| Index: third_party/libwebp/dsp/lossless_enc.c
|
| diff --git a/third_party/libwebp/dsp/lossless_enc.c b/third_party/libwebp/dsp/lossless_enc.c
|
| index 2eafa3da7d23d69bc7e084e0e0d519b9bbd0a9e1..256f6f5f8b7f6538b42b779f1b6af229cd2309b7 100644
|
| --- a/third_party/libwebp/dsp/lossless_enc.c
|
| +++ b/third_party/libwebp/dsp/lossless_enc.c
|
| @@ -382,6 +382,7 @@ static float FastLog2Slow(uint32_t v) {
|
|
|
| // Mostly used to reduce code size + readability
|
| static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
|
| +static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
|
|
|
| //------------------------------------------------------------------------------
|
| // Methods to calculate Entropy (Shannon).
|
| @@ -551,18 +552,204 @@ static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
|
| }
|
| }
|
|
|
| +static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
|
| + const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
|
| + const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
|
| + const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
|
| + const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
|
| + return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
|
| +}
|
| +
|
| +static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
|
| + uint32_t left, uint32_t right) {
|
| + const int diff_up = MaxDiffBetweenPixels(current, up);
|
| + const int diff_down = MaxDiffBetweenPixels(current, down);
|
| + const int diff_left = MaxDiffBetweenPixels(current, left);
|
| + const int diff_right = MaxDiffBetweenPixels(current, right);
|
| + return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
|
| +}
|
| +
|
| +static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
|
| + const uint32_t green = (argb >> 8) & 0xff;
|
| + uint32_t red_blue = argb & 0x00ff00ffu;
|
| + red_blue += (green << 16) | green;
|
| + red_blue &= 0x00ff00ffu;
|
| + return (argb & 0xff00ff00u) | red_blue;
|
| +}
|
| +
|
| +static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
|
| + uint8_t* const max_diffs, int used_subtract_green) {
|
| + uint32_t current, up, down, left, right;
|
| + int x;
|
| + if (width <= 2) return;
|
| + current = argb[0];
|
| + right = argb[1];
|
| + if (used_subtract_green) {
|
| + current = AddGreenToBlueAndRed(current);
|
| + right = AddGreenToBlueAndRed(right);
|
| + }
|
| + // max_diffs[0] and max_diffs[width - 1] are never used.
|
| + for (x = 1; x < width - 1; ++x) {
|
| + up = argb[-stride + x];
|
| + down = argb[stride + x];
|
| + left = current;
|
| + current = right;
|
| + right = argb[x + 1];
|
| + if (used_subtract_green) {
|
| + up = AddGreenToBlueAndRed(up);
|
| + down = AddGreenToBlueAndRed(down);
|
| + right = AddGreenToBlueAndRed(right);
|
| + }
|
| + max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
|
| + }
|
| +}
|
| +
|
| +// Quantize the difference between the actual component value and its prediction
|
| +// to a multiple of quantization, working modulo 256, taking care not to cross
|
| +// a boundary (inclusive upper limit).
|
| +static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
|
| + uint8_t boundary, int quantization) {
|
| + const int residual = (value - predict) & 0xff;
|
| + const int boundary_residual = (boundary - predict) & 0xff;
|
| + const int lower = residual & ~(quantization - 1);
|
| + const int upper = lower + quantization;
|
| + // Resolve ties towards a value closer to the prediction (i.e. towards lower
|
| + // if value comes after prediction and towards upper otherwise).
|
| + const int bias = ((boundary - value) & 0xff) < boundary_residual;
|
| + if (residual - lower < upper - residual + bias) {
|
| + // lower is closer to residual than upper.
|
| + if (residual > boundary_residual && lower <= boundary_residual) {
|
| + // Halve quantization step to avoid crossing boundary. This midpoint is
|
| + // on the same side of boundary as residual because midpoint >= residual
|
| + // (since lower is closer than upper) and residual is above the boundary.
|
| + return lower + (quantization >> 1);
|
| + }
|
| + return lower;
|
| + } else {
|
| + // upper is closer to residual than lower.
|
| + if (residual <= boundary_residual && upper > boundary_residual) {
|
| + // Halve quantization step to avoid crossing boundary. This midpoint is
|
| + // on the same side of boundary as residual because midpoint <= residual
|
| + // (since upper is closer than lower) and residual is below the boundary.
