Index: src/core/SkLinearBitmapPipeline_sample.h |
diff --git a/src/core/SkLinearBitmapPipeline_sample.h b/src/core/SkLinearBitmapPipeline_sample.h |
index c173bc589ce49e4d7e7adba3379ed7cab6bed2ea..86ad6e146f0062ed779d493538f8f366ece46a00 100644 |
--- a/src/core/SkLinearBitmapPipeline_sample.h |
+++ b/src/core/SkLinearBitmapPipeline_sample.h |
@@ -40,7 +40,7 @@ |
// * px11 -> xy |
// So x * y is calculated first and then used to calculate all the other factors. |
static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10, |
- Sk4f px01, Sk4f px11) { |
+ Sk4f px01, Sk4f px11) { |
// Calculate fractional xs and ys. |
Sk4s fxs = xs - xs.floor(); |
Sk4s fys = ys - ys.floor(); |
@@ -134,21 +134,20 @@ |
class PixelConverter<kIndex_8_SkColorType, gammaType> { |
public: |
using Element = uint8_t; |
- PixelConverter(const SkPixmap& srcPixmap) |
- : fColorTableSize(srcPixmap.ctable()->count()){ |
+ PixelConverter(const SkPixmap& srcPixmap) { |
SkColorTable* skColorTable = srcPixmap.ctable(); |
SkASSERT(skColorTable != nullptr); |
fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get()); |
- for (int i = 0; i < fColorTableSize; i++) { |
+ for (int i = 0; i < skColorTable->count(); i++) { |
fColorTable[i] = pmcolor_to_rgba<gammaType>((*skColorTable)[i]); |
} |
} |
- PixelConverter(const PixelConverter& strategy) |
- : fColorTableSize{strategy.fColorTableSize}{ |
+ PixelConverter(const PixelConverter& strategy) { |
fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get()); |
- for (int i = 0; i < fColorTableSize; i++) { |
+ // TODO: figure out the count. |
+ for (int i = 0; i < 256; i++) { |
fColorTable[i] = strategy.fColorTable[i]; |
} |
} |
@@ -159,9 +158,9 @@ |
private: |
static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12; |
- const int fColorTableSize; |
- SkAutoMalloc fColorTableStorage{kColorTableSize}; |
- Sk4f* fColorTable; |
+ |
+ SkAutoMalloc fColorTableStorage{kColorTableSize}; |
+ Sk4f* fColorTable; |
}; |
template <SkGammaType gammaType> |
@@ -196,12 +195,12 @@ |
: fPixelAccessor(accessor) { } |
void SK_VECTORCALL getFewPixels( |
- int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const { |
+ int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const { |
fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2); |
} |
void SK_VECTORCALL get4Pixels( |
- Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const { |
+ Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const { |
fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3); |
} |
@@ -239,8 +238,10 @@ |
, fConverter{srcPixmap, std::move<Args>(args)...} { } |
void SK_VECTORCALL getFewPixels ( |
- int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override { |
- Sk4i bufferLoc = ys * fWidth + xs; |
+ int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override { |
+ Sk4i XIs = SkNx_cast<int, SkScalar>(xs); |
+ Sk4i YIs = SkNx_cast<int, SkScalar>(ys); |
+ Sk4i bufferLoc = YIs * fWidth + XIs; |
switch (n) { |
case 3: |
*px2 = this->getPixelAt(bufferLoc[2]); |
@@ -254,8 +255,10 @@ |
} |
void SK_VECTORCALL get4Pixels( |
- Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override { |
- Sk4i bufferLoc = ys * fWidth + xs; |
+ Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override { |
+ Sk4i XIs = SkNx_cast<int, SkScalar>(xs); |
+ Sk4i YIs = SkNx_cast<int, SkScalar>(ys); |
+ Sk4i bufferLoc = YIs * fWidth + XIs; |
*px0 = this->getPixelAt(bufferLoc[0]); |
*px1 = this->getPixelAt(bufferLoc[1]); |
*px2 = this->getPixelAt(bufferLoc[2]); |
@@ -328,7 +331,6 @@ |
} |
} |
-// -- NearestNeighborSampler ----------------------------------------------------------------------- |
// NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels. |
template<typename Accessor, typename Next> |
class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface { |
@@ -344,7 +346,7 @@ |
void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
SkASSERT(0 < n && n < 4); |
Sk4f px0, px1, px2; |
- fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2); |
+ fAccessor.getFewPixels(n, xs, ys, &px0, &px1, &px2); |
if (n >= 1) fNext->blendPixel(px0); |
if (n >= 2) fNext->blendPixel(px1); |
if (n >= 3) fNext->blendPixel(px2); |
@@ -352,7 +354,7 @@ |
void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
Sk4f px0, px1, px2, px3; |
- fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3); |
+ fAccessor.get4Pixels(xs, ys, &px0, &px1, &px2, &px3); |
fNext->blend4Pixels(px0, px1, px2, px3); |
} |
