Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(12)

Unified Diff: src/a64/macro-assembler-a64.h

Issue 207823003: Rename A64 port to ARM64 port (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: retry Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/lithium-gap-resolver-a64.cc ('k') | src/a64/macro-assembler-a64.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/macro-assembler-a64.h
diff --git a/src/a64/macro-assembler-a64.h b/src/a64/macro-assembler-a64.h
deleted file mode 100644
index ecc4a0ce02dd08cd42d1876d6e6cd549728c0b09..0000000000000000000000000000000000000000
--- a/src/a64/macro-assembler-a64.h
+++ /dev/null
@@ -1,2303 +0,0 @@
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef V8_A64_MACRO_ASSEMBLER_A64_H_
-#define V8_A64_MACRO_ASSEMBLER_A64_H_
-
-#include <vector>
-
-#include "v8globals.h"
-#include "globals.h"
-
-#include "a64/assembler-a64-inl.h"
-
-namespace v8 {
-namespace internal {
-
-#define LS_MACRO_LIST(V) \
- V(Ldrb, Register&, rt, LDRB_w) \
- V(Strb, Register&, rt, STRB_w) \
- V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
- V(Ldrh, Register&, rt, LDRH_w) \
- V(Strh, Register&, rt, STRH_w) \
- V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
- V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
- V(Str, CPURegister&, rt, StoreOpFor(rt)) \
- V(Ldrsw, Register&, rt, LDRSW_x)
-
-
-// ----------------------------------------------------------------------------
-// Static helper functions
-
-// Generate a MemOperand for loading a field from an object.
-inline MemOperand FieldMemOperand(Register object, int offset);
-inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
-
-// Generate a MemOperand for loading a SMI from memory.
-inline MemOperand UntagSmiMemOperand(Register object, int offset);
-
-
-// ----------------------------------------------------------------------------
-// MacroAssembler
-
-enum BranchType {
- // Copies of architectural conditions.
- // The associated conditions can be used in place of those, the code will
- // take care of reinterpreting them with the correct type.
- integer_eq = eq,
- integer_ne = ne,
- integer_hs = hs,
- integer_lo = lo,
- integer_mi = mi,
- integer_pl = pl,
- integer_vs = vs,
- integer_vc = vc,
- integer_hi = hi,
- integer_ls = ls,
- integer_ge = ge,
- integer_lt = lt,
- integer_gt = gt,
- integer_le = le,
- integer_al = al,
- integer_nv = nv,
-
- // These two are *different* from the architectural codes al and nv.
- // 'always' is used to generate unconditional branches.
- // 'never' is used to not generate a branch (generally as the inverse
- // branch type of 'always).
- always, never,
- // cbz and cbnz
- reg_zero, reg_not_zero,
- // tbz and tbnz
- reg_bit_clear, reg_bit_set,
-
- // Aliases.
- kBranchTypeFirstCondition = eq,
- kBranchTypeLastCondition = nv,
- kBranchTypeFirstUsingReg = reg_zero,
- kBranchTypeFirstUsingBit = reg_bit_clear
-};
-
-inline BranchType InvertBranchType(BranchType type) {
- if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
- return static_cast<BranchType>(
- InvertCondition(static_cast<Condition>(type)));
- } else {
- return static_cast<BranchType>(type ^ 1);
- }
-}
-
-enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
-enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
-enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
-enum TargetAddressStorageMode {
- CAN_INLINE_TARGET_ADDRESS,
- NEVER_INLINE_TARGET_ADDRESS
-};
-enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
-enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
-enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
-enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
-enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
-
-class MacroAssembler : public Assembler {
- public:
- MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
-
- inline Handle<Object> CodeObject();
-
- // Instruction set functions ------------------------------------------------
- // Logical macros.
- inline void And(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Ands(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Bic(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Bics(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Orr(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Orn(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Eor(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Eon(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Tst(const Register& rn, const Operand& operand);
- void LogicalMacro(const Register& rd,
- const Register& rn,
- const Operand& operand,
- LogicalOp op);
-
- // Add and sub macros.
- inline void Add(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Adds(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Sub(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Subs(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Cmn(const Register& rn, const Operand& operand);
- inline void Cmp(const Register& rn, const Operand& operand);
- inline void Neg(const Register& rd,
- const Operand& operand);
- inline void Negs(const Register& rd,
- const Operand& operand);
-
- void AddSubMacro(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubOp op);
-
- // Add/sub with carry macros.
- inline void Adc(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Adcs(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Sbc(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Sbcs(const Register& rd,
- const Register& rn,
- const Operand& operand);
- inline void Ngc(const Register& rd,
- const Operand& operand);
- inline void Ngcs(const Register& rd,
- const Operand& operand);
- void AddSubWithCarryMacro(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubWithCarryOp op);
-
- // Move macros.
- void Mov(const Register& rd,
- const Operand& operand,
- DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
- void Mov(const Register& rd, uint64_t imm);
- inline void Mvn(const Register& rd, uint64_t imm);
- void Mvn(const Register& rd, const Operand& operand);
- static bool IsImmMovn(uint64_t imm, unsigned reg_size);
- static bool IsImmMovz(uint64_t imm, unsigned reg_size);
- static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
-
- // Conditional macros.
- inline void Ccmp(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond);
- inline void Ccmn(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond);
- void ConditionalCompareMacro(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond,
- ConditionalCompareOp op);
- void Csel(const Register& rd,
- const Register& rn,
- const Operand& operand,
- Condition cond);
-
- // Load/store macros.
-#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
- inline void FN(const REGTYPE REG, const MemOperand& addr);
- LS_MACRO_LIST(DECLARE_FUNCTION)
-#undef DECLARE_FUNCTION
-
- void LoadStoreMacro(const CPURegister& rt,
- const MemOperand& addr,
- LoadStoreOp op);
-
- // V8-specific load/store helpers.
- void Load(const Register& rt, const MemOperand& addr, Representation r);
- void Store(const Register& rt, const MemOperand& addr, Representation r);
-
- // Remaining instructions are simple pass-through calls to the assembler.