|
| + return lower + (quantization >> 1);
|
| + }
|
| + return upper & 0xff;
|
| + }
|
| +}
|
| +
|
| +// Quantize every component of the difference between the actual pixel value and
|
| +// its prediction to a multiple of a quantization (a power of 2, not larger than
|
| +// max_quantization which is a power of 2, smaller than max_diff). Take care if
|
| +// value and predict have undergone subtract green, which means that red and
|
| +// blue are represented as offsets from green.
|
| +static uint32_t NearLossless(uint32_t value, uint32_t predict,
|
| + int max_quantization, int max_diff,
|
| + int used_subtract_green) {
|
| + int quantization;
|
| + uint8_t new_green = 0;
|
| + uint8_t green_diff = 0;
|
| + uint8_t a, r, g, b;
|
| + if (max_diff <= 2) {
|
| + return VP8LSubPixels(value, predict);
|
| + }
|
| + quantization = max_quantization;
|
| + while (quantization >= max_diff) {
|
| + quantization >>= 1;
|
| + }
|
| + if ((value >> 24) == 0 || (value >> 24) == 0xff) {
|
| + // Preserve transparency of fully transparent or fully opaque pixels.
|
| + a = ((value >> 24) - (predict >> 24)) & 0xff;
|
| + } else {
|
| + a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
|
| + }
|
| + g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
|
| + quantization);
|
| + if (used_subtract_green) {
|
| + // The green offset will be added to red and blue components during decoding
|
| + // to obtain the actual red and blue values.
|
| + new_green = ((predict >> 8) + g) & 0xff;
|
| + // The amount by which green has been adjusted during quantization. It is
|
| + // subtracted from red and blue for compensation, to avoid accumulating two
|
| + // quantization errors in them.
|
| + green_diff = (new_green - (value >> 8)) & 0xff;
|
| + }
|
| + r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
|
| + (predict >> 16) & 0xff, 0xff - new_green,
|
| + quantization);
|
| + b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
|
| + 0xff - new_green, quantization);
|
| + return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
| +}
|
| +
|
| +// Returns the difference between the pixel and its prediction. In case of a
|
| +// lossy encoding, updates the source image to avoid propagating the deviation
|
| +// further to pixels which depend on the current pixel for their predictions.
|
| +static WEBP_INLINE uint32_t GetResidual(int width, int height,
|
| + uint32_t* const upper_row,
|
| + uint32_t* const current_row,
|
| + const uint8_t* const max_diffs,
|
| + int mode, VP8LPredictorFunc pred_func,
|
| + int x, int y, int max_quantization,
|
| + int exact, int used_subtract_green) {
|
| + const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
|
| + uint32_t residual;
|
| + if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
|
| + x == 0 || x == width - 1) {
|
| + residual = VP8LSubPixels(current_row[x], predict);
|
| + } else {
|
| + residual = NearLossless(current_row[x], predict, max_quantization,
|
| + max_diffs[x], used_subtract_green);
|
| + // Update the source image.
|
| + current_row[x] = VP8LAddPixels(predict, residual);
|
| + // x is never 0 here so we do not need to update upper_row like below.
|
| + }
|
| + if (!exact && (current_row[x] & kMaskAlpha) == 0) {
|
| + // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
|
| + // for best compression. The prediction of alpha itself can be non-zero and
|
| + // must be kept though. We choose RGB of the residual to be 0.
|
| + residual &= kMaskAlpha;
|
| + // Update the source image.
|
| + current_row[x] = predict & ~kMaskAlpha;
|
| + // The prediction for the rightmost pixel in a row uses the leftmost pixel
|
| + // in that row as its top-right context pixel. Hence if we change the
|
| + // leftmost pixel of current_row, the corresponding change must be applied
|
| + // to upper_row as well where top-right context is being read from.
|
| + if (x == 0 && y != 0) upper_row[width] = current_row[0];
|
| + }
|
| + return residual;
|
| +}
|
| +
|
| // Returns best predictor and updates the accumulated histogram.
