Index: third_party/libwebp/dsp/lossless_enc.c |
diff --git a/third_party/libwebp/dsp/lossless_enc.c b/third_party/libwebp/dsp/lossless_enc.c |
index 2eafa3da7d23d69bc7e084e0e0d519b9bbd0a9e1..256f6f5f8b7f6538b42b779f1b6af229cd2309b7 100644 |
--- a/third_party/libwebp/dsp/lossless_enc.c |
+++ b/third_party/libwebp/dsp/lossless_enc.c |
@@ -382,6 +382,7 @@ static float FastLog2Slow(uint32_t v) { |
// Mostly used to reduce code size + readability |
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } |
+static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } |
//------------------------------------------------------------------------------ |
// Methods to calculate Entropy (Shannon). |
@@ -551,18 +552,204 @@ static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func, |
} |
} |
+static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { |
+ const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); |
+ const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); |
+ const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); |
+ const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); |
+ return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); |
+} |
+ |
+static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, |
+ uint32_t left, uint32_t right) { |
+ const int diff_up = MaxDiffBetweenPixels(current, up); |
+ const int diff_down = MaxDiffBetweenPixels(current, down); |
+ const int diff_left = MaxDiffBetweenPixels(current, left); |
+ const int diff_right = MaxDiffBetweenPixels(current, right); |
+ return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); |
+} |
+ |
+static uint32_t AddGreenToBlueAndRed(uint32_t argb) { |
+ const uint32_t green = (argb >> 8) & 0xff; |
+ uint32_t red_blue = argb & 0x00ff00ffu; |
+ red_blue += (green << 16) | green; |
+ red_blue &= 0x00ff00ffu; |
+ return (argb & 0xff00ff00u) | red_blue; |
+} |
+ |
+static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, |
+ uint8_t* const max_diffs, int used_subtract_green) { |
+ uint32_t current, up, down, left, right; |
+ int x; |
+ if (width <= 2) return; |
+ current = argb[0]; |
+ right = argb[1]; |
+ if (used_subtract_green) { |
+ current = AddGreenToBlueAndRed(current); |
+ right = AddGreenToBlueAndRed(right); |
+ } |
+ // max_diffs[0] and max_diffs[width - 1] are never used. |
+ for (x = 1; x < width - 1; ++x) { |
+ up = argb[-stride + x]; |
+ down = argb[stride + x]; |
+ left = current; |
+ current = right; |
+ right = argb[x + 1]; |
+ if (used_subtract_green) { |
+ up = AddGreenToBlueAndRed(up); |
+ down = AddGreenToBlueAndRed(down); |
+ right = AddGreenToBlueAndRed(right); |
+ } |
+ max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); |
+ } |
+} |
+ |
+// Quantize the difference between the actual component value and its prediction |
+// to a multiple of quantization, working modulo 256, taking care not to cross |
+// a boundary (inclusive upper limit). |
+static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, |
+ uint8_t boundary, int quantization) { |
+ const int residual = (value - predict) & 0xff; |
+ const int boundary_residual = (boundary - predict) & 0xff; |
+ const int lower = residual & ~(quantization - 1); |
+ const int upper = lower + quantization; |
+ // Resolve ties towards a value closer to the prediction (i.e. towards lower |
+ // if value comes after prediction and towards upper otherwise). |
+ const int bias = ((boundary - value) & 0xff) < boundary_residual; |
+ if (residual - lower < upper - residual + bias) { |
+ // lower is closer to residual than upper. |
+ if (residual > boundary_residual && lower <= boundary_residual) { |
+ // Halve quantization step to avoid crossing boundary. This midpoint is |
+ // on the same side of boundary as residual because midpoint >= residual |
+ // (since lower is closer than upper) and residual is above the boundary. |
+ return lower + (quantization >> 1); |
+ } |
+ return lower; |
+ } else { |
+ // upper is closer to residual than lower. |