- inline void Adr(const Register& rd, Label* label);
- inline void Asr(const Register& rd, const Register& rn, unsigned shift);
- inline void Asr(const Register& rd, const Register& rn, const Register& rm);
-
- // Branch type inversion relies on these relations.
- STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
- (reg_bit_clear == (reg_bit_set ^ 1)) &&
- (always == (never ^ 1)));
-
- void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
-
- inline void B(Label* label);
- inline void B(Condition cond, Label* label);
- void B(Label* label, Condition cond);
- inline void Bfi(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width);
- inline void Bfxil(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width);
- inline void Bind(Label* label);
- inline void Bl(Label* label);
- inline void Blr(const Register& xn);
- inline void Br(const Register& xn);
- inline void Brk(int code);
- void Cbnz(const Register& rt, Label* label);
- void Cbz(const Register& rt, Label* label);
- inline void Cinc(const Register& rd, const Register& rn, Condition cond);
- inline void Cinv(const Register& rd, const Register& rn, Condition cond);
- inline void Cls(const Register& rd, const Register& rn);
- inline void Clz(const Register& rd, const Register& rn);
- inline void Cneg(const Register& rd, const Register& rn, Condition cond);
- inline void CzeroX(const Register& rd, Condition cond);
- inline void CmovX(const Register& rd, const Register& rn, Condition cond);
- inline void Cset(const Register& rd, Condition cond);
- inline void Csetm(const Register& rd, Condition cond);
- inline void Csinc(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
- inline void Csinv(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
- inline void Csneg(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
- inline void Dmb(BarrierDomain domain, BarrierType type);
- inline void Dsb(BarrierDomain domain, BarrierType type);
- inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
- inline void Extr(const Register& rd,
- const Register& rn,
- const Register& rm,
- unsigned lsb);
- inline void Fabs(const FPRegister& fd, const FPRegister& fn);
- inline void Fadd(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fccmp(const FPRegister& fn,
- const FPRegister& fm,
- StatusFlags nzcv,
- Condition cond);
- inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
- inline void Fcmp(const FPRegister& fn, double value);
- inline void Fcsel(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- Condition cond);
- inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
- inline void Fcvtas(const Register& rd, const FPRegister& fn);
- inline void Fcvtau(const Register& rd, const FPRegister& fn);
- inline void Fcvtms(const Register& rd, const FPRegister& fn);
- inline void Fcvtmu(const Register& rd, const FPRegister& fn);
- inline void Fcvtns(const Register& rd, const FPRegister& fn);
- inline void Fcvtnu(const Register& rd, const FPRegister& fn);
- inline void Fcvtzs(const Register& rd, const FPRegister& fn);
- inline void Fcvtzu(const Register& rd, const FPRegister& fn);
- inline void Fdiv(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fmadd(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
- inline void Fmax(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fmaxnm(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fmin(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fminnm(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fmov(FPRegister fd, FPRegister fn);
- inline void Fmov(FPRegister fd, Register rn);
- // Provide explicit double and float interfaces for FP immediate moves, rather
- // than relying on implicit C++ casts. This allows signalling NaNs to be
- // preserved when the immediate matches the format of fd. Most systems convert
- // signalling NaNs to quiet NaNs when converting between float and double.
- inline void Fmov(FPRegister fd, double imm);
- inline void Fmov(FPRegister fd, float imm);
- // Provide a template to allow other types to be converted automatically.
- template<typename T>
- void Fmov(FPRegister fd, T imm) {
- ASSERT(allow_macro_instructions_);
- Fmov(fd, static_cast<double>(imm));
- }
- inline void Fmov(Register rd, FPRegister fn);
- inline void Fmsub(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
- inline void Fmul(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Fneg(const FPRegister& fd, const FPRegister& fn);
- inline void Fnmadd(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
- inline void Fnmsub(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
- inline void Frinta(const FPRegister& fd, const FPRegister& fn);
- inline void Frintn(const FPRegister& fd, const FPRegister& fn);
- inline void Frintz(const FPRegister& fd, const FPRegister& fn);
- inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
- inline void Fsub(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm);
- inline void Hint(SystemHint code);
- inline void Hlt(int code);
- inline void Isb();
- inline void Ldnp(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& src);
- inline void Ldp(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& src);
- inline void Ldpsw(const Register& rt,
- const Register& rt2,
- const MemOperand& src);
- // Provide both double and float interfaces for FP immediate loads, rather
- // than relying on implicit C++ casts. This allows signalling NaNs to be
- // preserved when the immediate matches the format of fd. Most systems convert
- // signalling NaNs to quiet NaNs when converting between float and double.
- inline void Ldr(const FPRegister& ft, double imm);
- inline void Ldr(const FPRegister& ft, float imm);
- inline void Ldr(const Register& rt, uint64_t imm);
- inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
- inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
- inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
- inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
- inline void Madd(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
- inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
- inline void Mov(const Register& rd, const Register& rm);
- inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
- inline void Mrs(const Register& rt, SystemRegister sysreg);
- inline void Msr(SystemRegister sysreg, const Register& rt);
- inline void Msub(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
- inline void Mul(const Register& rd, const Register& rn, const Register& rm);
- inline void Nop() { nop(); }
- inline void Rbit(const Register& rd, const Register& rn);
- inline void Ret(const Register& xn = lr);
- inline void Rev(const Register& rd, const Register& rn);
- inline void Rev16(const Register& rd, const Register& rn);
- inline void Rev32(const Register& rd, const Register& rn);
- inline void Ror(const Register& rd, const Register& rs, unsigned shift);
- inline void Ror(const Register& rd, const Register& rn, const Register& rm);
- inline void Sbfiz(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width);
- inline void Sbfx(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width);
- inline void Scvtf(const FPRegister& fd,
- const Register& rn,
- unsigned fbits = 0);
- inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
- inline void Smaddl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
- inline void Smsubl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
- inline void Smull(const Register& rd,
- const Register& rn,
- const Register& rm);
- inline void Smulh(const Register& rd,
- const Register& rn,
- const Register& rm);
- inline void Stnp(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& dst);
- inline void Stp(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& dst);
- inline void Sxtb(const Register& rd, const Register& rn);
- inline void Sxth(const Register& rd, const Register& rn);
- inline void Sxtw(const Register& rd, const Register& rn);
- void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
- void Tbz(const Register& rt, unsigned bit_pos, Label* label);
- inline void Ubfiz(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width);
- inline void Ubfx(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width);
- inline void Ucvtf(const FPRegister& fd,
- const Register& rn,
- unsigned fbits = 0);
- inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
- inline void Umaddl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
- inline void Umsubl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
- inline void Uxtb(const Register& rd, const Register& rn);
- inline void Uxth(const Register& rd, const Register& rn);
- inline void Uxtw(const Register& rd, const Register& rn);
-
- // Pseudo-instructions ------------------------------------------------------
-
- // Compute rd = abs(rm).
