| Index: src/core/SkPM4fPriv.h
|
| diff --git a/src/core/SkPM4fPriv.h b/src/core/SkPM4fPriv.h
|
| index 57a44c1cb22ec04e83f25fa299e20701a32991ff..89a0caeb70ce0ff0994efbe3faf77f7f4a823268 100644
|
| --- a/src/core/SkPM4fPriv.h
|
| +++ b/src/core/SkPM4fPriv.h
|
| @@ -10,142 +10,65 @@
|
|
|
| #include "SkColorPriv.h"
|
| #include "SkPM4f.h"
|
| +#include "SkSRGB.h"
|
|
|
| -static inline float get_alpha(const Sk4f& f4) {
|
| - return f4[SkPM4f::A];
|
| +static inline Sk4f set_alpha(const Sk4f& px, float alpha) {
|
| + return { px[0], px[1], px[2], alpha };
|
| }
|
|
|
| -static inline Sk4f set_alpha(const Sk4f& f4, float alpha) {
|
| - static_assert(3 == SkPM4f::A, "");
|
| - return Sk4f(f4[0], f4[1], f4[2], alpha);
|
| +static inline float get_alpha(const Sk4f& px) {
|
| + return px[3];
|
| }
|
|
|
| -static inline uint32_t to_4b(const Sk4f& f4) {
|
| - uint32_t b4;
|
| - SkNx_cast<uint8_t>(f4).store((uint8_t*)&b4);
|
| - return b4;
|
| -}
|
| -
|
| -static inline Sk4f to_4f(uint32_t b4) {
|
| - return SkNx_cast<float>(Sk4b::Load((const uint8_t*)&b4));
|
| -}
|
| -
|
| -static inline Sk4f to_4f_rgba(uint32_t b4) {
|
| - return swizzle_rb_if_bgra(to_4f(b4));
|
| -}
|
| -
|
| -static inline Sk4f srgb_to_linear(const Sk4f& s4) {
|
| - return set_alpha(s4 * s4, get_alpha(s4));
|
| -}
|
| -
|
| -static inline Sk4f linear_to_srgb(const Sk4f& l4) {
|
| - return set_alpha(l4.rsqrt().invert(), get_alpha(l4));
|
| -}
|
| -
|
| -static inline float srgb_to_linear(float x) {
|
| - return x * x;
|
| -}
|
| -
|
| -static inline float linear_to_srgb(float x) {
|
| - return sqrtf(x);
|
| -}
|
| -
|
| -static void assert_unit(float x) {
|
| - SkASSERT(x >= 0 && x <= 1);
|
| -}
|
| -
|
| -static inline float exact_srgb_to_linear(float x) {
|
| - assert_unit(x);
|
| - float linear;
|
| - if (x <= 0.04045) {
|
| - linear = x / 12.92f;
|
| - } else {
|
| - linear = powf((x + 0.055f) / 1.055f, 2.4f);
|
| - }
|
| - assert_unit(linear);
|
| - return linear;
|
| -}
|
|
|
| -static inline float exact_linear_to_srgb(float x) {
|
| - assert_unit(x);
|
| - float srgb;
|
| - if (x <= 0.0031308f) {
|
| - srgb = x * 12.92f;
|
| - } else {
|
| - srgb = 1.055f * powf(x, 0.41666667f) - 0.055f;
|
| - }
|
| - assert_unit(srgb);
|
| - return srgb;
|
| +static inline Sk4f Sk4f_fromL32(uint32_t px) {
|
| + return SkNx_cast<float>(Sk4b::Load(&px)) * (1/255.0f);
|
| }
|
|
|
| -static inline Sk4f exact_srgb_to_linear(const Sk4f& x) {
|
| - Sk4f linear(exact_srgb_to_linear(x[0]),
|
| - exact_srgb_to_linear(x[1]),
|
| - exact_srgb_to_linear(x[2]), 1);
|
| - return set_alpha(linear, get_alpha(x));
|
| +static inline Sk4f Sk4f_fromS32(uint32_t px) {
|
| + return { sk_linear_from_srgb[(px >> 0) & 0xff],
|
| + sk_linear_from_srgb[(px >> 8) & 0xff],
|
| + sk_linear_from_srgb[(px >> 16) & 0xff],
|
| + (1/255.0f) * (px >> 24) };
|
| }
|
|
|
| -static inline Sk4f exact_linear_to_srgb(const Sk4f& x) {
|
| - Sk4f srgb(exact_linear_to_srgb(x[0]),
|
| - exact_linear_to_srgb(x[1]),
|
| - exact_linear_to_srgb(x[2]), 1);
|
| - return set_alpha(srgb, get_alpha(x));