|
| +// If max_quantization > 1, assumes that near lossless processing will be
|
| +// applied, quantizing residuals to multiples of quantization levels up to
|
| +// max_quantization (the actual quantization level depends on smoothness near
|
| +// the given pixel).
|
| static int GetBestPredictorForTile(int width, int height,
|
| int tile_x, int tile_y, int bits,
|
| int accumulated[4][256],
|
| - const uint32_t* const argb_scratch,
|
| - int exact) {
|
| + uint32_t* const argb_scratch,
|
| + const uint32_t* const argb,
|
| + int max_quantization,
|
| + int exact, int used_subtract_green) {
|
| const int kNumPredModes = 14;
|
| - const int col_start = tile_x << bits;
|
| - const int row_start = tile_y << bits;
|
| + const int start_x = tile_x << bits;
|
| + const int start_y = tile_y << bits;
|
| const int tile_size = 1 << bits;
|
| - const int max_y = GetMin(tile_size, height - row_start);
|
| - const int max_x = GetMin(tile_size, width - col_start);
|
| + const int max_y = GetMin(tile_size, height - start_y);
|
| + const int max_x = GetMin(tile_size, width - start_x);
|
| + // Whether there exist columns just outside the tile.
|
| + const int have_left = (start_x > 0);
|
| + const int have_right = (max_x < width - start_x);
|
| + // Position and size of the strip covering the tile and adjacent columns if
|
| + // they exist.
|
| + const int context_start_x = start_x - have_left;
|
| + const int context_width = max_x + have_left + have_right;
|
| + // The width of upper_row and current_row is one pixel larger than image width
|
| + // to allow the top right pixel to point to the leftmost pixel of the next row
|
| + // when at the right edge.
|
| + uint32_t* upper_row = argb_scratch;
|
| + uint32_t* current_row = upper_row + width + 1;
|
| + uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
|
| float best_diff = MAX_DIFF_COST;
|
| int best_mode = 0;
|
| int mode;
|
| @@ -571,28 +758,46 @@ static int GetBestPredictorForTile(int width, int height,
|
| // Need pointers to be able to swap arrays.
|
| int (*histo_argb)[256] = histo_stack_1;
|
| int (*best_histo)[256] = histo_stack_2;
|
| -
|
| int i, j;
|
| +
|
| for (mode = 0; mode < kNumPredModes; ++mode) {
|
| - const uint32_t* current_row = argb_scratch;
|
| const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
|
| float cur_diff;
|
| - int y;
|
| + int relative_y;
|
| memset(histo_argb, 0, sizeof(histo_stack_1));
|
| - for (y = 0; y < max_y; ++y) {
|
| - int x;
|
| - const int row = row_start + y;
|
| - const uint32_t* const upper_row = current_row;
|
| - current_row = upper_row + width;
|
| - for (x = 0; x < max_x; ++x) {
|
| - const int col = col_start + x;
|
| - const uint32_t predict =
|
| - Predict(pred_func, col, row, current_row, upper_row);
|
| - uint32_t residual = VP8LSubPixels(current_row[col], predict);
|
| - if (!exact && (current_row[col] & kMaskAlpha) == 0) {
|
| - residual &= kMaskAlpha; // See CopyTileWithPrediction.
|
| - }
|
| - UpdateHisto(histo_argb, residual);
|
| + if (start_y > 0) {
|
| + // Read the row above the tile which will become the first upper_row.
|
| + // Include a pixel to the left if it exists; include a pixel to the right
|
| + // in all cases (wrapping to the leftmost pixel of the next row if it does
|
| + // not exist).
|
| + memcpy(current_row + context_start_x,
|
| + argb + (start_y - 1) * width + context_start_x,
|
| + sizeof(*argb) * (max_x + have_left + 1));
|
| + }
|
| + for (relative_y = 0; relative_y < max_y; ++relative_y) {
|
| + const int y = start_y + relative_y;
|
| + int relative_x;
|
| + uint32_t* tmp = upper_row;
|
| + upper_row = current_row;
|
| + current_row = tmp;
|
| + // Read current_row. Include a pixel to the left if it exists; include a
|
| + // pixel to the right in all cases except at the bottom right corner of
|
| + // the image (wrapping to the leftmost pixel of the next row if it does
|
| + // not exist in the current row).