- // This function clobbers the condition flags.
- //
- // If rm is the minimum representable value, the result is not representable.
- // Handlers for each case can be specified using the relevant labels.
- void Abs(const Register& rd, const Register& rm,
- Label * is_not_representable = NULL,
- Label * is_representable = NULL);
-
- // Push or pop up to 4 registers of the same width to or from the stack,
- // using the current stack pointer as set by SetStackPointer.
- //
- // If an argument register is 'NoReg', all further arguments are also assumed
- // to be 'NoReg', and are thus not pushed or popped.
- //
- // Arguments are ordered such that "Push(a, b);" is functionally equivalent
- // to "Push(a); Push(b);".
- //
- // It is valid to push the same register more than once, and there is no
- // restriction on the order in which registers are specified.
- //
- // It is not valid to pop into the same register more than once in one
- // operation, not even into the zero register.
- //
- // If the current stack pointer (as set by SetStackPointer) is csp, then it
- // must be aligned to 16 bytes on entry and the total size of the specified
- // registers must also be a multiple of 16 bytes.
- //
- // Even if the current stack pointer is not the system stack pointer (csp),
- // Push (and derived methods) will still modify the system stack pointer in
- // order to comply with ABI rules about accessing memory below the system
- // stack pointer.
- //
- // Other than the registers passed into Pop, the stack pointer and (possibly)
- // the system stack pointer, these methods do not modify any other registers.
- void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
- const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
- void Push(const CPURegister& src0, const CPURegister& src1,
- const CPURegister& src2, const CPURegister& src3,
- const CPURegister& src4, const CPURegister& src5 = NoReg,
- const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
- void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
- const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
-
- // Alternative forms of Push and Pop, taking a RegList or CPURegList that
- // specifies the registers that are to be pushed or popped. Higher-numbered
- // registers are associated with higher memory addresses (as in the A32 push
- // and pop instructions).
- //
- // (Push|Pop)SizeRegList allow you to specify the register size as a
- // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
- // kSRegSizeInBits are supported.
- //
- // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
- void PushCPURegList(CPURegList registers);
- void PopCPURegList(CPURegList registers);
-
- inline void PushSizeRegList(RegList registers, unsigned reg_size,
- CPURegister::RegisterType type = CPURegister::kRegister) {
- PushCPURegList(CPURegList(type, reg_size, registers));
- }
- inline void PopSizeRegList(RegList registers, unsigned reg_size,
- CPURegister::RegisterType type = CPURegister::kRegister) {
- PopCPURegList(CPURegList(type, reg_size, registers));
- }
- inline void PushXRegList(RegList regs) {
- PushSizeRegList(regs, kXRegSizeInBits);
- }
- inline void PopXRegList(RegList regs) {
- PopSizeRegList(regs, kXRegSizeInBits);
- }
- inline void PushWRegList(RegList regs) {
- PushSizeRegList(regs, kWRegSizeInBits);
- }
- inline void PopWRegList(RegList regs) {
- PopSizeRegList(regs, kWRegSizeInBits);
- }
- inline void PushDRegList(RegList regs) {
- PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
- }
- inline void PopDRegList(RegList regs) {
- PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
- }
- inline void PushSRegList(RegList regs) {
- PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
- }
- inline void PopSRegList(RegList regs) {
- PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
- }
-
- // Push the specified register 'count' times.
- void PushMultipleTimes(CPURegister src, Register count);
- void PushMultipleTimes(CPURegister src, int count);
-
- // This is a convenience method for pushing a single Handle<Object>.
- inline void Push(Handle<Object> handle);
- void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
-
- // Aliases of Push and Pop, required for V8 compatibility.
- inline void push(Register src) {
- Push(src);
- }
- inline void pop(Register dst) {
- Pop(dst);
- }
-
- // Sometimes callers need to push or pop multiple registers in a way that is
- // difficult to structure efficiently for fixed Push or Pop calls. This scope
- // allows push requests to be queued up, then flushed at once. The
- // MacroAssembler will try to generate the most efficient sequence required.
- //
- // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
- // register sizes and types.
- class PushPopQueue {
- public:
- explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
-
- ~PushPopQueue() {
- ASSERT(queued_.empty());
- }
-
- void Queue(const CPURegister& rt) {
- size_ += rt.SizeInBytes();
- queued_.push_back(rt);
- }
-
- void PushQueued();
- void PopQueued();
-
- private:
- MacroAssembler* masm_;
- int size_;
- std::vector<CPURegister> queued_;
- };
-
- // Poke 'src' onto the stack. The offset is in bytes.
- //
- // If the current stack pointer (according to StackPointer()) is csp, then
- // csp must be aligned to 16 bytes.
- void Poke(const CPURegister& src, const Operand& offset);
-
- // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
- //
- // If the current stack pointer (according to StackPointer()) is csp, then
- // csp must be aligned to 16 bytes.
- void Peek(const CPURegister& dst, const Operand& offset);
-
- // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
- // with 'src2' at a higher address than 'src1'. The offset is in bytes.
- //
- // If the current stack pointer (according to StackPointer()) is csp, then
- // csp must be aligned to 16 bytes.
- void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
-
- // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
- // values peeked will be adjacent, with the value in 'dst2' being from a
- // higher address than 'dst1'. The offset is in bytes.
- //
- // If the current stack pointer (according to StackPointer()) is csp, then
- // csp must be aligned to 16 bytes.
- void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
-
- // Claim or drop stack space without actually accessing memory.
