue;
+
+ // Before doing any transformations, take care of the bookkeeping for
+ // intra-block branching.
+ //
+ // This is tricky because the transformation for one instruction may
+ // depend on a transformation for a previous instruction, but if that
+ // previous instruction is not dynamically executed due to intra-block
+ // control flow, it may lead to an inconsistent state and incorrect code.
+ //
+ // We want to handle some simple cases, and reject some others:
+ //
+ // 1. For something like a select instruction, we could have:
+ // test cond
+ // dest = src_false
+ // branch conditionally to label
+ // dest = src_true
+ // label:
+ //
+ // Between the conditional branch and the label, we need to treat dest and
+ // src variables specially, specifically not creating any new state.
+ //
+ // 2. Some 64-bit atomic instructions may be lowered to a loop:
+ // label:
+ // ...
+ // branch conditionally to label
+ //
+ // No special treatment is needed, but it's worth tracking so that case #1
+ // above can also be handled.
+ //
+ // 3. Advanced switch lowering can create really complex intra-block
+ // control flow, so when we recognize this, we should just stop splitting
+ // for the remainder of the block (which isn't much since a switch
+ // instruction is a terminator).
+ //
+ // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture,
+ // can result in an if/then/else like structure with two labels. One
+ // possibility would be to suspect splitting for the remainder of the
+ // lowered instruction, and then resume for the remainder of the block,
+ // but since we don't have high-level instruction markers, we might as
+ // well just stop splitting for the remainder of the block.
+ if (Instr->isLabel()) {
+ // A Label instruction shouldn't have any operands, so it can be handled
+ // right here and then move on.
+ assert(Instr->getDest() == nullptr);
+ assert(Instr->getSrcSize() == 0);
+ if (Instr == WaitingForLabel) {
+ // If we found the forward-branch-target Label instruction we're
+ // waiting for, then clear the WaitingForLabel state.
+ WaitingForLabel = nullptr;
+ } else if (WaitingForLabel == nullptr &&
+ WaitingForBranchTo == nullptr) {
+ // If we found a new Label instruction while the WaitingFor* state is
+ // clear, then set things up for this being a backward branch target.
+ WaitingForBranchTo = Instr;
+ } else {
+ // We see something we don't understand, so skip to the next block.
+ break;
+ }
+ continue; // move to next instruction
+ }
+ if (const Inst *Label = Instr->isIntraBlockBranch()) {
+ // An intra-block branch instruction shouldn't have any operands, so it
+ // can be handled right here and then move on.
+ assert(Instr->getDest() == nullptr);
+ assert(Instr->getSrcSize() == 0);
+ if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) {
+ WaitingForBranchTo = nullptr;
+ } else if (WaitingForBranchTo == nullptr &&
+ (WaitingForLabel == nullptr || WaitingForLabel == Label)) {
+ WaitingForLabel = Label;
+ } else {
+ // We see something we don't understand, so skip to the next block.
+ break;
+ }
+ continue; // move to next instruction
+ }
+
+ // Intra-block bookkeeping is complete, now do the transformations.
+ static constexpr char AnInstructionHasNoName[] = "";
Eric Holk 2016/07/25 19:59:22 :)
+ // We can limit the splitting to an arbitrary subset of the instructions,
+ // and still expect correct code. As such, we can do instruction-subset
+ // bisection to help debug any problems in this pass.
+ if (!BuildDefs::minimal() &&
+ !getFlags().matchSplitInsts(AnInstructionHasNoName,
Eric Holk 2016/07/25 19:59:22 This is a little unclear to me, but I think I get
Jim Stichnoth 2016/07/26 05:59:09 Right -- class RangeSpec allows matching by name o
+ Instr->getNumber()))
+ continue;
+
+ if (!llvm::isa<InstTarget>(Instr)) {
+ // Ignore non-lowered instructions like FakeDef/FakeUse.
+ continue;
+ }
+ const bool IsUnconditionallyExecuted = (WaitingForLabel == nullptr);
+ Variable *Dest = Instr->getDest();
+ const bool DestIsInf = isInf(Dest);
+ const bool DestIsNormal = isNormal(Dest);
+ // Determine the transformation based on the kind of instruction, and
+ // whether its Variables are infinite-weight. New instructions can be
+ // inserted before the current instruction via Iter, or after the current
+ // instruction via NextIter.