|
| + memcpy(current_row + context_start_x,
|
| + argb + y * width + context_start_x,
|
| + sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
|
| + if (max_quantization > 1 && y >= 1 && y + 1 < height) {
|
| + MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
|
| + max_diffs + context_start_x, used_subtract_green);
|
| + }
|
| +
|
| + for (relative_x = 0; relative_x < max_x; ++relative_x) {
|
| + const int x = start_x + relative_x;
|
| + UpdateHisto(histo_argb,
|
| + GetResidual(width, height, upper_row, current_row,
|
| + max_diffs, mode, pred_func, x, y,
|
| + max_quantization, exact, used_subtract_green));
|
| }
|
| }
|
| cur_diff = PredictionCostSpatialHistogram(
|
| @@ -615,71 +820,82 @@ static int GetBestPredictorForTile(int width, int height,
|
| return best_mode;
|
| }
|
|
|
| +// Converts pixels of the image to residuals with respect to predictions.
|
| +// If max_quantization > 1, applies near lossless processing, quantizing
|
| +// residuals to multiples of quantization levels up to max_quantization
|
| +// (the actual quantization level depends on smoothness near the given pixel).
|
| static void CopyImageWithPrediction(int width, int height,
|
| int bits, uint32_t* const modes,
|
| uint32_t* const argb_scratch,
|
| uint32_t* const argb,
|
| - int low_effort, int exact) {
|
| + int low_effort, int max_quantization,
|
| + int exact, int used_subtract_green) {
|
| const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
| const int mask = (1 << bits) - 1;
|
| - // The row size is one pixel longer to allow the top right pixel to point to
|
| - // the leftmost pixel of the next row when at the right edge.
|
| - uint32_t* current_row = argb_scratch;
|
| - uint32_t* upper_row = argb_scratch + width + 1;
|
| + // The width of upper_row and current_row is one pixel larger than image width
|
| + // to allow the top right pixel to point to the leftmost pixel of the next row
|
| + // when at the right edge.
|
| + uint32_t* upper_row = argb_scratch;
|
| + uint32_t* current_row = upper_row + width + 1;
|
| + uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
|
| + uint8_t* lower_max_diffs = current_max_diffs + width;
|
| int y;
|
| - VP8LPredictorFunc pred_func =
|
| - low_effort ? VP8LPredictors[kPredLowEffort] : NULL;
|
| + int mode = 0;
|
| + VP8LPredictorFunc pred_func = NULL;
|
|
|
| for (y = 0; y < height; ++y) {
|
| int x;
|
| - uint32_t* tmp = upper_row;
|
| + uint32_t* const tmp32 = upper_row;
|
| upper_row = current_row;
|
| - current_row = tmp;
|
| - memcpy(current_row, argb + y * width, sizeof(*current_row) * width);
|
| - current_row[width] = (y + 1 < height) ? argb[(y + 1) * width] : ARGB_BLACK;
|
| + current_row = tmp32;
|
| + memcpy(current_row, argb + y * width,
|
| + sizeof(*argb) * (width + (y + 1 < height)));
|
|
|
| if (low_effort) {
|
| for (x = 0; x < width; ++x) {
|
| - const uint32_t predict =
|
| - Predict(pred_func, x, y, current_row, upper_row);
|
| + const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
|
| + current_row, upper_row);
|
| argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
|
| }
|
| } else {
|
| + if (max_quantization > 1) {
|
| + // Compute max_diffs for the lower row now, because that needs the
|
| + // contents of argb for the current row, which we will overwrite with
|
| + // residuals before proceeding with the next row.
|
| + uint8_t* const tmp8 = current_max_diffs;
|
| + current_max_diffs = lower_max_diffs;
|
| + lower_max_diffs = tmp8;
|
| + if (y + 2 < height) {
|
| + MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
|
| + used_subtract_green);
|
| + }
|
| + }
|
| for (x = 0; x < width; ++x) {
|
| - uint32_t predict, residual;
|
| if ((x & mask) == 0) {
|
| - const int mode =
|
| - (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
|
| + mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
|
| pred_func = VP8LPredictors[mode];
|
| }
|
| - predict = Predict(pred_func, x, y, current_row, upper_row);
|
| - residual = VP8LSubPixels(current_row[x], predict);
|
| - if (!exact && (current_row[x] & kMaskAlpha) == 0) {
|
| - // If alpha is 0, cleanup RGB. We can choose the RGB values of the
|
| - // residual for best compression. The prediction of alpha itself can
|
| - // be non-zero and must be kept though. We choose RGB of the residual
|
| - // to be 0.