@@ -379,11 +381,21 @@ |
} |
} |
+ void SK_VECTORCALL bilerpEdge(Sk4s xs, Sk4s ys) override { |
+ SkFAIL("Using nearest neighbor sampler, but calling a bilerpEdge."); |
+ } |
+ |
+ void bilerpSpan(Span span, SkScalar y) override { |
+ SkFAIL("Using nearest neighbor sampler, but calling a bilerpSpan."); |
+ } |
+ |
private: |
// When moving through source space more slowly than dst space (zoomed in), |
// we'll be sampling from the same source pixel more than once. |
void spanSlowRate(Span span) { |
- SkPoint start; SkScalar length; int count; |
+ SkPoint start; |
+ SkScalar length; |
+ int count; |
std::tie(start, length, count) = span; |
SkScalar x = X(start); |
SkFixed fx = SkScalarToFixed(x); |
@@ -440,82 +452,35 @@ |
Accessor fAccessor; |
}; |
-// From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge |
-// vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to |
-// generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value |
-// on the interval [0, vMax]. |
-// Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel. |
-static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) { |
- SkASSERT(-1 <= vs && vs <= vMax + 1) |
- switch (edgeType) { |
- case SkShader::kClamp_TileMode: |
- case SkShader::kMirror_TileMode: |
- vs = std::max(vs, 0); |
- vs = std::min(vs, vMax); |
- break; |
- case SkShader::kRepeat_TileMode: |
- vs = (vs <= vMax) ? vs : 0; |
- vs = (vs >= 0) ? vs : vMax; |
- break; |
- } |
- SkASSERT(0 <= vs && vs <= vMax); |
- return vs; |
-} |
- |
-// From a sample point on the tile, return the top or left filter value. |
-// The result r should be in the range (0, 1]. Since this represents the weight given to the top |
-// left element, then if x == 0.5 the filter value should be 1.0. |
-// The input sample point must be on the tile, therefore it must be >= 0. |
-static SkScalar sample_to_filter(SkScalar x) { |
- SkASSERT(x >= 0.0f); |
- // The usual form of the top or left edge is x - .5, but since we are working on the unit |
- // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use |
- // of trunc. |
- SkScalar v = x + 0.5f; |
- // Produce the top or left offset a value on the range [0, 1). |
- SkScalar f = v - SkScalarTruncToScalar(v); |
- // Produce the filter value which is on the range (0, 1]. |
- SkScalar r = 1.0f - f; |
- SkASSERT(0.0f < r && r <= 1.0f); |
- return r; |
-} |
- |
// -- BilerpSampler -------------------------------------------------------------------------------- |
// BilerpSampler - use a bilerp filter to create runs of destination pixels. |
-// Note: in the code below, there are two types of points |
-// * sample points - these are the points passed in by pointList* and Spans. |
-// * filter points - are created from a sample point to form the coordinates of the points |
-// to use in the filter and to generate the filter values. |
template<typename Accessor, typename Next> |
class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface { |
public: |
template<typename... Args> |
- BilerpSampler( |
- SkLinearBitmapPipeline::BlendProcessorInterface* next, |
- SkISize dimensions, |
- SkShader::TileMode xTile, SkShader::TileMode yTile, |
- Args&& ... args |
- ) |
- : fNext{next} |
- , fXEdgeType{xTile} |
- , fXMax{dimensions.width() - 1} |
- , fYEdgeType{yTile} |
- , fYMax{dimensions.height() - 1} |
- , fAccessor{std::forward<Args>(args)...} { } |
+ BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args) |
+ : fNext{next}, fAccessor{std::forward<Args>(args)...} { } |
BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, |
const BilerpSampler& sampler) |
- : fNext{next} |
- , fXEdgeType{sampler.fXEdgeType} |
- , fXMax{sampler.fXMax} |
- , fYEdgeType{sampler.fYEdgeType} |
- , fYMax{sampler.fYMax} |
- , fAccessor{sampler.fAccessor} { } |
+ : fNext{next}, fAccessor{sampler.fAccessor} { } |
+ |
+ Sk4f bilerpNonEdgePixel(SkScalar x, SkScalar y) { |
+ Sk4f px00, px10, px01, px11; |
+ |
+ // bilerp4() expects xs, ys are the top-lefts of the 2x2 kernel. |
+ Sk4f xs = Sk4f{x} - 0.5f; |
+ Sk4f ys = Sk4f{y} - 0.5f; |
+ Sk4f sampleXs = xs + Sk4f{0.0f, 1.0f, 0.0f, 1.0f}; |
+ Sk4f sampleYs = ys + Sk4f{0.0f, 0.0f, 1.0f, 1.0f}; |
+ fAccessor.get4Pixels(sampleXs, sampleYs, &px00, &px10, &px01, &px11); |
+ return bilerp4(xs, ys, px00, px10, px01, px11); |
+ } |
void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
SkASSERT(0 < n && n < 4); |
auto bilerpPixel = [&](int index) { |
- return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]}); |