+ if (Instr->isVarAssign()) {
+ auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0));
+ const bool SrcIsInf = isInf(SrcVar);
+ const bool SrcIsNormal = isNormal(SrcVar);
+ if (DestIsInf && SrcIsInf) {
+ // The instruction:
+ // t:inf = u:inf
+ // No transformation is needed.
+ continue;
+ } else if (DestIsInf && SrcIsNormal &&
+ Dest->getType() == Instr->getSrc(0)->getType()) {
+ // The instruction:
+ // t:inf = v
+ // gets transformed to:
+ // t:inf = v1
+ // v2 = t:inf
+ // where:
+ // v1 := map[v]
+ // v2 := linkTo(v)
+ // map[v] := v2
+ //
+ // If both v2 and its linkedToStackRoot get a stack slot, then
+ // "v2=t:inf" is recognized as a redundant assignment and elided.
+ //
+ // Note that if the dest and src types are different, then this is
+ // actually a truncation operation, which would make "v2=t:inf" an
+ // invalid instruction. In this case, the type test will make it fall
+ // through to the general case below.
+ Variable *OldMapped = VarMap.get(SrcVar);
+ Instr->replaceSource(0, OldMapped);
+ if (IsUnconditionallyExecuted) {
+ // Only create new mapping state if the instruction is
+ // unconditionally executed.
+ Variable *NewMapped = VarMap.makeLinked(SrcVar);
+ Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
+ Insts.insert(NextIter, Mov);
+ }
+ continue;
+ } else if (DestIsNormal && SrcIsInf) {
+ // The instruction:
+ // v = t:inf
+ // gets transformed to:
+ // v = t:inf
+ // v2 = t:inf
+ // where:
+ // v2 := linkTo(v)
+ // map[v] := v2
+ //
+ // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as
+ // a redundant assignment and elided.
+ if (IsUnconditionallyExecuted) {
+ // Only create new mapping state if the instruction is
+ // unconditionally executed.
+ Variable *NewMapped = VarMap.makeLinked(Dest);
+ Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
+ Insts.insert(NextIter, Mov);
+ } else {
+ // For a conditionally executed instruction, add a redefinition of
+ // the original Dest mapping, without creating a new linked
+ // variable.
+ Variable *OldMapped = VarMap.get(Dest);
+ Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
+ Mov->setDestRedefined();
+ Insts.insert(NextIter, Mov);
+ }
+ continue;
+ }
+ }
+ // The (non-variable-assignment) instruction:
+ // ... = F(v)
+ // where v is not infinite-weight, gets transformed to:
+ // v2 = v1
+ // ... = F(v1)
+ // where:
+ // v1 := map[v]
+ // v2 := linkTo(v)
+ // map[v] := v2
+ // After that, if the "..." dest=u is not infinite-weight, append:
+ // u2 = u
+ // where:
+ // u2 := linkTo(u)
+ // map[u] := u2
+ for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
+ // Iterate over the top-level src vars. Don't bother to dig into
+ // e.g. MemOperands because their vars should all be infinite-weight.
+ // (This assumption would need to change if the pass were done
+ // pre-lowering.)
+ if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) {
+ const bool SrcIsNormal = isNormal(SrcVar);
+ if (SrcIsNormal) {
+ Variable *OldMapped = VarMap.get(SrcVar);
+ if (IsUnconditionallyExecuted) {
+ Variable *NewMapped = VarMap.makeLinked(SrcVar);
+ Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped);
+ Insts.insert(Iter, Mov);
+ }
+ Instr->replaceSource(i, OldMapped);
+ }
+ }
+ }
+ // Transformation of Dest is the same as the "v=t:inf" case above.
+ if (DestIsNormal) {
+ if (IsUnconditionallyExecuted) {
+ Variable *NewMapped = VarMap.makeLinked(Dest);
+ Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
+ Insts.insert(NextIter, Mov);
+ } else {
+ Variable *OldMapped = VarMap.get(Dest);
+ Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
+ Mov->setDestRedefined();
+ Insts.insert(NextIter, Mov);
+ }
+ }
+ }
+ }
+ dump("After splitting local variables");
+}
+
void Cfg::doArgLowering() {
TimerMarker T(TimerStack::TT_doArgLowering, this);
getTarget()->lowerArguments();
« no previous file with comments | « src/IceCfg.h ('k') | src/IceClFlags.h » ('j') | src/IceInst.h » ('J')

Powered by Google App Engine
This is Rietveld 408576698