Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(369)

Side by Side Diff: third_party/libwebp/dsp/lossless_enc.c

Issue 2149863002: libwebp: update to v0.5.1 (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/libwebp/dsp/lossless.c ('k') | third_party/libwebp/dsp/lossless_enc_sse2.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2015 Google Inc. All Rights Reserved. 1 // Copyright 2015 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // Image transform methods for lossless encoder. 10 // Image transform methods for lossless encoder.
(...skipping 364 matching lines...) Expand 10 before | Expand all | Expand 10 after
375 log_2 += (double)correction / orig_v; 375 log_2 += (double)correction / orig_v;
376 } 376 }
377 return (float)log_2; 377 return (float)log_2;
378 } else { 378 } else {
379 return (float)(LOG_2_RECIPROCAL * log((double)v)); 379 return (float)(LOG_2_RECIPROCAL * log((double)v));
380 } 380 }
381 } 381 }
382 382
383 // Mostly used to reduce code size + readability 383 // Mostly used to reduce code size + readability
384 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } 384 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
385 static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
385 386
386 //------------------------------------------------------------------------------ 387 //------------------------------------------------------------------------------
387 // Methods to calculate Entropy (Shannon). 388 // Methods to calculate Entropy (Shannon).
388 389
389 static float PredictionCostSpatial(const int counts[256], int weight_0, 390 static float PredictionCostSpatial(const int counts[256], int weight_0,
390 double exp_val) { 391 double exp_val) {
391 const int significant_symbols = 256 >> 4; 392 const int significant_symbols = 256 >> 4;
392 const double exp_decay_factor = 0.6; 393 const double exp_decay_factor = 0.6;
393 double bits = weight_0 * counts[0]; 394 double bits = weight_0 * counts[0];
394 int i; 395 int i;
(...skipping 149 matching lines...) Expand 10 before | Expand all | Expand 10 after
544 const uint32_t* upper_row) { 545 const uint32_t* upper_row) {
545 if (y == 0) { 546 if (y == 0) {
546 return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. 547 return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
547 } else if (x == 0) { 548 } else if (x == 0) {
548 return upper_row[x]; // Top. 549 return upper_row[x]; // Top.
549 } else { 550 } else {
550 return pred_func(current_row[x - 1], upper_row + x); 551 return pred_func(current_row[x - 1], upper_row + x);
551 } 552 }
552 } 553 }
553 554
555 static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
556 const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
557 const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
558 const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
559 const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
560 return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
561 }
562
563 static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
564 uint32_t left, uint32_t right) {
565 const int diff_up = MaxDiffBetweenPixels(current, up);
566 const int diff_down = MaxDiffBetweenPixels(current, down);
567 const int diff_left = MaxDiffBetweenPixels(current, left);
568 const int diff_right = MaxDiffBetweenPixels(current, right);
569 return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
570 }
571
572 static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
573 const uint32_t green = (argb >> 8) & 0xff;
574 uint32_t red_blue = argb & 0x00ff00ffu;
575 red_blue += (green << 16) | green;
576 red_blue &= 0x00ff00ffu;
577 return (argb & 0xff00ff00u) | red_blue;
578 }
579
580 static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
581 uint8_t* const max_diffs, int used_subtract_green) {
582 uint32_t current, up, down, left, right;
583 int x;
584 if (width <= 2) return;
585 current = argb[0];
586 right = argb[1];
587 if (used_subtract_green) {
588 current = AddGreenToBlueAndRed(current);
589 right = AddGreenToBlueAndRed(right);
590 }
591 // max_diffs[0] and max_diffs[width - 1] are never used.
592 for (x = 1; x < width - 1; ++x) {
593 up = argb[-stride + x];
594 down = argb[stride + x];
595 left = current;
596 current = right;
597 right = argb[x + 1];
598 if (used_subtract_green) {
599 up = AddGreenToBlueAndRed(up);
600 down = AddGreenToBlueAndRed(down);
601 right = AddGreenToBlueAndRed(right);
602 }
603 max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
604 }
605 }
606
607 // Quantize the difference between the actual component value and its prediction
608 // to a multiple of quantization, working modulo 256, taking care not to cross
609 // a boundary (inclusive upper limit).