+ return this->bilerpNonEdgePixel(xs[index], ys[index]); |
}; |
if (n >= 1) fNext->blendPixel(bilerpPixel(0)); |
@@ -525,484 +490,308 @@ |
void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
auto bilerpPixel = [&](int index) { |
- return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]}); |
+ return this->bilerpNonEdgePixel(xs[index], ys[index]); |
}; |
fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3)); |
} |
void pointSpan(Span span) override { |
+ this->bilerpSpan(span, span.startY()); |
+ } |
+ |
+ void repeatSpan(Span span, int32_t repeatCount) override { |
+ while (repeatCount > 0) { |
+ this->pointSpan(span); |
+ repeatCount--; |
+ } |
+ } |
+ |
+ void SK_VECTORCALL bilerpEdge(Sk4s sampleXs, Sk4s sampleYs) override { |
+ Sk4f px00, px10, px01, px11; |
+ Sk4f xs = Sk4f{sampleXs[0]}; |
+ Sk4f ys = Sk4f{sampleYs[0]}; |
+ fAccessor.get4Pixels(sampleXs, sampleYs, &px00, &px10, &px01, &px11); |
+ Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11); |
+ fNext->blendPixel(pixel); |
+ } |
+ |
+ void bilerpSpan(Span span, SkScalar y) override { |
SkASSERT(!span.isEmpty()); |
SkPoint start; |
SkScalar length; |
int count; |
std::tie(start, length, count) = span; |
- |
- // Nothing to do. |
- if (count == 0) { |
- return; |
- } |
- |
- // Trivial case. No sample points are generated other than start. |
- if (count == 1) { |
- fNext->blendPixel(this->bilerpSamplePoint(start)); |
- return; |
- } |
- |
- // Note: the following code could be done in terms of dx = length / (count -1), but that |
- // would introduce a divide that is not needed for the most common dx == 1 cases. |
SkScalar absLength = SkScalarAbs(length); |
if (absLength == 0.0f) { |
- // |dx| == 0 |
- // length is zero, so clamp an edge pixel. |
- this->spanZeroRate(span); |
+ this->spanZeroRate(span, y); |
} else if (absLength < (count - 1)) { |
- // 0 < |dx| < 1. |
- this->spanSlowRate(span); |
+ this->spanSlowRate(span, y); |
} else if (absLength == (count - 1)) { |
- // |dx| == 1. |
- if (sample_to_filter(span.startX()) == 1.0f |
- && sample_to_filter(span.startY()) == 1.0f) { |
- // All the pixels are aligned with the dest; go fast. |
- src_strategy_blend(span, fNext, &fAccessor); |
+ if (std::fmod(span.startX() - 0.5f, 1.0f) == 0.0f) { |
+ if (std::fmod(span.startY() - 0.5f, 1.0f) == 0.0f) { |
+ src_strategy_blend(span, fNext, &fAccessor); |
+ } else { |
+ this->spanUnitRateAlignedX(span, y); |
+ } |
} else { |
- // There is some sub-pixel offsets, so bilerp. |
- this->spanUnitRate(span); |
- } |
- } else if (absLength < 2.0f * (count - 1)) { |
- // 1 < |dx| < 2. |
- this->spanMediumRate(span); |
+ this->spanUnitRate(span, y); |
+ } |
} else { |
- // |dx| >= 2. |
- this->spanFastRate(span); |
- } |
- } |
- |
- void repeatSpan(Span span, int32_t repeatCount) override { |
- while (repeatCount > 0) { |
- this->pointSpan(span); |
- repeatCount--; |
+ this->spanFastRate(span, y); |
} |
} |
private: |
- |
- // Convert a sample point to the points used by the filter. |
- void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) { |
- // May be less than zero. Be careful to use Floor. |
- int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax); |
- // Always greater than zero. Use the faster Trunc. |
- int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax); |
- int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax); |
- int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax); |
- |
- *filterXs = Sk4i{x0, x1, x0, x1}; |
- *filterYs = Sk4i{y0, y0, y1, y1}; |
- } |
- |
- // Given a sample point, generate a color by bilerping the four filter points. |
- Sk4f bilerpSamplePoint(SkPoint sample) { |
- Sk4i iXs, iYs; |
- filterPoints(sample, &iXs, &iYs); |
- Sk4f px00, px10, px01, px11; |
- fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11); |
- return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11); |
- } |
- |
- // Get two pixels at x from row0 and row1. |
- void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) { |
- *px0 = fAccessor.getPixelFromRow(row0, x); |
- *px1 = fAccessor.getPixelFromRow(row1, x); |
- } |
- |
- // |dx| == 0. This code assumes that length is zero. |
- void spanZeroRate(Span span) { |
- SkPoint start; SkScalar length; int count; |
+ void spanZeroRate(Span span, SkScalar y1) { |
+ SkScalar y0 = span.startY() - 0.5f; |
+ y1 += 0.5f; |
+ int iy0 = SkScalarFloorToInt(y0); |
+ SkScalar filterY1 = y0 - iy0; |