+ if (residual <= boundary_residual && upper > boundary_residual) { |
+ // Halve quantization step to avoid crossing boundary. This midpoint is |
+ // on the same side of boundary as residual because midpoint <= residual |
+ // (since upper is closer than lower) and residual is below the boundary. |
+ return lower + (quantization >> 1); |
+ } |
+ return upper & 0xff; |
+ } |
+} |
+ |
+// Quantize every component of the difference between the actual pixel value and |
+// its prediction to a multiple of a quantization (a power of 2, not larger than |
+// max_quantization which is a power of 2, smaller than max_diff). Take care if |
+// value and predict have undergone subtract green, which means that red and |
+// blue are represented as offsets from green. |
+static uint32_t NearLossless(uint32_t value, uint32_t predict, |
+ int max_quantization, int max_diff, |
+ int used_subtract_green) { |
+ int quantization; |
+ uint8_t new_green = 0; |
+ uint8_t green_diff = 0; |
+ uint8_t a, r, g, b; |
+ if (max_diff <= 2) { |
+ return VP8LSubPixels(value, predict); |
+ } |
+ quantization = max_quantization; |
+ while (quantization >= max_diff) { |
+ quantization >>= 1; |
+ } |
+ if ((value >> 24) == 0 || (value >> 24) == 0xff) { |
+ // Preserve transparency of fully transparent or fully opaque pixels. |
+ a = ((value >> 24) - (predict >> 24)) & 0xff; |
+ } else { |
+ a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); |
+ } |
+ g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, |
+ quantization); |
+ if (used_subtract_green) { |
+ // The green offset will be added to red and blue components during decoding |
+ // to obtain the actual red and blue values. |
+ new_green = ((predict >> 8) + g) & 0xff; |
+ // The amount by which green has been adjusted during quantization. It is |
+ // subtracted from red and blue for compensation, to avoid accumulating two |
+ // quantization errors in them. |
+ green_diff = (new_green - (value >> 8)) & 0xff; |
+ } |
+ r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff, |
+ (predict >> 16) & 0xff, 0xff - new_green, |
+ quantization); |
+ b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff, |
+ 0xff - new_green, quantization); |
+ return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; |
+} |
+ |
+// Returns the difference between the pixel and its prediction. In case of a |
+// lossy encoding, updates the source image to avoid propagating the deviation |
+// further to pixels which depend on the current pixel for their predictions. |
+static WEBP_INLINE uint32_t GetResidual(int width, int height, |
+ uint32_t* const upper_row, |
+ uint32_t* const current_row, |
+ const uint8_t* const max_diffs, |
+ int mode, VP8LPredictorFunc pred_func, |
+ int x, int y, int max_quantization, |
+ int exact, int used_subtract_green) { |
+ const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row); |
+ uint32_t residual; |
+ if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 || |
+ x == 0 || x == width - 1) { |
+ residual = VP8LSubPixels(current_row[x], predict); |
+ } else { |
+ residual = NearLossless(current_row[x], predict, max_quantization, |
+ max_diffs[x], used_subtract_green); |
+ // Update the source image. |
+ current_row[x] = VP8LAddPixels(predict, residual); |
+ // x is never 0 here so we do not need to update upper_row like below. |
+ } |
+ if (!exact && (current_row[x] & kMaskAlpha) == 0) { |
+ // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual |
+ // for best compression. The prediction of alpha itself can be non-zero and |
+ // must be kept though. We choose RGB of the residual to be 0. |
+ residual &= kMaskAlpha; |
+ // Update the source image. |
+ current_row[x] = predict & ~kMaskAlpha; |
+ // The prediction for the rightmost pixel in a row uses the leftmost pixel |
+ // in that row as its top-right context pixel. Hence if we change the |
+ // leftmost pixel of current_row, the corresponding change must be applied |