610 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
611 uint8_t boundary, int quantization) {
612 const int residual = (value - predict) & 0xff;
613 const int boundary_residual = (boundary - predict) & 0xff;
614 const int lower = residual & ~(quantization - 1);
615 const int upper = lower + quantization;
616 // Resolve ties towards a value closer to the prediction (i.e. towards lower
617 // if value comes after prediction and towards upper otherwise).
618 const int bias = ((boundary - value) & 0xff) < boundary_residual;
619 if (residual - lower < upper - residual + bias) {
620 // lower is closer to residual than upper.
621 if (residual > boundary_residual && lower <= boundary_residual) {
622 // Halve quantization step to avoid crossing boundary. This midpoint is
623 // on the same side of boundary as residual because midpoint >= residual
624 // (since lower is closer than upper) and residual is above the boundary.
625 return lower + (quantization >> 1);
626 }
627 return lower;
628 } else {
629 // upper is closer to residual than lower.
630 if (residual <= boundary_residual && upper > boundary_residual) {
631 // Halve quantization step to avoid crossing boundary. This midpoint is
632 // on the same side of boundary as residual because midpoint <= residual
633 // (since upper is closer than lower) and residual is below the boundary.
634 return lower + (quantization >> 1);
635 }
636 return upper & 0xff;
637 }
638 }
639
640 // Quantize every component of the difference between the actual pixel value and
641 // its prediction to a multiple of a quantization (a power of 2, not larger than
642 // max_quantization which is a power of 2, smaller than max_diff). Take care if
643 // value and predict have undergone subtract green, which means that red and
644 // blue are represented as offsets from green.
645 static uint32_t NearLossless(uint32_t value, uint32_t predict,
646 int max_quantization, int max_diff,
647 int used_subtract_green) {
648 int quantization;
649 uint8_t new_green = 0;
650 uint8_t green_diff = 0;
651 uint8_t a, r, g, b;
652 if (max_diff <= 2) {
653 return VP8LSubPixels(value, predict);
654 }
655 quantization = max_quantization;
656 while (quantization >= max_diff) {
657 quantization >>= 1;
658 }
659 if ((value >> 24) == 0 || (value >> 24) == 0xff) {
660 // Preserve transparency of fully transparent or fully opaque pixels.
661 a = ((value >> 24) - (predict >> 24)) & 0xff;
662 } else {
663 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
664 }
665 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
666 quantization);
667 if (used_subtract_green) {
668 // The green offset will be added to red and blue components during decoding
669 // to obtain the actual red and blue values.
670 new_green = ((predict >> 8) + g) & 0xff;
671 // The amount by which green has been adjusted during quantization. It is
672 // subtracted from red and blue for compensation, to avoid accumulating two
673 // quantization errors in them.
674 green_diff = (new_green - (value >> 8)) & 0xff;
675 }
676 r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
677 (predict >> 16) & 0xff, 0xff - new_green,
678 quantization);
679 b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
680 0xff - new_green, quantization);
681 return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
682 }
683
684 // Returns the difference between the pixel and its prediction. In case of a
685 // lossy encoding, updates the source image to avoid propagating the deviation
686 // further to pixels which depend on the current pixel for their predictions.
687 static WEBP_INLINE uint32_t GetResidual(int width, int height,
688 uint32_t* const upper_row,
689 uint32_t* const current_row,
690 const uint8_t* const max_diffs,
691 int mode, VP8LPredictorFunc pred_func,
692 int x, int y, int max_quantization,
693 int exact, int used_subtract_green) {
694 const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
695 uint32_t residual;
696 if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
697 x == 0 || x == width - 1) {
698 residual = VP8LSubPixels(current_row[x], predict);
699 } else {
700 residual = NearLossless(current_row[x], predict, max_quantization,
701 max_diffs[x], used_subtract_green);
702 // Update the source image.
703 current_row[x] = VP8LAddPixels(predict, residual);
704 // x is never 0 here so we do not need to update upper_row like below.
705 }
706 if (!exact && (current_row[x] & kMaskAlpha) == 0) {
707 // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
708 // for best compression. The prediction of alpha itself can be non-zero and
709 // must be kept though. We choose RGB of the residual to be 0.
710 residual &= kMaskAlpha;
711 // Update the source image.