+ SkScalar filterY0 = 1.0f - filterY1; |
+ int iy1 = SkScalarFloorToInt(y1); |
+ int ix = SkScalarFloorToInt(span.startX()); |
+ Sk4f pixelY0 = fAccessor.getPixelFromRow(fAccessor.row(iy0), ix); |
+ Sk4f pixelY1 = fAccessor.getPixelFromRow(fAccessor.row(iy1), ix); |
+ Sk4f filterPixel = pixelY0 * filterY0 + pixelY1 * filterY1; |
+ int count = span.count(); |
+ while (count >= 4) { |
+ fNext->blend4Pixels(filterPixel, filterPixel, filterPixel, filterPixel); |
+ count -= 4; |
+ } |
+ while (count > 0) { |
+ fNext->blendPixel(filterPixel); |
+ count -= 1; |
+ } |
+ } |
+ |
+ // When moving through source space more slowly than dst space (zoomed in), |
+ // we'll be sampling from the same source pixel more than once. |
+ void spanSlowRate(Span span, SkScalar ry1) { |
+ SkPoint start; |
+ SkScalar length; |
+ int count; |
std::tie(start, length, count) = span; |
- SkASSERT(length == 0.0f); |
- |
- // Filter for the blending of the top and bottom pixels. |
- SkScalar filterY = sample_to_filter(Y(start)); |
- |
- // Generate the four filter points from the sample point start. Generate the row* values. |
- Sk4i iXs, iYs; |
- this->filterPoints(start, &iXs, &iYs); |
- const void* const row0 = fAccessor.row(iYs[0]); |
- const void* const row1 = fAccessor.row(iYs[2]); |
- |
- // Get the two pixels that make up the clamping pixel. |
- Sk4f pxTop, pxBottom; |
- this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom); |
- Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom; |
+ SkFixed fx = SkScalarToFixed(X(start)-0.5f); |
+ |
+ SkFixed fdx = SkScalarToFixed(length / (count - 1)); |
+ |
+ Sk4f xAdjust; |
+ if (fdx >= 0) { |
+ xAdjust = Sk4f{-1.0f}; |
+ } else { |
+ xAdjust = Sk4f{1.0f}; |
+ } |
+ int ix = SkFixedFloorToInt(fx); |
+ int ioldx = ix; |
+ Sk4f x{SkFixedToScalar(fx) - ix}; |
+ Sk4f dx{SkFixedToScalar(fdx)}; |
+ SkScalar ry0 = Y(start) - 0.5f; |
+ ry1 += 0.5f; |
+ SkScalar yFloor = std::floor(ry0); |
+ Sk4f y1 = Sk4f{ry0 - yFloor}; |
+ Sk4f y0 = Sk4f{1.0f} - y1; |
+ const void* const row0 = fAccessor.row(SkScalarFloorToInt(ry0)); |
+ const void* const row1 = fAccessor.row(SkScalarFloorToInt(ry1)); |
+ Sk4f fpixel00 = y0 * fAccessor.getPixelFromRow(row0, ix); |
+ Sk4f fpixel01 = y1 * fAccessor.getPixelFromRow(row1, ix); |
+ Sk4f fpixel10 = y0 * fAccessor.getPixelFromRow(row0, ix + 1); |
+ Sk4f fpixel11 = y1 * fAccessor.getPixelFromRow(row1, ix + 1); |
+ auto getNextPixel = [&]() { |
+ if (ix != ioldx) { |
+ fpixel00 = fpixel10; |
+ fpixel01 = fpixel11; |
+ fpixel10 = y0 * fAccessor.getPixelFromRow(row0, ix + 1); |
+ fpixel11 = y1 * fAccessor.getPixelFromRow(row1, ix + 1); |
+ ioldx = ix; |
+ x = x + xAdjust; |
+ } |
+ |
+ Sk4f x0, x1; |
+ x0 = Sk4f{1.0f} - x; |
+ x1 = x; |
+ Sk4f fpixel = x0 * (fpixel00 + fpixel01) + x1 * (fpixel10 + fpixel11); |
+ fx += fdx; |
+ ix = SkFixedFloorToInt(fx); |
+ x = x + dx; |
+ return fpixel; |
+ }; |
while (count >= 4) { |
- fNext->blend4Pixels(pixel, pixel, pixel, pixel); |
+ Sk4f fpixel0 = getNextPixel(); |
+ Sk4f fpixel1 = getNextPixel(); |
+ Sk4f fpixel2 = getNextPixel(); |
+ Sk4f fpixel3 = getNextPixel(); |
+ |
+ fNext->blend4Pixels(fpixel0, fpixel1, fpixel2, fpixel3); |
count -= 4; |
} |
+ |
while (count > 0) { |
- fNext->blendPixel(pixel); |
+ fNext->blendPixel(getNextPixel()); |
+ |
count -= 1; |
} |
} |
- // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce |
- // computation. In particular, several destination pixels maybe generated from the same four |
- // source pixels. |
- // In the following code a "part" is a combination of two pixels from the same column of the |
- // filter. |
- void spanSlowRate(Span span) { |
- SkPoint start; SkScalar length; int count; |
- std::tie(start, length, count) = span; |
- |
- // Calculate the distance between each sample point. |
- const SkScalar dx = length / (count - 1); |
- SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f); |
- |
- // Generate the filter values for the top-left corner. |
- // Note: these values are in filter space; this has implications about how to adjust |
- // these values at each step. For example, as the sample point increases, the filter |
- // value decreases, this is because the filter and position are related by |
- // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite |
- // direction of the sample point which is increasing by dx. |
- SkScalar filterX = sample_to_filter(X(start)); |
- SkScalar filterY = sample_to_filter(Y(start)); |