|
| +static inline uint32_t Sk4f_toL32(const Sk4f& px) {
|
| + uint32_t l32;
|
| + SkNx_cast<uint8_t>(Sk4f_round(px * 255.0f)).store(&l32);
|
| + return l32;
|
| }
|
|
|
| -///////////////////////////////////////////////////////////////////////////////////////////////////
|
| +static inline uint32_t Sk4f_toS32(const Sk4f& px) {
|
| + Sk4i rgb = sk_linear_to_srgb(px),
|
| + srgb = { rgb[0], rgb[1], rgb[2], (int)(255.0f * px[3] + 0.5f) };
|
|
|
| -static inline Sk4f Sk4f_fromL32(uint32_t src) {
|
| - return to_4f(src) * Sk4f(1.0f/255);
|
| + uint32_t s32;
|
| + SkNx_cast<uint8_t>(srgb).store(&s32);
|
| + return s32;
|
| }
|
|
|
| -static inline Sk4f Sk4f_fromS32(uint32_t src) {
|
| - return srgb_to_linear(to_4f(src) * Sk4f(1.0f/255));
|
| -}
|
|
|
| -// Color handling:
|
| +// SkColor handling:
|
| // SkColor has an ordering of (b, g, r, a) if cast to an Sk4f, so the code swizzles r and b to
|
| // produce the needed (r, g, b, a) ordering.
|
| static inline Sk4f Sk4f_from_SkColor(SkColor color) {
|
| return swizzle_rb(Sk4f_fromS32(color));
|
| }
|
|
|
| -static inline uint32_t Sk4f_toL32(const Sk4f& x4) {
|
| - return to_4b(x4 * Sk4f(255) + Sk4f(0.5f));
|
| +static inline void assert_unit(float x) {
|
| + SkASSERT(0 <= x && x <= 1);
|
| }
|
|
|
| -static inline uint32_t Sk4f_toS32(const Sk4f& x4) {
|
| - return to_4b(linear_to_srgb(x4) * Sk4f(255) + Sk4f(0.5f));
|
| -}
|
| -
|
| -static inline Sk4f exact_Sk4f_fromS32(uint32_t src) {
|
| - return exact_srgb_to_linear(to_4f(src) * Sk4f(1.0f/255));
|
| -}
|
| -static inline uint32_t exact_Sk4f_toS32(const Sk4f& x4) {
|
| - return to_4b(exact_linear_to_srgb(x4) * Sk4f(255) + Sk4f(0.5f));
|
| -}
|
| -
|
| -////////////////////////////////////////////////////////////////////////////////////////////////////
|
| -// An implementation of SrcOver from bytes to bytes in linear space that takes advantage of the
|
| -// observation that the 255's cancel.
|
| -// invA = 1 - (As / 255);
|
| -//
|
| -// R = 255 * sqrt((Rs/255)^2 + (Rd/255)^2 * invA)
|
| -// => R = 255 * sqrt((Rs^2 + Rd^2 * invA)/255^2)
|
| -// => R = sqrt(Rs^2 + Rd^2 * invA)
|
| -// Note: src is assumed to be linear.
|
| -static inline void srcover_blend_srgb8888_srgb_1(uint32_t* dst, const Sk4f& src) {
|
| - Sk4f d = srgb_to_linear(to_4f(*dst));
|
| - Sk4f invAlpha = 1.0f - Sk4f{src[SkPM4f::A]} * (1.0f / 255.0f);
|
| - Sk4f r = linear_to_srgb(src + d * invAlpha) + 0.5f;
|
| - *dst = to_4b(r);
|
| -}
|
| -
|
| -static inline void srcover_srgb8888_srgb_1(uint32_t* dst, const uint32_t pixel) {
|
| - if ((~pixel & 0xFF000000) == 0) {
|
| - *dst = pixel;
|
| - } else if ((pixel & 0xFF000000) != 0) {
|
| - srcover_blend_srgb8888_srgb_1(dst, srgb_to_linear(to_4f(pixel)));
|
| +static inline float exact_srgb_to_linear(float srgb) {
|
| + assert_unit(srgb);
|
| + float linear;
|
| + if (srgb <= 0.04045) {
|
| + linear = srgb / 12.92f;
|
| + } else {
|
| + linear = powf((srgb + 0.055f) / 1.055f, 2.4f);
|
| }
|
| + assert_unit(linear);
|
| + return linear;
|
| }
|
|
|
| #endif
|
|
|