712 current_row[x] = predict & ~kMaskAlpha;
713 // The prediction for the rightmost pixel in a row uses the leftmost pixel
714 // in that row as its top-right context pixel. Hence if we change the
715 // leftmost pixel of current_row, the corresponding change must be applied
716 // to upper_row as well where top-right context is being read from.
717 if (x == 0 && y != 0) upper_row[width] = current_row[0];
718 }
719 return residual;
720 }
721
554 // Returns best predictor and updates the accumulated histogram. 722 // Returns best predictor and updates the accumulated histogram.
723 // If max_quantization > 1, assumes that near lossless processing will be
724 // applied, quantizing residuals to multiples of quantization levels up to
725 // max_quantization (the actual quantization level depends on smoothness near
726 // the given pixel).
555 static int GetBestPredictorForTile(int width, int height, 727 static int GetBestPredictorForTile(int width, int height,
556 int tile_x, int tile_y, int bits, 728 int tile_x, int tile_y, int bits,
557 int accumulated[4][256], 729 int accumulated[4][256],
558 const uint32_t* const argb_scratch, 730 uint32_t* const argb_scratch,
559 int exact) { 731 const uint32_t* const argb,
732 int max_quantization,
733 int exact, int used_subtract_green) {
560 const int kNumPredModes = 14; 734 const int kNumPredModes = 14;
561 const int col_start = tile_x << bits; 735 const int start_x = tile_x << bits;
562 const int row_start = tile_y << bits; 736 const int start_y = tile_y << bits;
563 const int tile_size = 1 << bits; 737 const int tile_size = 1 << bits;
564 const int max_y = GetMin(tile_size, height - row_start); 738 const int max_y = GetMin(tile_size, height - start_y);
565 const int max_x = GetMin(tile_size, width - col_start); 739 const int max_x = GetMin(tile_size, width - start_x);
740 // Whether there exist columns just outside the tile.
741 const int have_left = (start_x > 0);
742 const int have_right = (max_x < width - start_x);
743 // Position and size of the strip covering the tile and adjacent columns if
744 // they exist.
745 const int context_start_x = start_x - have_left;
746 const int context_width = max_x + have_left + have_right;
747 // The width of upper_row and current_row is one pixel larger than image width
748 // to allow the top right pixel to point to the leftmost pixel of the next row
749 // when at the right edge.
750 uint32_t* upper_row = argb_scratch;
751 uint32_t* current_row = upper_row + width + 1;
752 uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
566 float best_diff = MAX_DIFF_COST; 753 float best_diff = MAX_DIFF_COST;
567 int best_mode = 0; 754 int best_mode = 0;
568 int mode; 755 int mode;
569 int histo_stack_1[4][256]; 756 int histo_stack_1[4][256];
570 int histo_stack_2[4][256]; 757 int histo_stack_2[4][256];
571 // Need pointers to be able to swap arrays. 758 // Need pointers to be able to swap arrays.
572 int (*histo_argb)[256] = histo_stack_1; 759 int (*histo_argb)[256] = histo_stack_1;
573 int (*best_histo)[256] = histo_stack_2; 760 int (*best_histo)[256] = histo_stack_2;
761 int i, j;
574 762
575 int i, j;
576 for (mode = 0; mode < kNumPredModes; ++mode) { 763 for (mode = 0; mode < kNumPredModes; ++mode) {
577 const uint32_t* current_row = argb_scratch;
578 const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; 764 const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
579 float cur_diff; 765 float cur_diff;
580 int y; 766 int relative_y;
581 memset(histo_argb, 0, sizeof(histo_stack_1)); 767 memset(histo_argb, 0, sizeof(histo_stack_1));
582 for (y = 0; y < max_y; ++y) { 768 if (start_y > 0) {
583 int x; 769 // Read the row above the tile which will become the first upper_row.
584 const int row = row_start + y; 770 // Include a pixel to the left if it exists; include a pixel to the right
585 const uint32_t* const upper_row = current_row; 771 // in all cases (wrapping to the leftmost pixel of the next row if it does
586 current_row = upper_row + width; 772 // not exist).
