Index: src/core/SkHalf.h |
diff --git a/src/core/SkHalf.h b/src/core/SkHalf.h |
index 2f2ed66c6a64016ee0ae512f92c2876298f2988e..5f5575ae1aeaede7f1fd6bde72c8df549f8557bf 100644 |
--- a/src/core/SkHalf.h |
+++ b/src/core/SkHalf.h |
@@ -24,10 +24,10 @@ |
float SkHalfToFloat(SkHalf h); |
SkHalf SkFloatToHalf(float f); |
-// Convert between half and single precision floating point, |
-// assuming inputs and outputs are both finite. |
-static inline Sk4f SkHalfToFloat_finite(uint64_t); |
-static inline uint64_t SkFloatToHalf_finite(const Sk4f&); |
+// Convert between half and single precision floating point, but pull any dirty |
+// trick we can to make it faster as long as it's correct enough for values in [0,1]. |
+static inline Sk4f SkHalfToFloat_01(uint64_t); |
+static inline uint64_t SkFloatToHalf_01(const Sk4f&); |
// ~~~~~~~~~~~ impl ~~~~~~~~~~~~~~ // |
@@ -36,7 +36,7 @@ |
// GCC 4.9 lacks the intrinsics to use ARMv8 f16<->f32 instructions, so we use inline assembly. |
-static inline Sk4f SkHalfToFloat_finite(uint64_t hs) { |
+static inline Sk4f SkHalfToFloat_01(uint64_t hs) { |
#if !defined(SKNX_NO_SIMD) && defined(SK_CPU_ARM64) |
float32x4_t fs; |
asm ("fmov %d[fs], %[hs] \n" // vcreate_f16(hs) |
@@ -44,28 +44,53 @@ |
: [fs] "=w" (fs) // =w: write-only NEON register |
: [hs] "r" (hs)); // r: read-only 64-bit general register |
return fs; |
+ |
+#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON) |
+ // NEON makes this pretty easy: |
+ // - denormals are 10-bit * 2^-14 == 24-bit fixed point; |
+ // - handle normals the same way as in SSE: align mantissa, then rebias exponent. |
+ uint32x4_t h = vmovl_u16(vcreate_u16(hs)), |
+ is_denorm = vcltq_u32(h, vdupq_n_u32(1<<10)); |
+ float32x4_t denorm = vcvtq_n_f32_u32(h, 24), |
+ norm = vreinterpretq_f32_u32(vaddq_u32(vshlq_n_u32(h, 13), |
+ vdupq_n_u32((127-15) << 23))); |
+ return vbslq_f32(is_denorm, denorm, norm); |
+ |
+#elif !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
+ // If our input is a normal 16-bit float, things are pretty easy: |
+ // - shift left by 13 to put the mantissa in the right place; |
+ // - the exponent is wrong, but it just needs to be rebiased; |
+ // - re-bias the exponent from 15-bias to 127-bias by adding (127-15). |
+ |
+ // If our input is denormalized, we're going to do the same steps, plus a few more fix ups: |
+ // - the input is h = K*2^-14, for some 10-bit fixed point K in [0,1); |
+ // - by shifting left 13 and adding (127-15) to the exponent, we constructed the float value |
+ // 2^-15*(1+K); |
+ // - we'd need to subtract 2^-15 and multiply by 2 to get back to K*2^-14, or equivallently |
+ // multiply by 2 then subtract 2^-14. |
+ // |
+ // - We'll work that multiply by 2 into the rebias, by adding 1 more to the exponent. |
+ // - Conveniently, this leaves that rebias constant 2^-14, exactly what we want to subtract. |
+ |
+ __m128i h = _mm_unpacklo_epi16(_mm_loadl_epi64((const __m128i*)&hs), _mm_setzero_si128()); |
+ const __m128i is_denorm = _mm_cmplt_epi32(h, _mm_set1_epi32(1<<10)); |
+ |
+ __m128i rebias = _mm_set1_epi32((127-15) << 23); |
+ rebias = _mm_add_epi32(rebias, _mm_and_si128(is_denorm, _mm_set1_epi32(1<<23))); |
+ |