- |
- // Generate the four filter points from the sample point start. Generate the row* values. |
- Sk4i iXs, iYs; |
- this->filterPoints(start, &iXs, &iYs); |
- const void* const row0 = fAccessor.row(iYs[0]); |
- const void* const row1 = fAccessor.row(iYs[2]); |
- |
- // Generate part of the filter value at xColumn. |
- auto partAtColumn = [&](int xColumn) { |
- int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); |
- Sk4f pxTop, pxBottom; |
- this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); |
- return pxTop * filterY + (1.0f - filterY) * pxBottom; |
- }; |
- |
- // The leftPart is made up of two pixels from the left column of the filter, right part |
- // is similar. The top and bottom pixels in the *Part are created as a linear blend of |
- // the top and bottom pixels using filterY. See the partAtColumn function above. |
- Sk4f leftPart = partAtColumn(iXs[0]); |
- Sk4f rightPart = partAtColumn(iXs[1]); |
- |
- // Create a destination color by blending together a left and right part using filterX. |
- auto bilerp = [&]() { |
- Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX); |
- return check_pixel(pixel); |
- }; |
- |
- // Send the first pixel to the destination. This simplifies the loop structure so that no |
- // extra pixels are fetched for the last iteration of the loop. |
- fNext->blendPixel(bilerp()); |
- count -= 1; |
- |
- if (dx > 0.0f) { |
- // * positive direction - generate destination pixels by sliding the filter from left |
- // to right. |
- int rightPartCursor = iXs[1]; |
- |
- // Advance the filter from left to right. Remember that moving the top-left corner of |
- // the filter to the right actually makes the filter value smaller. |
- auto advanceFilter = [&]() { |
- filterX -= dx; |
- if (filterX <= 0.0f) { |
- filterX += 1.0f; |
- leftPart = rightPart; |
- rightPartCursor += 1; |
- rightPart = partAtColumn(rightPartCursor); |
- } |
- SkASSERT(0.0f < filterX && filterX <= 1.0f); |
- |
- return bilerp(); |
- }; |
- |
+ // We're moving through source space at a rate of 1 source pixel per 1 dst pixel. |
+ // We'll never re-use pixels, but we can at least load contiguous pixels. |
+ void spanUnitRate(Span span, SkScalar y1) { |
+ y1 += 0.5f; |
+ SkScalar y0 = span.startY() - 0.5f; |
+ int iy0 = SkScalarFloorToInt(y0); |
+ SkScalar filterY1 = y0 - iy0; |
+ SkScalar filterY0 = 1.0f - filterY1; |
+ int iy1 = SkScalarFloorToInt(y1); |
+ const void* rowY0 = fAccessor.row(iy0); |
+ const void* rowY1 = fAccessor.row(iy1); |
+ SkScalar x0 = span.startX() - 0.5f; |
+ int ix0 = SkScalarFloorToInt(x0); |
+ SkScalar filterX1 = x0 - ix0; |
+ SkScalar filterX0 = 1.0f - filterX1; |
+ |
+ auto getPixelY0 = [&]() { |
+ Sk4f px = fAccessor.getPixelFromRow(rowY0, ix0); |
+ return px * filterY0; |
+ }; |
+ |
+ auto getPixelY1 = [&]() { |
+ Sk4f px = fAccessor.getPixelFromRow(rowY1, ix0); |
+ return px * filterY1; |
+ }; |
+ |
+ auto get4PixelsY0 = [&](int ix, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) { |
+ fAccessor.get4Pixels(rowY0, ix, px0, px1, px2, px3); |
+ *px0 = *px0 * filterY0; |
+ *px1 = *px1 * filterY0; |
+ *px2 = *px2 * filterY0; |
+ *px3 = *px3 * filterY0; |
+ }; |
+ |
+ auto get4PixelsY1 = [&](int ix, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) { |
+ fAccessor.get4Pixels(rowY1, ix, px0, px1, px2, px3); |
+ *px0 = *px0 * filterY1; |
+ *px1 = *px1 * filterY1; |
+ *px2 = *px2 * filterY1; |
+ *px3 = *px3 * filterY1; |
+ }; |
+ |
+ auto lerp = [&](Sk4f& pixelX0, Sk4f& pixelX1) { |
+ return pixelX0 * filterX0 + pixelX1 * filterX1; |
+ }; |
+ |
+ // Mid making 4 unit rate. |
+ Sk4f pxB = getPixelY0() + getPixelY1(); |
+ if (span.length() > 0) { |
+ int count = span.count(); |
while (count >= 4) { |
- Sk4f px0 = advanceFilter(), |
- px1 = advanceFilter(), |
- px2 = advanceFilter(), |
- px3 = advanceFilter(); |
+ Sk4f px00, px10, px20, px30; |
+ get4PixelsY0(ix0, &px00, &px10, &px20, &px30); |
+ Sk4f px01, px11, px21, px31; |
+ get4PixelsY1(ix0, &px01, &px11, &px21, &px31); |
+ Sk4f pxS0 = px00 + px01; |
+ Sk4f px0 = lerp(pxB, pxS0); |
+ Sk4f pxS1 = px10 + px11; |
+ Sk4f px1 = lerp(pxS0, pxS1); |
+ Sk4f pxS2 = px20 + px21; |
+ Sk4f px2 = lerp(pxS1, pxS2); |
+ Sk4f pxS3 = px30 + px31; |
+ Sk4f px3 = lerp(pxS2, pxS3); |
+ pxB = pxS3; |
fNext->blend4Pixels(px0, px1, px2, px3); |
+ ix0 += 4; |
count -= 4; |
} |
- |
while (count > 0) { |
- fNext->blendPixel(advanceFilter()); |
+ Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix0); |
+ Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix0); |
+ |
+ fNext->blendPixel(lerp(pixelY0, pixelY1)); |
+ ix0 += 1; |
count -= 1; |
} |
} else { |
- // * negative direction - generate destination pixels by sliding the filter from |
- // right to left. |
- int leftPartCursor = iXs[0]; |
- |
- // Advance the filter from right to left. Remember that moving the top-left corner of |
- // the filter to the left actually makes the filter value larger. |
- auto advanceFilter = [&]() { |
- // Remember, dx < 0 therefore this adds |dx| to filterX. |
- filterX -= dx; |
- // At this point filterX may be > 1, and needs to be wrapped back on to the filter |
- // interval, and the next column in the filter is calculated. |
- if (filterX > 1.0f) { |
- filterX -= 1.0f; |
- rightPart = leftPart; |
- leftPartCursor -= 1; |
- leftPart = partAtColumn(leftPartCursor); |
- } |
- SkASSERT(0.0f < filterX && filterX <= 1.0f); |
- |
- return bilerp(); |
- }; |
- |
+ int count = span.count(); |
while (count >= 4) { |
- Sk4f px0 = advanceFilter(), |
- px1 = advanceFilter(), |
- px2 = advanceFilter(), |
- px3 = advanceFilter(); |
+ Sk4f px00, px10, px20, px30; |
+ get4PixelsY0(ix0 - 3, &px00, &px10, &px20, &px30); |
+ Sk4f px01, px11, px21, px31; |
+ get4PixelsY1(ix0 - 3, &px01, &px11, &px21, &px31); |
+ Sk4f pxS3 = px30 + px31; |
+ Sk4f px0 = lerp(pxS3, pxB); |
+ Sk4f pxS2 = px20 + px21; |
+ Sk4f px1 = lerp(pxS2, pxS3); |
+ Sk4f pxS1 = px10 + px11; |
+ Sk4f px2 = lerp(pxS1, pxS2); |
+ Sk4f pxS0 = px00 + px01; |
+ Sk4f px3 = lerp(pxS0, pxS1); |
+ pxB = pxS0; |
fNext->blend4Pixels(px0, px1, px2, px3); |
+ ix0 -= 4; |
count -= 4; |
} |
- |
while (count > 0) { |
- fNext->blendPixel(advanceFilter()); |
+ Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix0); |
+ Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix0); |
+ |
+ fNext->blendPixel(lerp(pixelY0, pixelY1)); |
+ ix0 -= 1; |
count -= 1; |
} |
} |
} |
- // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel. |
- // Every filter part is used for two destination pixels, and the code can bulk load four |
- // pixels at a time. |
- void spanUnitRate(Span span) { |
- SkPoint start; SkScalar length; int count; |
- std::tie(start, length, count) = span; |
- SkASSERT(SkScalarAbs(length) == (count - 1)); |
- |
- // Calculate the four filter points of start, and use the two different Y values to |
- // generate the row pointers. |
- Sk4i iXs, iYs; |
- filterPoints(start, &iXs, &iYs); |
- const void* row0 = fAccessor.row(iYs[0]); |
- const void* row1 = fAccessor.row(iYs[2]); |
- |
- // Calculate the filter values for the top-left filter element. |
- const SkScalar filterX = sample_to_filter(X(start)); |
- const SkScalar filterY = sample_to_filter(Y(start)); |
- |
- // Generate part of the filter value at xColumn. |
- auto partAtColumn = [&](int xColumn) { |
- int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); |
- Sk4f pxTop, pxBottom; |
- this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); |
- return pxTop * filterY + (1.0f - filterY) * pxBottom; |
- }; |
- |
- auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) { |
- // Check if the pixels needed are near the edges. If not go fast using bulk pixels, |
- // otherwise be careful. |
- if (0 <= ix && ix <= fXMax - 3) { |
- Sk4f px00, px10, px20, px30, |
- px01, px11, px21, px31; |
- fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30); |
- fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31); |
- *part0 = filterY * px00 + (1.0f - filterY) * px01; |
- *part1 = filterY * px10 + (1.0f - filterY) * px11; |
- *part2 = filterY * px20 + (1.0f - filterY) * px21; |
- *part3 = filterY * px30 + (1.0f - filterY) * px31; |
- } else { |
- *part0 = partAtColumn(ix + 0); |
- *part1 = partAtColumn(ix + 1); |
- *part2 = partAtColumn(ix + 2); |
- *part3 = partAtColumn(ix + 3); |
- } |
- }; |
- |
- auto bilerp = [&](Sk4f& part0, Sk4f& part1) { |
- return part0 * filterX + part1 * (1.0f - filterX); |
- }; |
- |
- if (length > 0) { |
- // * positive direction - generate destination pixels by sliding the filter from left |
- // to right. |
- |
- // overlapPart is the filter part from the end of the previous four pixels used at |
- // the start of the next four pixels. |
- Sk4f overlapPart = partAtColumn(iXs[0]); |
- int rightColumnCursor = iXs[1]; |
+ void spanUnitRateAlignedX(Span span, SkScalar y1) { |
+ SkScalar y0 = span.startY() - 0.5f; |
+ y1 += 0.5f; |