587 for (x = 0; x < max_x; ++x) { 773 memcpy(current_row + context_start_x,
588 const int col = col_start + x; 774 argb + (start_y - 1) * width + context_start_x,
589 const uint32_t predict = 775 sizeof(*argb) * (max_x + have_left + 1));
590 Predict(pred_func, col, row, current_row, upper_row); 776 }
591 uint32_t residual = VP8LSubPixels(current_row[col], predict); 777 for (relative_y = 0; relative_y < max_y; ++relative_y) {
592 if (!exact && (current_row[col] & kMaskAlpha) == 0) { 778 const int y = start_y + relative_y;
593 residual &= kMaskAlpha; // See CopyTileWithPrediction. 779 int relative_x;
594 } 780 uint32_t* tmp = upper_row;
595 UpdateHisto(histo_argb, residual); 781 upper_row = current_row;
782 current_row = tmp;
783 // Read current_row. Include a pixel to the left if it exists; include a
784 // pixel to the right in all cases except at the bottom right corner of
785 // the image (wrapping to the leftmost pixel of the next row if it does
786 // not exist in the current row).
787 memcpy(current_row + context_start_x,
788 argb + y * width + context_start_x,
789 sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
790 if (max_quantization > 1 && y >= 1 && y + 1 < height) {
791 MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
792 max_diffs + context_start_x, used_subtract_green);
793 }
794
795 for (relative_x = 0; relative_x < max_x; ++relative_x) {
796 const int x = start_x + relative_x;
797 UpdateHisto(histo_argb,
798 GetResidual(width, height, upper_row, current_row,
799 max_diffs, mode, pred_func, x, y,
800 max_quantization, exact, used_subtract_green));
596 } 801 }
597 } 802 }
598 cur_diff = PredictionCostSpatialHistogram( 803 cur_diff = PredictionCostSpatialHistogram(
599 (const int (*)[256])accumulated, (const int (*)[256])histo_argb); 804 (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
600 if (cur_diff < best_diff) { 805 if (cur_diff < best_diff) {
601 int (*tmp)[256] = histo_argb; 806 int (*tmp)[256] = histo_argb;
602 histo_argb = best_histo; 807 histo_argb = best_histo;
603 best_histo = tmp; 808 best_histo = tmp;
604 best_diff = cur_diff; 809 best_diff = cur_diff;
605 best_mode = mode; 810 best_mode = mode;
606 } 811 }
607 } 812 }
608 813
609 for (i = 0; i < 4; i++) { 814 for (i = 0; i < 4; i++) {
610 for (j = 0; j < 256; j++) { 815 for (j = 0; j < 256; j++) {
611 accumulated[i][j] += best_histo[i][j]; 816 accumulated[i][j] += best_histo[i][j];
612 } 817 }
613 } 818 }
614 819
615 return best_mode; 820 return best_mode;
616 } 821 }
617 822
823 // Converts pixels of the image to residuals with respect to predictions.
824 // If max_quantization > 1, applies near lossless processing, quantizing
825 // residuals to multiples of quantization levels up to max_quantization
826 // (the actual quantization level depends on smoothness near the given pixel).
618 static void CopyImageWithPrediction(int width, int height, 827 static void CopyImageWithPrediction(int width, int height,
619 int bits, uint32_t* const modes, 828 int bits, uint32_t* const modes,
620 uint32_t* const argb_scratch, 829 uint32_t* const argb_scratch,
621 uint32_t* const argb, 830 uint32_t* const argb,
622 int low_effort, int exact) { 831 int low_effort, int max_quantization,
832 int exact, int used_subtract_green) {
623 const int tiles_per_row = VP8LSubSampleSize(width, bits); 833 const int tiles_per_row = VP8LSubSampleSize(width, bits);
624 const int mask = (1 << bits) - 1; 834 const int mask = (1 << bits) - 1;
625 // The row size is one pixel longer to allow the top right pixel to point to 835 // The width of upper_row and current_row is one pixel larger than image width
626 // the leftmost pixel of the next row when at the right edge. 836 // to allow the top right pixel to point to the leftmost pixel of the next row
627 uint32_t* current_row = argb_scratch; 837 // when at the right edge.