+ // to upper_row as well where top-right context is being read from. |
+ if (x == 0 && y != 0) upper_row[width] = current_row[0]; |
+ } |
+ return residual; |
+} |
+ |
// Returns best predictor and updates the accumulated histogram. |
+// If max_quantization > 1, assumes that near lossless processing will be |
+// applied, quantizing residuals to multiples of quantization levels up to |
+// max_quantization (the actual quantization level depends on smoothness near |
+// the given pixel). |
static int GetBestPredictorForTile(int width, int height, |
int tile_x, int tile_y, int bits, |
int accumulated[4][256], |
- const uint32_t* const argb_scratch, |
- int exact) { |
+ uint32_t* const argb_scratch, |
+ const uint32_t* const argb, |
+ int max_quantization, |
+ int exact, int used_subtract_green) { |
const int kNumPredModes = 14; |
- const int col_start = tile_x << bits; |
- const int row_start = tile_y << bits; |
+ const int start_x = tile_x << bits; |
+ const int start_y = tile_y << bits; |
const int tile_size = 1 << bits; |
- const int max_y = GetMin(tile_size, height - row_start); |
- const int max_x = GetMin(tile_size, width - col_start); |
+ const int max_y = GetMin(tile_size, height - start_y); |
+ const int max_x = GetMin(tile_size, width - start_x); |
+ // Whether there exist columns just outside the tile. |
+ const int have_left = (start_x > 0); |
+ const int have_right = (max_x < width - start_x); |
+ // Position and size of the strip covering the tile and adjacent columns if |
+ // they exist. |
+ const int context_start_x = start_x - have_left; |
+ const int context_width = max_x + have_left + have_right; |
+ // The width of upper_row and current_row is one pixel larger than image width |
+ // to allow the top right pixel to point to the leftmost pixel of the next row |
+ // when at the right edge. |
+ uint32_t* upper_row = argb_scratch; |
+ uint32_t* current_row = upper_row + width + 1; |
+ uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); |
float best_diff = MAX_DIFF_COST; |
int best_mode = 0; |
int mode; |
@@ -571,28 +758,46 @@ static int GetBestPredictorForTile(int width, int height, |
// Need pointers to be able to swap arrays. |
int (*histo_argb)[256] = histo_stack_1; |
int (*best_histo)[256] = histo_stack_2; |
- |
int i, j; |
+ |
for (mode = 0; mode < kNumPredModes; ++mode) { |
- const uint32_t* current_row = argb_scratch; |
const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; |
float cur_diff; |
- int y; |
+ int relative_y; |
memset(histo_argb, 0, sizeof(histo_stack_1)); |
- for (y = 0; y < max_y; ++y) { |
- int x; |
- const int row = row_start + y; |
- const uint32_t* const upper_row = current_row; |
- current_row = upper_row + width; |
- for (x = 0; x < max_x; ++x) { |
- const int col = col_start + x; |
- const uint32_t predict = |
- Predict(pred_func, col, row, current_row, upper_row); |
- uint32_t residual = VP8LSubPixels(current_row[col], predict); |
- if (!exact && (current_row[col] & kMaskAlpha) == 0) { |
- residual &= kMaskAlpha; // See CopyTileWithPrediction. |
- } |
- UpdateHisto(histo_argb, residual); |
+ if (start_y > 0) { |
+ // Read the row above the tile which will become the first upper_row. |
+ // Include a pixel to the left if it exists; include a pixel to the right |
+ // in all cases (wrapping to the leftmost pixel of the next row if it does |
+ // not exist). |
+ memcpy(current_row + context_start_x, |
+ argb + (start_y - 1) * width + context_start_x, |
+ sizeof(*argb) * (max_x + have_left + 1)); |
+ } |
+ for (relative_y = 0; relative_y < max_y; ++relative_y) { |
+ const int y = start_y + relative_y; |
+ int relative_x; |
+ uint32_t* tmp = upper_row; |
+ upper_row = current_row; |
+ current_row = tmp; |
+ // Read current_row. Include a pixel to the left if it exists; include a |
+ // pixel to the right in all cases except at the bottom right corner of |
+ // the image (wrapping to the leftmost pixel of the next row if it does |