- //
- // In debug mode, both of these will write invalid data into the claimed or
- // dropped space.
- //
- // If the current stack pointer (according to StackPointer()) is csp, then it
- // must be aligned to 16 bytes and the size claimed or dropped must be a
- // multiple of 16 bytes.
- //
- // Note that unit_size must be specified in bytes. For variants which take a
- // Register count, the unit size must be a power of two.
- inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
- inline void Claim(const Register& count,
- uint64_t unit_size = kXRegSize);
- inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
- inline void Drop(const Register& count,
- uint64_t unit_size = kXRegSize);
-
- // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
- // register.
- inline void ClaimBySMI(const Register& count_smi,
- uint64_t unit_size = kXRegSize);
- inline void DropBySMI(const Register& count_smi,
- uint64_t unit_size = kXRegSize);
-
- // Compare a register with an operand, and branch to label depending on the
- // condition. May corrupt the status flags.
- inline void CompareAndBranch(const Register& lhs,
- const Operand& rhs,
- Condition cond,
- Label* label);
-
- // Test the bits of register defined by bit_pattern, and branch if ANY of
- // those bits are set. May corrupt the status flags.
- inline void TestAndBranchIfAnySet(const Register& reg,
- const uint64_t bit_pattern,
- Label* label);
-
- // Test the bits of register defined by bit_pattern, and branch if ALL of
- // those bits are clear (ie. not set.) May corrupt the status flags.
- inline void TestAndBranchIfAllClear(const Register& reg,
- const uint64_t bit_pattern,
- Label* label);
-
- // Insert one or more instructions into the instruction stream that encode
- // some caller-defined data. The instructions used will be executable with no
- // side effects.
- inline void InlineData(uint64_t data);
-
- // Insert an instrumentation enable marker into the instruction stream.
- inline void EnableInstrumentation();
-
- // Insert an instrumentation disable marker into the instruction stream.
- inline void DisableInstrumentation();
-
- // Insert an instrumentation event marker into the instruction stream. These
- // will be picked up by the instrumentation system to annotate an instruction
- // profile. The argument marker_name must be a printable two character string;
- // it will be encoded in the event marker.
- inline void AnnotateInstrumentation(const char* marker_name);
-
- // If emit_debug_code() is true, emit a run-time check to ensure that
- // StackPointer() does not point below the system stack pointer.
- //
- // Whilst it is architecturally legal for StackPointer() to point below csp,
- // it can be evidence of a potential bug because the ABI forbids accesses
- // below csp.
- //
- // If emit_debug_code() is false, this emits no code.
- //
- // If StackPointer() is the system stack pointer, this emits no code.
- void AssertStackConsistency();
-
- // Preserve the callee-saved registers (as defined by AAPCS64).
- //
- // Higher-numbered registers are pushed before lower-numbered registers, and
- // thus get higher addresses.
- // Floating-point registers are pushed before general-purpose registers, and
- // thus get higher addresses.
- //
- // Note that registers are not checked for invalid values. Use this method
- // only if you know that the GC won't try to examine the values on the stack.
- //
- // This method must not be called unless the current stack pointer (as set by
- // SetStackPointer) is the system stack pointer (csp), and is aligned to
- // ActivationFrameAlignment().
- void PushCalleeSavedRegisters();
-
- // Restore the callee-saved registers (as defined by AAPCS64).
- //
- // Higher-numbered registers are popped after lower-numbered registers, and
- // thus come from higher addresses.
- // Floating-point registers are popped after general-purpose registers, and
- // thus come from higher addresses.
- //
- // This method must not be called unless the current stack pointer (as set by
- // SetStackPointer) is the system stack pointer (csp), and is aligned to
- // ActivationFrameAlignment().
- void PopCalleeSavedRegisters();
-
- // Set the current stack pointer, but don't generate any code.
- inline void SetStackPointer(const Register& stack_pointer) {
- ASSERT(!TmpList()->IncludesAliasOf(stack_pointer));
- sp_ = stack_pointer;
- }
-
- // Return the current stack pointer, as set by SetStackPointer.
- inline const Register& StackPointer() const {
- return sp_;
- }
-
- // Align csp for a frame, as per ActivationFrameAlignment, and make it the
- // current stack pointer.
- inline void AlignAndSetCSPForFrame() {
- int sp_alignment = ActivationFrameAlignment();
- // AAPCS64 mandates at least 16-byte alignment.
- ASSERT(sp_alignment >= 16);
- ASSERT(IsPowerOf2(sp_alignment));
- Bic(csp, StackPointer(), sp_alignment - 1);
- SetStackPointer(csp);
- }
-
- // Push the system stack pointer (csp) down to allow the same to be done to
- // the current stack pointer (according to StackPointer()). This must be
- // called _before_ accessing the memory.
- //
- // This is necessary when pushing or otherwise adding things to the stack, to
- // satisfy the AAPCS64 constraint that the memory below the system stack
- // pointer is not accessed.
- //
- // This method asserts that StackPointer() is not csp, since the call does
- // not make sense in that context.
- inline void BumpSystemStackPointer(const Operand& space);
-
- // Helpers ------------------------------------------------------------------
- // Root register.
- inline void InitializeRootRegister();
-
- // Load an object from the root table.
- void LoadRoot(Register destination,
- Heap::RootListIndex index);
- // Store an object to the root table.
- void StoreRoot(Register source,
- Heap::RootListIndex index);
-
- // Load both TrueValue and FalseValue roots.
- void LoadTrueFalseRoots(Register true_root, Register false_root);
-
- void LoadHeapObject(Register dst, Handle<HeapObject> object);
-
- void LoadObject(Register result, Handle<Object> object) {
- AllowDeferredHandleDereference heap_object_check;
- if (object->IsHeapObject()) {
- LoadHeapObject(result, Handle<HeapObject>::cast(object));
- } else {
- ASSERT(object->IsSmi());
- Mov(result, Operand(object));
- }
- }
-
- static int SafepointRegisterStackIndex(int reg_code);
-
- // This is required for compatibility with architecture independant code.
- // Remove if not needed.