628 uint32_t* upper_row = argb_scratch + width + 1; 838 uint32_t* upper_row = argb_scratch;
839 uint32_t* current_row = upper_row + width + 1;
840 uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
841 uint8_t* lower_max_diffs = current_max_diffs + width;
629 int y; 842 int y;
630 VP8LPredictorFunc pred_func = 843 int mode = 0;
631 low_effort ? VP8LPredictors[kPredLowEffort] : NULL; 844 VP8LPredictorFunc pred_func = NULL;
632 845
633 for (y = 0; y < height; ++y) { 846 for (y = 0; y < height; ++y) {
634 int x; 847 int x;
635 uint32_t* tmp = upper_row; 848 uint32_t* const tmp32 = upper_row;
636 upper_row = current_row; 849 upper_row = current_row;
637 current_row = tmp; 850 current_row = tmp32;
638 memcpy(current_row, argb + y * width, sizeof(*current_row) * width); 851 memcpy(current_row, argb + y * width,
639 current_row[width] = (y + 1 < height) ? argb[(y + 1) * width] : ARGB_BLACK; 852 sizeof(*argb) * (width + (y + 1 < height)));
640 853
641 if (low_effort) { 854 if (low_effort) {
642 for (x = 0; x < width; ++x) { 855 for (x = 0; x < width; ++x) {
643 const uint32_t predict = 856 const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
644 Predict(pred_func, x, y, current_row, upper_row); 857 current_row, upper_row);
645 argb[y * width + x] = VP8LSubPixels(current_row[x], predict); 858 argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
646 } 859 }
647 } else { 860 } else {
861 if (max_quantization > 1) {
862 // Compute max_diffs for the lower row now, because that needs the
863 // contents of argb for the current row, which we will overwrite with
864 // residuals before proceeding with the next row.
865 uint8_t* const tmp8 = current_max_diffs;
866 current_max_diffs = lower_max_diffs;
867 lower_max_diffs = tmp8;
868 if (y + 2 < height) {
869 MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
870 used_subtract_green);
871 }
872 }
648 for (x = 0; x < width; ++x) { 873 for (x = 0; x < width; ++x) {
649 uint32_t predict, residual;
650 if ((x & mask) == 0) { 874 if ((x & mask) == 0) {
651 const int mode = 875 mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
652 (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
653 pred_func = VP8LPredictors[mode]; 876 pred_func = VP8LPredictors[mode];
654 } 877 }
655 predict = Predict(pred_func, x, y, current_row, upper_row); 878 argb[y * width + x] = GetResidual(
656 residual = VP8LSubPixels(current_row[x], predict); 879 width, height, upper_row, current_row, current_max_diffs, mode,
657 if (!exact && (current_row[x] & kMaskAlpha) == 0) { 880 pred_func, x, y, max_quantization, exact, used_subtract_green);
658 // If alpha is 0, cleanup RGB. We can choose the RGB values of the
659 // residual for best compression. The prediction of alpha itself can
660 // be non-zero and must be kept though. We choose RGB of the residual
661 // to be 0.
662 residual &= kMaskAlpha;
663 // Update input image so that next predictions use correct RGB value.
664 current_row[x] = predict & ~kMaskAlpha;
665 if (x == 0 && y != 0) upper_row[width] = current_row[x];
666 }
667 argb[y * width + x] = residual;
668 } 881 }
669 } 882 }
670 } 883 }
671 } 884 }
672 885
886 // Finds the best predictor for each tile, and converts the image to residuals
887 // with respect to predictions. If near_lossless_quality < 100, applies
888 // near lossless processing, shaving off more bits of residuals for lower
889 // qualities.