+ // not exist in the current row). |
+ memcpy(current_row + context_start_x, |
+ argb + y * width + context_start_x, |
+ sizeof(*argb) * (max_x + have_left + (y + 1 < height))); |
+ if (max_quantization > 1 && y >= 1 && y + 1 < height) { |
+ MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, |
+ max_diffs + context_start_x, used_subtract_green); |
+ } |
+ |
+ for (relative_x = 0; relative_x < max_x; ++relative_x) { |
+ const int x = start_x + relative_x; |
+ UpdateHisto(histo_argb, |
+ GetResidual(width, height, upper_row, current_row, |
+ max_diffs, mode, pred_func, x, y, |
+ max_quantization, exact, used_subtract_green)); |
} |
} |
cur_diff = PredictionCostSpatialHistogram( |
@@ -615,71 +820,82 @@ static int GetBestPredictorForTile(int width, int height, |
return best_mode; |
} |
+// Converts pixels of the image to residuals with respect to predictions. |
+// If max_quantization > 1, applies near lossless processing, quantizing |
+// residuals to multiples of quantization levels up to max_quantization |
+// (the actual quantization level depends on smoothness near the given pixel). |
static void CopyImageWithPrediction(int width, int height, |
int bits, uint32_t* const modes, |
uint32_t* const argb_scratch, |
uint32_t* const argb, |
- int low_effort, int exact) { |
+ int low_effort, int max_quantization, |
+ int exact, int used_subtract_green) { |
const int tiles_per_row = VP8LSubSampleSize(width, bits); |
const int mask = (1 << bits) - 1; |
- // The row size is one pixel longer to allow the top right pixel to point to |
- // the leftmost pixel of the next row when at the right edge. |
- uint32_t* current_row = argb_scratch; |
- uint32_t* upper_row = argb_scratch + width + 1; |
+ // The width of upper_row and current_row is one pixel larger than image width |
+ // to allow the top right pixel to point to the leftmost pixel of the next row |
+ // when at the right edge. |
+ uint32_t* upper_row = argb_scratch; |
+ uint32_t* current_row = upper_row + width + 1; |
+ uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); |
+ uint8_t* lower_max_diffs = current_max_diffs + width; |
int y; |
- VP8LPredictorFunc pred_func = |
- low_effort ? VP8LPredictors[kPredLowEffort] : NULL; |
+ int mode = 0; |
+ VP8LPredictorFunc pred_func = NULL; |
for (y = 0; y < height; ++y) { |
int x; |
- uint32_t* tmp = upper_row; |
+ uint32_t* const tmp32 = upper_row; |
upper_row = current_row; |
- current_row = tmp; |
- memcpy(current_row, argb + y * width, sizeof(*current_row) * width); |
- current_row[width] = (y + 1 < height) ? argb[(y + 1) * width] : ARGB_BLACK; |
+ current_row = tmp32; |
+ memcpy(current_row, argb + y * width, |
+ sizeof(*argb) * (width + (y + 1 < height))); |
if (low_effort) { |
for (x = 0; x < width; ++x) { |
- const uint32_t predict = |
- Predict(pred_func, x, y, current_row, upper_row); |
+ const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y, |
+ current_row, upper_row); |
argb[y * width + x] = VP8LSubPixels(current_row[x], predict); |
} |
} else { |
+ if (max_quantization > 1) { |
+ // Compute max_diffs for the lower row now, because that needs the |
+ // contents of argb for the current row, which we will overwrite with |
+ // residuals before proceeding with the next row. |
+ uint8_t* const tmp8 = current_max_diffs; |
+ current_max_diffs = lower_max_diffs; |
+ lower_max_diffs = tmp8; |
+ if (y + 2 < height) { |
+ MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, |
+ used_subtract_green); |
+ } |
+ } |
for (x = 0; x < width; ++x) { |
- uint32_t predict, residual; |
if ((x & mask) == 0) { |
- const int mode = |
- (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; |
+ mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; |
pred_func = VP8LPredictors[mode]; |
} |
- predict = Predict(pred_func, x, y, current_row, upper_row); |
- residual = VP8LSubPixels(current_row[x], predict); |
- if (!exact && (current_row[x] & kMaskAlpha) == 0) { |
- // If alpha is 0, cleanup RGB. We can choose the RGB values of the |