- inline void Move(Register dst, Register src) { Mov(dst, src); }
-
- void LoadInstanceDescriptors(Register map,
- Register descriptors);
- void EnumLengthUntagged(Register dst, Register map);
- void EnumLengthSmi(Register dst, Register map);
- void NumberOfOwnDescriptors(Register dst, Register map);
-
- template<typename Field>
- void DecodeField(Register reg) {
- static const uint64_t shift = Field::kShift + kSmiShift;
- static const uint64_t setbits = CountSetBits(Field::kMask, 32);
- Ubfx(reg, reg, shift, setbits);
- }
-
- // ---- SMI and Number Utilities ----
-
- inline void SmiTag(Register dst, Register src);
- inline void SmiTag(Register smi);
- inline void SmiUntag(Register dst, Register src);
- inline void SmiUntag(Register smi);
- inline void SmiUntagToDouble(FPRegister dst,
- Register src,
- UntagMode mode = kNotSpeculativeUntag);
- inline void SmiUntagToFloat(FPRegister dst,
- Register src,
- UntagMode mode = kNotSpeculativeUntag);
-
- // Compute the absolute value of 'smi' and leave the result in 'smi'
- // register. If 'smi' is the most negative SMI, the absolute value cannot
- // be represented as a SMI and a jump to 'slow' is done.
- void SmiAbs(const Register& smi, Label* slow);
-
- inline void JumpIfSmi(Register value,
- Label* smi_label,
- Label* not_smi_label = NULL);
- inline void JumpIfNotSmi(Register value, Label* not_smi_label);
- inline void JumpIfBothSmi(Register value1,
- Register value2,
- Label* both_smi_label,
- Label* not_smi_label = NULL);
- inline void JumpIfEitherSmi(Register value1,
- Register value2,
- Label* either_smi_label,
- Label* not_smi_label = NULL);
- inline void JumpIfEitherNotSmi(Register value1,
- Register value2,
- Label* not_smi_label);
- inline void JumpIfBothNotSmi(Register value1,
- Register value2,
- Label* not_smi_label);
-
- // Abort execution if argument is a smi, enabled via --debug-code.
- void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
- void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
-
- // Abort execution if argument is not a name, enabled via --debug-code.
- void AssertName(Register object);
-
- // Abort execution if argument is not undefined or an AllocationSite, enabled
- // via --debug-code.
- void AssertUndefinedOrAllocationSite(Register object, Register scratch);
-
- // Abort execution if argument is not a string, enabled via --debug-code.
- void AssertString(Register object);
-
- void JumpForHeapNumber(Register object,
- Register heap_number_map,
- Label* on_heap_number,
- Label* on_not_heap_number = NULL);
- void JumpIfHeapNumber(Register object,
- Label* on_heap_number,
- Register heap_number_map = NoReg);
- void JumpIfNotHeapNumber(Register object,
- Label* on_not_heap_number,
- Register heap_number_map = NoReg);
-
- // Sets the vs flag if the input is -0.0.
- void TestForMinusZero(DoubleRegister input);
-
- // Jump to label if the input double register contains -0.0.
- void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
-
- // Generate code to do a lookup in the number string cache. If the number in
- // the register object is found in the cache the generated code falls through
- // with the result in the result register. The object and the result register
- // can be the same. If the number is not found in the cache the code jumps to
- // the label not_found with only the content of register object unchanged.
- void LookupNumberStringCache(Register object,
- Register result,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* not_found);
-
- // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
- // output.
- void ClampInt32ToUint8(Register in_out);
- void ClampInt32ToUint8(Register output, Register input);
-
- // Saturate a double in input to an unsigned 8-bit integer in output.
- void ClampDoubleToUint8(Register output,
- DoubleRegister input,
- DoubleRegister dbl_scratch);
-
- // Try to convert a double to a signed 32-bit int.
- // This succeeds if the result compares equal to the input, so inputs of -0.0
- // are converted to 0 and handled as a success.
- //
- // On output the Z flag is set if the conversion was successful.
- void TryConvertDoubleToInt32(Register as_int,
- FPRegister value,
- FPRegister scratch_d,
- Label* on_successful_conversion = NULL,
- Label* on_failed_conversion = NULL) {
- ASSERT(as_int.Is32Bits());
- TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
- on_failed_conversion);
- }
-
- // Try to convert a double to a signed 64-bit int.
- // This succeeds if the result compares equal to the input, so inputs of -0.0
- // are converted to 0 and handled as a success.
- //
- // On output the Z flag is set if the conversion was successful.
- void TryConvertDoubleToInt64(Register as_int,
- FPRegister value,
- FPRegister scratch_d,
- Label* on_successful_conversion = NULL,
- Label* on_failed_conversion = NULL) {
- ASSERT(as_int.Is64Bits());
- TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
- on_failed_conversion);
- }
-
- // ---- Object Utilities ----
-
- // Copy fields from 'src' to 'dst', where both are tagged objects.
- // The 'temps' list is a list of X registers which can be used for scratch
- // values. The temps list must include at least one register.
- //
- // Currently, CopyFields cannot make use of more than three registers from
- // the 'temps' list.
- //
- // CopyFields expects to be able to take at least two registers from
- // MacroAssembler::TmpList().
- void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
-
- // Starting at address in dst, initialize field_count 64-bit fields with
- // 64-bit value in register filler. Register dst is corrupted.
- void FillFields(Register dst,
- Register field_count,
- Register filler);
-
- // Copies a number of bytes from src to dst. All passed registers are
- // clobbered. On exit src and dst will point to the place just after where the
- // last byte was read or written and length will be zero. Hint may be used to
- // determine which is the most efficient algorithm to use for copying.
- void CopyBytes(Register dst,
- Register src,
- Register length,
- Register scratch,
- CopyHint hint = kCopyUnknown);
-
- // ---- String Utilities ----
-
-
- // Jump to label if either object is not a sequential ASCII string.
- // Optionally perform a smi check on the objects first.
- void JumpIfEitherIsNotSequentialAsciiStrings(
- Register first,
- Register second,
- Register scratch1,
- Register scratch2,
- Label* failure,
- SmiCheckType smi_check = DO_SMI_CHECK);
-
- // Check if instance type is sequential ASCII string and jump to label if
- // it is not.