+ int iy0 = SkScalarFloorToInt(y0); |
+ SkScalar filterY1 = y0 - iy0; |
+ SkScalar filterY0 = 1.0f - filterY1; |
+ int iy1 = SkScalarFloorToInt(y1); |
+ int ix = SkScalarFloorToInt(span.startX()); |
+ const void* rowY0 = fAccessor.row(iy0); |
+ const void* rowY1 = fAccessor.row(iy1); |
+ auto lerp = [&](Sk4f* pixelY0, Sk4f* pixelY1) { |
+ return *pixelY0 * filterY0 + *pixelY1 * filterY1; |
+ }; |
+ |
+ if (span.length() > 0) { |
+ int count = span.count(); |
while (count >= 4) { |
- Sk4f part0, part1, part2, part3; |
- get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3); |
- Sk4f px0 = bilerp(overlapPart, part0); |
- Sk4f px1 = bilerp(part0, part1); |
- Sk4f px2 = bilerp(part1, part2); |
- Sk4f px3 = bilerp(part2, part3); |
- overlapPart = part3; |
- fNext->blend4Pixels(px0, px1, px2, px3); |
- rightColumnCursor += 4; |
+ Sk4f px00, px10, px20, px30; |
+ fAccessor.get4Pixels(rowY0, ix, &px00, &px10, &px20, &px30); |
+ Sk4f px01, px11, px21, px31; |
+ fAccessor.get4Pixels(rowY1, ix, &px01, &px11, &px21, &px31); |
+ fNext->blend4Pixels( |
+ lerp(&px00, &px01), lerp(&px10, &px11), lerp(&px20, &px21), lerp(&px30, &px31)); |
+ ix += 4; |
count -= 4; |
} |
- |
while (count > 0) { |
- Sk4f rightPart = partAtColumn(rightColumnCursor); |
- |
- fNext->blendPixel(bilerp(overlapPart, rightPart)); |
- overlapPart = rightPart; |
- rightColumnCursor += 1; |
+ Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix); |
+ Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix); |
+ |
+ fNext->blendPixel(lerp(&pixelY0, &pixelY1)); |
+ ix += 1; |
count -= 1; |
} |
} else { |
- // * negative direction - generate destination pixels by sliding the filter from |
- // right to left. |
- Sk4f overlapPart = partAtColumn(iXs[1]); |
- int leftColumnCursor = iXs[0]; |
- |
+ int count = span.count(); |
while (count >= 4) { |
- Sk4f part0, part1, part2, part3; |
- get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0); |
- Sk4f px0 = bilerp(part0, overlapPart); |
- Sk4f px1 = bilerp(part1, part0); |
- Sk4f px2 = bilerp(part2, part1); |
- Sk4f px3 = bilerp(part3, part2); |
- overlapPart = part3; |
- fNext->blend4Pixels(px0, px1, px2, px3); |
- leftColumnCursor -= 4; |
+ Sk4f px00, px10, px20, px30; |
+ fAccessor.get4Pixels(rowY0, ix - 3, &px30, &px20, &px10, &px00); |
+ Sk4f px01, px11, px21, px31; |
+ fAccessor.get4Pixels(rowY1, ix - 3, &px31, &px21, &px11, &px01); |
+ fNext->blend4Pixels( |
+ lerp(&px00, &px01), lerp(&px10, &px11), lerp(&px20, &px21), lerp(&px30, &px31)); |
+ ix -= 4; |
count -= 4; |
} |
- |
while (count > 0) { |
- Sk4f leftPart = partAtColumn(leftColumnCursor); |
- |
- fNext->blendPixel(bilerp(leftPart, overlapPart)); |
- overlapPart = leftPart; |
- leftColumnCursor -= 1; |
- count -= 1; |
- } |
- } |
- } |
- |
- // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but |
- // still slow enough to take advantage of previous calculations. |
- void spanMediumRate(Span span) { |
- SkPoint start; SkScalar length; int count; |
- std::tie(start, length, count) = span; |
- |
- // Calculate the distance between each sample point. |
- const SkScalar dx = length / (count - 1); |
- SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f)); |
- |
- // Generate the filter values for the top-left corner. |
- // Note: these values are in filter space; this has implications about how to adjust |
- // these values at each step. For example, as the sample point increases, the filter |
- // value decreases, this is because the filter and position are related by |
- // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite |
- // direction of the sample point which is increasing by dx. |
- SkScalar filterX = sample_to_filter(X(start)); |
- SkScalar filterY = sample_to_filter(Y(start)); |
- |
- // Generate the four filter points from the sample point start. Generate the row* values. |
- Sk4i iXs, iYs; |
- this->filterPoints(start, &iXs, &iYs); |
- const void* const row0 = fAccessor.row(iYs[0]); |
- const void* const row1 = fAccessor.row(iYs[2]); |
- |
- // Generate part of the filter value at xColumn. |
- auto partAtColumn = [&](int xColumn) { |
- int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax); |
- Sk4f pxTop, pxBottom; |
- this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom); |
- return pxTop * filterY + (1.0f - filterY) * pxBottom; |
- }; |
- |
- // The leftPart is made up of two pixels from the left column of the filter, right part |