|
| - residual &= kMaskAlpha;
|
| - // Update input image so that next predictions use correct RGB value.
|
| - current_row[x] = predict & ~kMaskAlpha;
|
| - if (x == 0 && y != 0) upper_row[width] = current_row[x];
|
| - }
|
| - argb[y * width + x] = residual;
|
| + argb[y * width + x] = GetResidual(
|
| + width, height, upper_row, current_row, current_max_diffs, mode,
|
| + pred_func, x, y, max_quantization, exact, used_subtract_green);
|
| }
|
| }
|
| }
|
| }
|
|
|
| +// Finds the best predictor for each tile, and converts the image to residuals
|
| +// with respect to predictions. If near_lossless_quality < 100, applies
|
| +// near lossless processing, shaving off more bits of residuals for lower
|
| +// qualities.
|
| void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
| uint32_t* const argb, uint32_t* const argb_scratch,
|
| - uint32_t* const image, int exact) {
|
| - const int max_tile_size = 1 << bits;
|
| + uint32_t* const image, int near_lossless_quality,
|
| + int exact, int used_subtract_green) {
|
| const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
| const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
| - uint32_t* const upper_row = argb_scratch;
|
| - uint32_t* const current_tile_rows = argb_scratch + width;
|
| int tile_y;
|
| int histo[4][256];
|
| + const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
|
| if (low_effort) {
|
| int i;
|
| for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
|
| @@ -688,26 +904,19 @@ void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
| } else {
|
| memset(histo, 0, sizeof(histo));
|
| for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
|
| - const int tile_y_offset = tile_y * max_tile_size;
|
| - const int this_tile_height =
|
| - (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
|
| int tile_x;
|
| - if (tile_y > 0) {
|
| - memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
|
| - width * sizeof(*upper_row));
|
| - }
|
| - memcpy(current_tile_rows, &argb[tile_y_offset * width],
|
| - this_tile_height * width * sizeof(*current_tile_rows));
|
| for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
|
| const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
|
| - bits, (int (*)[256])histo, argb_scratch, exact);
|
| + bits, histo, argb_scratch, argb, max_quantization, exact,
|
| + used_subtract_green);
|
| image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
|
| }
|
| }
|
| }
|
|
|
| - CopyImageWithPrediction(width, height, bits,
|
| - image, argb_scratch, argb, low_effort, exact);
|
| + CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
|
| + low_effort, max_quantization, exact,
|
| + used_subtract_green);
|
| }
|
|
|
| void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
|
| @@ -1053,6 +1262,17 @@ void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
| }
|
|
|
| //------------------------------------------------------------------------------
|
| +
|
| +static int VectorMismatch(const uint32_t* const array1,
|
| + const uint32_t* const array2, int length) {
|
| + int match_len = 0;
|
| +
|
| + while (match_len < length && array1[match_len] == array2[match_len]) {
|
| + ++match_len;
|
| + }
|
| + return match_len;
|
| +}
|
| +
|
| // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
|
| void VP8LBundleColorMap(const uint8_t* const row, int width,
|
| int xbits, uint32_t* const dst) {
|
| @@ -1149,6 +1369,8 @@ GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
|
|
|
| VP8LHistogramAddFunc VP8LHistogramAdd;
|
|
|
| +VP8LVectorMismatchFunc VP8LVectorMismatch;
|
| +
|
| extern void VP8LEncDspInitSSE2(void);
|
| extern void VP8LEncDspInitSSE41(void);
|
| extern void VP8LEncDspInitNEON(void);
|
| @@ -1181,6 +1403,8 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
|
|
|
| VP8LHistogramAdd = HistogramAdd;
|
|
|
| + VP8LVectorMismatch = VectorMismatch;
|
| +
|
| // If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
| if (VP8GetCPUInfo != NULL) {
|
| #if defined(WEBP_USE_SSE2)
|
|
|