- void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
- Register scratch,
- Label* failure);
-
- // Checks if both instance types are sequential ASCII strings and jumps to
- // label if either is not.
- void JumpIfEitherInstanceTypeIsNotSequentialAscii(
- Register first_object_instance_type,
- Register second_object_instance_type,
- Register scratch1,
- Register scratch2,
- Label* failure);
-
- // Checks if both instance types are sequential ASCII strings and jumps to
- // label if either is not.
- void JumpIfBothInstanceTypesAreNotSequentialAscii(
- Register first_object_instance_type,
- Register second_object_instance_type,
- Register scratch1,
- Register scratch2,
- Label* failure);
-
- void JumpIfNotUniqueName(Register type, Label* not_unique_name);
-
- // ---- Calling / Jumping helpers ----
-
- // This is required for compatibility in architecture indepenedant code.
- inline void jmp(Label* L) { B(L); }
-
- // Passes thrown value to the handler of top of the try handler chain.
- // Register value must be x0.
- void Throw(Register value,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4);
-
- // Propagates an uncatchable exception to the top of the current JS stack's
- // handler chain. Register value must be x0.
- void ThrowUncatchable(Register value,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4);
-
- // Throw a message string as an exception.
- void Throw(BailoutReason reason);
-
- // Throw a message string as an exception if a condition is not true.
- void ThrowIf(Condition cc, BailoutReason reason);
-
- // Throw a message string as an exception if the value is a smi.
- void ThrowIfSmi(const Register& value, BailoutReason reason);
-
- void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
- void TailCallStub(CodeStub* stub);
-
- void CallRuntime(const Runtime::Function* f,
- int num_arguments,
- SaveFPRegsMode save_doubles = kDontSaveFPRegs);
-
- void CallRuntime(Runtime::FunctionId id,
- int num_arguments,
- SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
- CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
- }
-
- void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
- const Runtime::Function* function = Runtime::FunctionForId(id);
- CallRuntime(function, function->nargs, kSaveFPRegs);
- }
-
- void TailCallRuntime(Runtime::FunctionId fid,
- int num_arguments,
- int result_size);
-
- int ActivationFrameAlignment();
-
- // Calls a C function.
- // The called function is not allowed to trigger a
- // garbage collection, since that might move the code and invalidate the
- // return address (unless this is somehow accounted for by the called
- // function).
- void CallCFunction(ExternalReference function,
- int num_reg_arguments);
- void CallCFunction(ExternalReference function,
- int num_reg_arguments,
- int num_double_arguments);
- void CallCFunction(Register function,
- int num_reg_arguments,
- int num_double_arguments);
-
- // Calls an API function. Allocates HandleScope, extracts returned value
- // from handle and propagates exceptions.
- // 'stack_space' is the space to be unwound on exit (includes the call JS
- // arguments space and the additional space allocated for the fast call).
- // 'spill_offset' is the offset from the stack pointer where
- // CallApiFunctionAndReturn can spill registers.
- void CallApiFunctionAndReturn(Register function_address,
- ExternalReference thunk_ref,
- int stack_space,
- int spill_offset,
- MemOperand return_value_operand,
- MemOperand* context_restore_operand);
-
- // The number of register that CallApiFunctionAndReturn will need to save on
- // the stack. The space for these registers need to be allocated in the
- // ExitFrame before calling CallApiFunctionAndReturn.
- static const int kCallApiFunctionSpillSpace = 4;
-
- // Jump to a runtime routine.
- void JumpToExternalReference(const ExternalReference& builtin);
- // Tail call of a runtime routine (jump).
- // Like JumpToExternalReference, but also takes care of passing the number
- // of parameters.
- void TailCallExternalReference(const ExternalReference& ext,
- int num_arguments,
- int result_size);
- void CallExternalReference(const ExternalReference& ext,
- int num_arguments);
-
-
- // Invoke specified builtin JavaScript function. Adds an entry to
- // the unresolved list if the name does not resolve.
- void InvokeBuiltin(Builtins::JavaScript id,
- InvokeFlag flag,
- const CallWrapper& call_wrapper = NullCallWrapper());
-
- // Store the code object for the given builtin in the target register and
- // setup the function in the function register.
- void GetBuiltinEntry(Register target,
- Register function,
- Builtins::JavaScript id);
-
- // Store the function for the given builtin in the target register.
- void GetBuiltinFunction(Register target, Builtins::JavaScript id);
-
- void Jump(Register target);
- void Jump(Address target, RelocInfo::Mode rmode);
- void Jump(Handle<Code> code, RelocInfo::Mode rmode);
- void Jump(intptr_t target, RelocInfo::Mode rmode);
-
- void Call(Register target);
- void Call(Label* target);
- void Call(Address target, RelocInfo::Mode rmode);
- void Call(Handle<Code> code,
- RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
- TypeFeedbackId ast_id = TypeFeedbackId::None());
-
- // For every Call variant, there is a matching CallSize function that returns
- // the size (in bytes) of the call sequence.
- static int CallSize(Register target);
- static int CallSize(Label* target);
- static int CallSize(Address target, RelocInfo::Mode rmode);
- static int CallSize(Handle<Code> code,
- RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
- TypeFeedbackId ast_id = TypeFeedbackId::None());
-
- // Registers used through the invocation chain are hard-coded.
- // We force passing the parameters to ensure the contracts are correctly
- // honoured by the caller.
- // 'function' must be x1.
- // 'actual' must use an immediate or x0.
- // 'expected' must use an immediate or x2.
- // 'call_kind' must be x5.
- void InvokePrologue(const ParameterCount& expected,
- const ParameterCount& actual,
- Handle<Code> code_constant,
- Register code_reg,
- Label* done,
- InvokeFlag flag,
- bool* definitely_mismatches,
- const CallWrapper& call_wrapper);
- void InvokeCode(Register code,
- const ParameterCount& expected,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper);
- // Invoke the JavaScript function in the given register.
- // Changes the current context to the context in the function before invoking.