673 void VP8LResidualImage(int width, int height, int bits, int low_effort, 890 void VP8LResidualImage(int width, int height, int bits, int low_effort,
674 uint32_t* const argb, uint32_t* const argb_scratch, 891 uint32_t* const argb, uint32_t* const argb_scratch,
675 uint32_t* const image, int exact) { 892 uint32_t* const image, int near_lossless_quality,
676 const int max_tile_size = 1 << bits; 893 int exact, int used_subtract_green) {
677 const int tiles_per_row = VP8LSubSampleSize(width, bits); 894 const int tiles_per_row = VP8LSubSampleSize(width, bits);
678 const int tiles_per_col = VP8LSubSampleSize(height, bits); 895 const int tiles_per_col = VP8LSubSampleSize(height, bits);
679 uint32_t* const upper_row = argb_scratch;
680 uint32_t* const current_tile_rows = argb_scratch + width;
681 int tile_y; 896 int tile_y;
682 int histo[4][256]; 897 int histo[4][256];
898 const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
683 if (low_effort) { 899 if (low_effort) {
684 int i; 900 int i;
685 for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { 901 for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
686 image[i] = ARGB_BLACK | (kPredLowEffort << 8); 902 image[i] = ARGB_BLACK | (kPredLowEffort << 8);
687 } 903 }
688 } else { 904 } else {
689 memset(histo, 0, sizeof(histo)); 905 memset(histo, 0, sizeof(histo));
690 for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { 906 for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
691 const int tile_y_offset = tile_y * max_tile_size;
692 const int this_tile_height =
693 (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
694 int tile_x; 907 int tile_x;
695 if (tile_y > 0) {
696 memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
697 width * sizeof(*upper_row));
698 }
699 memcpy(current_tile_rows, &argb[tile_y_offset * width],
700 this_tile_height * width * sizeof(*current_tile_rows));
701 for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { 908 for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
702 const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, 909 const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
703 bits, (int (*)[256])histo, argb_scratch, exact); 910 bits, histo, argb_scratch, argb, max_quantization, exact,
911 used_subtract_green);
704 image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); 912 image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
705 } 913 }
706 } 914 }
707 } 915 }
708 916
709 CopyImageWithPrediction(width, height, bits, 917 CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
710 image, argb_scratch, argb, low_effort, exact); 918 low_effort, max_quantization, exact,
919 used_subtract_green);
711 } 920 }
712 921
713 void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) { 922 void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
714 int i; 923 int i;
715 for (i = 0; i < num_pixels; ++i) { 924 for (i = 0; i < num_pixels; ++i) {
716 const uint32_t argb = argb_data[i]; 925 const uint32_t argb = argb_data[i];
717 const uint32_t green = (argb >> 8) & 0xff; 926 const uint32_t green = (argb >> 8) & 0xff;
718 const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; 927 const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
719 const uint32_t new_b = ((argb & 0xff) - green) & 0xff; 928 const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
720 argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b; 929 argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
(...skipping 325 matching lines...) Expand 10 before | Expand all | Expand 10 after
1046 } 1255 }
1047 ++accumulated_red_histo[(pix >> 16) & 0xff]; 1256 ++accumulated_red_histo[(pix >> 16) & 0xff];
1048 ++accumulated_blue_histo[(pix >> 0) & 0xff]; 1257 ++accumulated_blue_histo[(pix >> 0) & 0xff];
1049 } 1258 }
1050 } 1259 }
1051 } 1260 }
1052 } 1261 }
1053 } 1262 }
1054 1263
1055 //------------------------------------------------------------------------------ 1264 //------------------------------------------------------------------------------
1265
1266 static int VectorMismatch(const uint32_t* const array1,
1267 const uint32_t* const array2, int length) {
1268 int match_len = 0;
1269
1270 while (match_len < length && array1[match_len] == array2[match_len]) {
1271 ++match_len;
1272 }
1273 return match_len;
1274 }
1275
1056 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. 1276 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