- // residual for best compression. The prediction of alpha itself can |
- // be non-zero and must be kept though. We choose RGB of the residual |
- // to be 0. |
- residual &= kMaskAlpha; |
- // Update input image so that next predictions use correct RGB value. |
- current_row[x] = predict & ~kMaskAlpha; |
- if (x == 0 && y != 0) upper_row[width] = current_row[x]; |
- } |
- argb[y * width + x] = residual; |
+ argb[y * width + x] = GetResidual( |
+ width, height, upper_row, current_row, current_max_diffs, mode, |
+ pred_func, x, y, max_quantization, exact, used_subtract_green); |
} |
} |
} |
} |
+// Finds the best predictor for each tile, and converts the image to residuals |
+// with respect to predictions. If near_lossless_quality < 100, applies |
+// near lossless processing, shaving off more bits of residuals for lower |
+// qualities. |
void VP8LResidualImage(int width, int height, int bits, int low_effort, |
uint32_t* const argb, uint32_t* const argb_scratch, |
- uint32_t* const image, int exact) { |
- const int max_tile_size = 1 << bits; |
+ uint32_t* const image, int near_lossless_quality, |
+ int exact, int used_subtract_green) { |
const int tiles_per_row = VP8LSubSampleSize(width, bits); |
const int tiles_per_col = VP8LSubSampleSize(height, bits); |
- uint32_t* const upper_row = argb_scratch; |
- uint32_t* const current_tile_rows = argb_scratch + width; |
int tile_y; |
int histo[4][256]; |
+ const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); |
if (low_effort) { |
int i; |
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { |
@@ -688,26 +904,19 @@ void VP8LResidualImage(int width, int height, int bits, int low_effort, |
} else { |
memset(histo, 0, sizeof(histo)); |
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
- const int tile_y_offset = tile_y * max_tile_size; |
- const int this_tile_height = |
- (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset; |
int tile_x; |
- if (tile_y > 0) { |
- memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width, |
- width * sizeof(*upper_row)); |
- } |
- memcpy(current_tile_rows, &argb[tile_y_offset * width], |
- this_tile_height * width * sizeof(*current_tile_rows)); |
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, |
- bits, (int (*)[256])histo, argb_scratch, exact); |
+ bits, histo, argb_scratch, argb, max_quantization, exact, |
+ used_subtract_green); |
image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); |
} |
} |
} |
- CopyImageWithPrediction(width, height, bits, |
- image, argb_scratch, argb, low_effort, exact); |
+ CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, |
+ low_effort, max_quantization, exact, |
+ used_subtract_green); |
} |
void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) { |
@@ -1053,6 +1262,17 @@ void VP8LColorSpaceTransform(int width, int height, int bits, int quality, |
} |
//------------------------------------------------------------------------------ |
+ |
+static int VectorMismatch(const uint32_t* const array1, |
+ const uint32_t* const array2, int length) { |
+ int match_len = 0; |
+ |
+ while (match_len < length && array1[match_len] == array2[match_len]) { |
+ ++match_len; |
+ } |
+ return match_len; |
+} |
+ |
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. |
void VP8LBundleColorMap(const uint8_t* const row, int width, |
int xbits, uint32_t* const dst) { |
@@ -1149,6 +1369,8 @@ GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper; |
VP8LHistogramAddFunc VP8LHistogramAdd; |
+VP8LVectorMismatchFunc VP8LVectorMismatch; |
+ |
extern void VP8LEncDspInitSSE2(void); |
extern void VP8LEncDspInitSSE41(void); |
extern void VP8LEncDspInitNEON(void); |
@@ -1181,6 +1403,8 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) { |
VP8LHistogramAdd = HistogramAdd; |
+ VP8LVectorMismatch = VectorMismatch; |
+ |
// If defined, use CPUInfo() to overwrite some pointers with faster versions. |
if (VP8GetCPUInfo != NULL) { |
#if defined(WEBP_USE_SSE2) |