- void InvokeFunction(Register function,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper);
- void InvokeFunction(Register function,
- const ParameterCount& expected,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper);
- void InvokeFunction(Handle<JSFunction> function,
- const ParameterCount& expected,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper);
-
-
- // ---- Floating point helpers ----
-
- // Perform a conversion from a double to a signed int64. If the input fits in
- // range of the 64-bit result, execution branches to done. Otherwise,
- // execution falls through, and the sign of the result can be used to
- // determine if overflow was towards positive or negative infinity.
- //
- // On successful conversion, the least significant 32 bits of the result are
- // equivalent to the ECMA-262 operation "ToInt32".
- //
- // Only public for the test code in test-code-stubs-a64.cc.
- void TryConvertDoubleToInt64(Register result,
- DoubleRegister input,
- Label* done);
-
- // Performs a truncating conversion of a floating point number as used by
- // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
- // Exits with 'result' holding the answer.
- void TruncateDoubleToI(Register result, DoubleRegister double_input);
-
- // Performs a truncating conversion of a heap number as used by
- // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
- // must be different registers. Exits with 'result' holding the answer.
- void TruncateHeapNumberToI(Register result, Register object);
-
- // Converts the smi or heap number in object to an int32 using the rules
- // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
- // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
- // different registers.
- void TruncateNumberToI(Register object,
- Register result,
- Register heap_number_map,
- Label* not_int32);
-
- // ---- Code generation helpers ----
-
- void set_generating_stub(bool value) { generating_stub_ = value; }
- bool generating_stub() const { return generating_stub_; }
-#if DEBUG
- void set_allow_macro_instructions(bool value) {
- allow_macro_instructions_ = value;
- }
- bool allow_macro_instructions() const { return allow_macro_instructions_; }
-#endif
- bool use_real_aborts() const { return use_real_aborts_; }
- void set_has_frame(bool value) { has_frame_ = value; }
- bool has_frame() const { return has_frame_; }
- bool AllowThisStubCall(CodeStub* stub);
-
- class NoUseRealAbortsScope {
- public:
- explicit NoUseRealAbortsScope(MacroAssembler* masm) :
- saved_(masm->use_real_aborts_), masm_(masm) {
- masm_->use_real_aborts_ = false;
- }
- ~NoUseRealAbortsScope() {
- masm_->use_real_aborts_ = saved_;
- }
- private:
- bool saved_;
- MacroAssembler* masm_;
- };
-
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // ---------------------------------------------------------------------------
- // Debugger Support
-
- void DebugBreak();
-#endif
- // ---------------------------------------------------------------------------
- // Exception handling
-
- // Push a new try handler and link into try handler chain.
- void PushTryHandler(StackHandler::Kind kind, int handler_index);
-
- // Unlink the stack handler on top of the stack from the try handler chain.
- // Must preserve the result register.
- void PopTryHandler();
-
-
- // ---------------------------------------------------------------------------
- // Allocation support
-
- // Allocate an object in new space or old pointer space. The object_size is
- // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
- // is passed. The allocated object is returned in result.
- //
- // If the new space is exhausted control continues at the gc_required label.
- // In this case, the result and scratch registers may still be clobbered.
- // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
- void Allocate(Register object_size,
- Register result,
- Register scratch1,
- Register scratch2,
- Label* gc_required,
- AllocationFlags flags);
-
- void Allocate(int object_size,
- Register result,
- Register scratch1,
- Register scratch2,
- Label* gc_required,
- AllocationFlags flags);
-
- // Undo allocation in new space. The object passed and objects allocated after
- // it will no longer be allocated. The caller must make sure that no pointers
- // are left to the object(s) no longer allocated as they would be invalid when
- // allocation is undone.
- void UndoAllocationInNewSpace(Register object, Register scratch);
-
- void AllocateTwoByteString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* gc_required);
- void AllocateAsciiString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* gc_required);
- void AllocateTwoByteConsString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required);
- void AllocateAsciiConsString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required);
- void AllocateTwoByteSlicedString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required);
- void AllocateAsciiSlicedString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required);
-
- // Allocates a heap number or jumps to the gc_required label if the young
- // space is full and a scavenge is needed.
- // All registers are clobbered.
- // If no heap_number_map register is provided, the function will take care of
- // loading it.
- void AllocateHeapNumber(Register result,
- Label* gc_required,
- Register scratch1,
- Register scratch2,
- Register heap_number_map = NoReg);
- void AllocateHeapNumberWithValue(Register result,
- DoubleRegister value,
- Label* gc_required,
- Register scratch1,
- Register scratch2,
- Register heap_number_map = NoReg);
-
- // ---------------------------------------------------------------------------
- // Support functions.
-
- // Try to get function prototype of a function and puts the value in the
- // result register. Checks that the function really is a function and jumps
- // to the miss label if the fast checks fail. The function register will be
- // untouched; the other registers may be clobbered.
- enum BoundFunctionAction {
- kMissOnBoundFunction,
- kDontMissOnBoundFunction
- };
-
- void TryGetFunctionPrototype(Register function,
- Register result,
- Register scratch,
- Label* miss,
- BoundFunctionAction action =
- kDontMissOnBoundFunction);
-
- // Compare object type for heap object. heap_object contains a non-Smi
- // whose object type should be compared with the given type. This both
- // sets the flags and leaves the object type in the type_reg register.
- // It leaves the map in the map register (unless the type_reg and map register
- // are the same register). It leaves the heap object in the heap_object
- // register unless the heap_object register is the same register as one of the
- // other registers.
- void CompareObjectType(Register heap_object,
- Register map,
- Register type_reg,
- InstanceType type);
-
-
- // Compare object type for heap object, and branch if equal (or not.)
- // heap_object contains a non-Smi whose object type should be compared with
- // the given type. This both sets the flags and leaves the object type in
- // the type_reg register. It leaves the map in the map register (unless the
- // type_reg and map register are the same register). It leaves the heap
- // object in the heap_object register unless the heap_object register is the
- // same register as one of the other registers.
- void JumpIfObjectType(Register object,
- Register map,
- Register type_reg,
- InstanceType type,
- Label* if_cond_pass,
- Condition cond = eq);
-
- void JumpIfNotObjectType(Register object,
- Register map,
- Register type_reg,
- InstanceType type,
- Label* if_not_object);
-
- // Compare instance type in a map. map contains a valid map object whose
- // object type should be compared with the given type. This both
- // sets the flags and leaves the object type in the type_reg register.