1057 void VP8LBundleColorMap(const uint8_t* const row, int width, 1277 void VP8LBundleColorMap(const uint8_t* const row, int width,
1058 int xbits, uint32_t* const dst) { 1278 int xbits, uint32_t* const dst) {
1059 int x; 1279 int x;
1060 if (xbits > 0) { 1280 if (xbits > 0) {
1061 const int bit_depth = 1 << (3 - xbits); 1281 const int bit_depth = 1 << (3 - xbits);
1062 const int mask = (1 << xbits) - 1; 1282 const int mask = (1 << xbits) - 1;
1063 uint32_t code = 0xff000000; 1283 uint32_t code = 0xff000000;
1064 for (x = 0; x < width; ++x) { 1284 for (x = 0; x < width; ++x) {
1065 const int xsub = x & mask; 1285 const int xsub = x & mask;
(...skipping 76 matching lines...) Expand 10 before | Expand all | Expand 10 after
1142 VP8LFastLog2SlowFunc VP8LFastSLog2Slow; 1362 VP8LFastLog2SlowFunc VP8LFastSLog2Slow;
1143 1363
1144 VP8LCostFunc VP8LExtraCost; 1364 VP8LCostFunc VP8LExtraCost;
1145 VP8LCostCombinedFunc VP8LExtraCostCombined; 1365 VP8LCostCombinedFunc VP8LExtraCostCombined;
1146 VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy; 1366 VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy;
1147 1367
1148 GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper; 1368 GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
1149 1369
1150 VP8LHistogramAddFunc VP8LHistogramAdd; 1370 VP8LHistogramAddFunc VP8LHistogramAdd;
1151 1371
1372 VP8LVectorMismatchFunc VP8LVectorMismatch;
1373
1152 extern void VP8LEncDspInitSSE2(void); 1374 extern void VP8LEncDspInitSSE2(void);
1153 extern void VP8LEncDspInitSSE41(void); 1375 extern void VP8LEncDspInitSSE41(void);
1154 extern void VP8LEncDspInitNEON(void); 1376 extern void VP8LEncDspInitNEON(void);
1155 extern void VP8LEncDspInitMIPS32(void); 1377 extern void VP8LEncDspInitMIPS32(void);
1156 extern void VP8LEncDspInitMIPSdspR2(void); 1378 extern void VP8LEncDspInitMIPSdspR2(void);
1157 1379
1158 static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used = 1380 static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used =
1159 (VP8CPUInfo)&lossless_enc_last_cpuinfo_used; 1381 (VP8CPUInfo)&lossless_enc_last_cpuinfo_used;
1160 1382
1161 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) { 1383 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
(...skipping 12 matching lines...) Expand all
1174 VP8LFastSLog2Slow = FastSLog2Slow; 1396 VP8LFastSLog2Slow = FastSLog2Slow;
1175 1397
1176 VP8LExtraCost = ExtraCost; 1398 VP8LExtraCost = ExtraCost;
1177 VP8LExtraCostCombined = ExtraCostCombined; 1399 VP8LExtraCostCombined = ExtraCostCombined;
1178 VP8LCombinedShannonEntropy = CombinedShannonEntropy; 1400 VP8LCombinedShannonEntropy = CombinedShannonEntropy;
1179 1401
1180 VP8LGetEntropyUnrefinedHelper = GetEntropyUnrefinedHelper; 1402 VP8LGetEntropyUnrefinedHelper = GetEntropyUnrefinedHelper;
1181 1403
1182 VP8LHistogramAdd = HistogramAdd; 1404 VP8LHistogramAdd = HistogramAdd;
1183 1405
1406 VP8LVectorMismatch = VectorMismatch;
1407
1184 // If defined, use CPUInfo() to overwrite some pointers with faster versions. 1408 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
1185 if (VP8GetCPUInfo != NULL) { 1409 if (VP8GetCPUInfo != NULL) {
1186 #if defined(WEBP_USE_SSE2) 1410 #if defined(WEBP_USE_SSE2)
1187 if (VP8GetCPUInfo(kSSE2)) { 1411 if (VP8GetCPUInfo(kSSE2)) {
1188 VP8LEncDspInitSSE2(); 1412 VP8LEncDspInitSSE2();
1189 #if defined(WEBP_USE_SSE41) 1413 #if defined(WEBP_USE_SSE41)
1190 if (VP8GetCPUInfo(kSSE4_1)) { 1414 if (VP8GetCPUInfo(kSSE4_1)) {
1191 VP8LEncDspInitSSE41(); 1415 VP8LEncDspInitSSE41();
1192 } 1416 }
1193 #endif 1417 #endif
(...skipping 12 matching lines...) Expand all
1206 #if defined(WEBP_USE_MIPS_DSP_R2) 1430 #if defined(WEBP_USE_MIPS_DSP_R2)
1207 if (VP8GetCPUInfo(kMIPSdspR2)) { 1431 if (VP8GetCPUInfo(kMIPSdspR2)) {
1208 VP8LEncDspInitMIPSdspR2(); 1432 VP8LEncDspInitMIPSdspR2();
1209 } 1433 }
1210 #endif 1434 #endif
1211 } 1435 }
1212 lossless_enc_last_cpuinfo_used = VP8GetCPUInfo; 1436 lossless_enc_last_cpuinfo_used = VP8GetCPUInfo;
1213 } 1437 }
1214 1438
1215 //------------------------------------------------------------------------------ 1439 //------------------------------------------------------------------------------
OLDNEW
« no previous file with comments | « third_party/libwebp/dsp/lossless.c ('k') | third_party/libwebp/dsp/lossless_enc_sse2.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698