+ __m128i f = _mm_add_epi32(_mm_slli_epi32(h, 13), rebias); |
+ return _mm_sub_ps(_mm_castsi128_ps(f), |
+ _mm_castsi128_ps(_mm_and_si128(is_denorm, rebias))); |
#else |
- Sk4i bits = SkNx_cast<int>(Sk4h::Load(&hs)), // Expand to 32 bit. |
- sign = bits & 0x00008000, // Save the sign bit for later... |
- positive = bits ^ sign, // ...but strip it off for now. |
- is_denorm = positive < (1<<10); // Exponent == 0? |
- |
- // For normal half floats, extend the mantissa by 13 zero bits, |
- // then adjust the exponent from 15 bias to 127 bias. |
- Sk4i norm = (positive << 13) + ((127 - 15) << 23); |
- |
- // For denorm half floats, mask in the exponent-only float K that turns our |
- // denorm value V*2^-14 into a normalized float K + V*2^-14. Then subtract off K. |
- const Sk4i K = ((127-15) + (23-10) + 1) << 23; |
- Sk4i mask_K = positive | K; |
- Sk4f denorm = Sk4f::Load(&mask_K) - Sk4f::Load(&K); |
- |
- Sk4i merged = (sign << 16) | is_denorm.thenElse(Sk4i::Load(&denorm), norm); |
- return Sk4f::Load(&merged); |
+ float fs[4]; |
+ for (int i = 0; i < 4; i++) { |
+ fs[i] = SkHalfToFloat(hs >> (i*16)); |
+ } |
+ return Sk4f::Load(fs); |
#endif |
} |
-static inline uint64_t SkFloatToHalf_finite(const Sk4f& fs) { |
+static inline uint64_t SkFloatToHalf_01(const Sk4f& fs) { |
uint64_t r; |
#if !defined(SKNX_NO_SIMD) && defined(SK_CPU_ARM64) |
float32x4_t vec = fs.fVec; |
@@ -73,25 +98,25 @@ |
"fmov %[r], %d[vec] \n" // vst1_f16(&r, ...) |
: [r] "=r" (r) // =r: write-only 64-bit general register |
, [vec] "+w" (vec)); // +w: read-write NEON register |
+ |
+// TODO: ARMv7 NEON float->half? |
+ |
+#elif !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
+ // Scale down from 127-bias to 15-bias, then cut off bottom 13 mantissa bits. |
+ // This doesn't round, so it can be 1 bit too small. |
+ const __m128 rebias = _mm_castsi128_ps(_mm_set1_epi32((127 - (127-15)) << 23)); |
+ __m128i h = _mm_srli_epi32(_mm_castps_si128(_mm_mul_ps(fs.fVec, rebias)), 13); |
+ _mm_storel_epi64((__m128i*)&r, _mm_packs_epi32(h,h)); |
+ |
#else |
- Sk4i bits = Sk4i::Load(&fs), |
- sign = bits & 0x80000000, // Save the sign bit for later... |
- positive = bits ^ sign, // ...but strip it off for now. |
- will_be_denorm = positive < ((127-15+1) << 23); // positve < smallest normal half? |
- |
- // For normal half floats, adjust the exponent from 127 bias to 15 bias, |
- // then drop the bottom 13 mantissa bits. |
- Sk4i norm = (positive - ((127 - 15) << 23)) >> 13; |
- |
- // This mechanically inverts the denorm half -> normal float conversion above. |
- // Knowning that and reading its explanation will leave you feeling more confident |
- // than reading my best attempt at explaining this directly. |
- const Sk4i K = ((127-15) + (23-10) + 1) << 23; |
- Sk4f plus_K = Sk4f::Load(&positive) + Sk4f::Load(&K); |
- Sk4i denorm = Sk4i::Load(&plus_K) ^ K; |
- |
- Sk4i merged = (sign >> 16) | will_be_denorm.thenElse(denorm, norm); |
- SkNx_cast<uint16_t>(merged).store(&r); |
+ SkHalf hs[4]; |
+ for (int i = 0; i < 4; i++) { |
+ hs[i] = SkFloatToHalf(fs[i]); |
+ } |
+ r = (uint64_t)hs[3] << 48 |
+ | (uint64_t)hs[2] << 32 |
+ | (uint64_t)hs[1] << 16 |
+ | (uint64_t)hs[0] << 0; |
#endif |
return r; |
} |