- // is similar. The top and bottom pixels in the *Part are created as a linear blend of |
- // the top and bottom pixels using filterY. See the nextPart function below. |
- Sk4f leftPart = partAtColumn(iXs[0]); |
- Sk4f rightPart = partAtColumn(iXs[1]); |
- |
- // Create a destination color by blending together a left and right part using filterX. |
- auto bilerp = [&]() { |
- Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX); |
- return check_pixel(pixel); |
- }; |
- |
- // Send the first pixel to the destination. This simplifies the loop structure so that no |
- // extra pixels are fetched for the last iteration of the loop. |
- fNext->blendPixel(bilerp()); |
- count -= 1; |
- |
- if (dx > 0.0f) { |
- // * positive direction - generate destination pixels by sliding the filter from left |
- // to right. |
- int rightPartCursor = iXs[1]; |
- |
- // Advance the filter from left to right. Remember that moving the top-left corner of |
- // the filter to the right actually makes the filter value smaller. |
- auto advanceFilter = [&]() { |
- filterX -= dx; |
- // At this point filterX is less than zero, but might actually be less than -1. |
- if (filterX > -1.0f) { |
- filterX += 1.0f; |
- leftPart = rightPart; |
- rightPartCursor += 1; |
- rightPart = partAtColumn(rightPartCursor); |
- } else { |
- filterX += 2.0f; |
- rightPartCursor += 2; |
- leftPart = partAtColumn(rightPartCursor - 1); |
- rightPart = partAtColumn(rightPartCursor); |
- } |
- SkASSERT(0.0f < filterX && filterX <= 1.0f); |
- |
- return bilerp(); |
- }; |
- |
- while (count >= 4) { |
- Sk4f px0 = advanceFilter(), |
- px1 = advanceFilter(), |
- px2 = advanceFilter(), |
- px3 = advanceFilter(); |
- fNext->blend4Pixels(px0, px1, px2, px3); |
- count -= 4; |
- } |
- |
- while (count > 0) { |
- fNext->blendPixel(advanceFilter()); |
- count -= 1; |
- } |
- } else { |
- // * negative direction - generate destination pixels by sliding the filter from |
- // right to left. |
- int leftPartCursor = iXs[0]; |
- |
- auto advanceFilter = [&]() { |
- // Remember, dx < 0 therefore this adds |dx| to filterX. |
- filterX -= dx; |
- // At this point, filterX is greater than one, but may actually be greater than two. |
- if (filterX < 2.0f) { |
- filterX -= 1.0f; |
- rightPart = leftPart; |
- leftPartCursor -= 1; |
- leftPart = partAtColumn(leftPartCursor); |
- } else { |
- filterX -= 2.0f; |
- leftPartCursor -= 2; |
- rightPart = partAtColumn(leftPartCursor - 1); |
- leftPart = partAtColumn(leftPartCursor); |
- } |
- SkASSERT(0.0f < filterX && filterX <= 1.0f); |
- return bilerp(); |
- }; |
- |
- while (count >= 4) { |
- Sk4f px0 = advanceFilter(), |
- px1 = advanceFilter(), |
- px2 = advanceFilter(), |
- px3 = advanceFilter(); |
- fNext->blend4Pixels(px0, px1, px2, px3); |
- count -= 4; |
- } |
- |
- while (count > 0) { |
- fNext->blendPixel(advanceFilter()); |
+ Sk4f pixelY0 = fAccessor.getPixelFromRow(rowY0, ix); |
+ Sk4f pixelY1 = fAccessor.getPixelFromRow(rowY1, ix); |
+ |
+ fNext->blendPixel(lerp(&pixelY0, &pixelY1)); |
+ ix -= 1; |
count -= 1; |
} |
} |
@@ -1010,26 +799,34 @@ |
// We're moving through source space faster than dst (zoomed out), |
// so we'll never reuse a source pixel or be able to do contiguous loads. |
- void spanFastRate(Span span) { |
- SkPoint start; SkScalar length; int count; |
+ void spanFastRate(Span span, SkScalar y1) { |
+ SkPoint start; |
+ SkScalar length; |
+ int count; |
std::tie(start, length, count) = span; |
SkScalar x = X(start); |
SkScalar y = Y(start); |
- SkScalar dx = length / (count - 1); |
- while (count > 0) { |
- fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y})); |
- x += dx; |
- count -= 1; |
- } |
- } |
- |
- Next* const fNext; |
- const SkShader::TileMode fXEdgeType; |
- const int fXMax; |
- const SkShader::TileMode fYEdgeType; |
- const int fYMax; |
- Accessor fAccessor; |
+ // In this sampler, it is assumed that if span.StartY() and y1 are the same then both |
+ // y-lines are on the same tile. |
+ if (y == y1) { |
+ // Both y-lines are on the same tile. |
+ span_fallback(span, this); |
+ } else { |
+ // The y-lines are on different tiles. |
+ SkScalar dx = length / (count - 1); |
+ Sk4f ys = {y - 0.5f, y - 0.5f, y1 + 0.5f, y1 + 0.5f}; |
+ while (count > 0) { |
+ Sk4f xs = Sk4f{-0.5f, 0.5f, -0.5f, 0.5f} + Sk4f{x}; |
+ this->bilerpEdge(xs, ys); |
+ x += dx; |
+ count -= 1; |
+ } |
+ } |
+ } |
+ |
+ Next* const fNext; |
+ Accessor fAccessor; |
}; |
} // namespace |