- void CompareInstanceType(Register map,
- Register type_reg,
- InstanceType type);
-
- // Compare an object's map with the specified map. Condition flags are set
- // with result of map compare.
- void CompareMap(Register obj,
- Register scratch,
- Handle<Map> map);
-
- // As above, but the map of the object is already loaded into the register
- // which is preserved by the code generated.
- void CompareMap(Register obj_map,
- Handle<Map> map);
-
- // Check if the map of an object is equal to a specified map and branch to
- // label if not. Skip the smi check if not required (object is known to be a
- // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
- // against maps that are ElementsKind transition maps of the specified map.
- void CheckMap(Register obj,
- Register scratch,
- Handle<Map> map,
- Label* fail,
- SmiCheckType smi_check_type);
-
-
- void CheckMap(Register obj,
- Register scratch,
- Heap::RootListIndex index,
- Label* fail,
- SmiCheckType smi_check_type);
-
- // As above, but the map of the object is already loaded into obj_map, and is
- // preserved.
- void CheckMap(Register obj_map,
- Handle<Map> map,
- Label* fail,
- SmiCheckType smi_check_type);
-
- // Check if the map of an object is equal to a specified map and branch to a
- // specified target if equal. Skip the smi check if not required (object is
- // known to be a heap object)
- void DispatchMap(Register obj,
- Register scratch,
- Handle<Map> map,
- Handle<Code> success,
- SmiCheckType smi_check_type);
-
- // Test the bitfield of the heap object map with mask and set the condition
- // flags. The object register is preserved.
- void TestMapBitfield(Register object, uint64_t mask);
-
- // Load the elements kind field from a map, and return it in the result
- // register.
- void LoadElementsKindFromMap(Register result, Register map);
-
- // Compare the object in a register to a value from the root list.
- void CompareRoot(const Register& obj, Heap::RootListIndex index);
-
- // Compare the object in a register to a value and jump if they are equal.
- void JumpIfRoot(const Register& obj,
- Heap::RootListIndex index,
- Label* if_equal);
-
- // Compare the object in a register to a value and jump if they are not equal.
- void JumpIfNotRoot(const Register& obj,
- Heap::RootListIndex index,
- Label* if_not_equal);
-
- // Load and check the instance type of an object for being a unique name.
- // Loads the type into the second argument register.
- // The object and type arguments can be the same register; in that case it
- // will be overwritten with the type.
- // Fall-through if the object was a string and jump on fail otherwise.
- inline void IsObjectNameType(Register object, Register type, Label* fail);
-
- inline void IsObjectJSObjectType(Register heap_object,
- Register map,
- Register scratch,
- Label* fail);
-
- // Check the instance type in the given map to see if it corresponds to a
- // JS object type. Jump to the fail label if this is not the case and fall
- // through otherwise. However if fail label is NULL, no branch will be
- // performed and the flag will be updated. You can test the flag for "le"
- // condition to test if it is a valid JS object type.
- inline void IsInstanceJSObjectType(Register map,
- Register scratch,
- Label* fail);
-
- // Load and check the instance type of an object for being a string.
- // Loads the type into the second argument register.
- // The object and type arguments can be the same register; in that case it
- // will be overwritten with the type.
- // Jumps to not_string or string appropriate. If the appropriate label is
- // NULL, fall through.
- inline void IsObjectJSStringType(Register object, Register type,
- Label* not_string, Label* string = NULL);
-
- // Compare the contents of a register with an operand, and branch to true,
- // false or fall through, depending on condition.
- void CompareAndSplit(const Register& lhs,
- const Operand& rhs,
- Condition cond,
- Label* if_true,
- Label* if_false,
- Label* fall_through);
-
- // Test the bits of register defined by bit_pattern, and branch to
- // if_any_set, if_all_clear or fall_through accordingly.
- void TestAndSplit(const Register& reg,
- uint64_t bit_pattern,
- Label* if_all_clear,
- Label* if_any_set,
- Label* fall_through);
-
- // Check if a map for a JSObject indicates that the object has fast elements.
- // Jump to the specified label if it does not.
- void CheckFastElements(Register map, Register scratch, Label* fail);
-
- // Check if a map for a JSObject indicates that the object can have both smi
- // and HeapObject elements. Jump to the specified label if it does not.
- void CheckFastObjectElements(Register map, Register scratch, Label* fail);
-
- // Check to see if number can be stored as a double in FastDoubleElements.
- // If it can, store it at the index specified by key_reg in the array,
- // otherwise jump to fail.
- void StoreNumberToDoubleElements(Register value_reg,
- Register key_reg,
- Register elements_reg,
- Register scratch1,
- FPRegister fpscratch1,
- FPRegister fpscratch2,
- Label* fail,
- int elements_offset = 0);
-
- // Picks out an array index from the hash field.
- // Register use:
- // hash - holds the index's hash. Clobbered.
- // index - holds the overwritten index on exit.
- void IndexFromHash(Register hash, Register index);
-
- // ---------------------------------------------------------------------------
- // Inline caching support.
-
- void EmitSeqStringSetCharCheck(Register string,
- Register index,
- SeqStringSetCharCheckIndexType index_type,
- Register scratch,
- uint32_t encoding_mask);
-
- // Generate code for checking access rights - used for security checks
- // on access to global objects across environments. The holder register
- // is left untouched, whereas both scratch registers are clobbered.
- void CheckAccessGlobalProxy(Register holder_reg,
- Register scratch1,
- Register scratch2,
- Label* miss);
-
- // Hash the interger value in 'key' register.
- // It uses the same algorithm as ComputeIntegerHash in utils.h.
- void GetNumberHash(Register key, Register scratch);
-
- // Load value from the dictionary.
- //
- // elements - holds the slow-case elements of the receiver on entry.
- // Unchanged unless 'result' is the same register.
- //
- // key - holds the smi key on entry.
- // Unchanged unless 'result' is the same register.
- //
- // result - holds the result on exit if the load succeeded.
- // Allowed to be the same as 'key' or 'result'.
- // Unchanged on bailout so 'key' or 'result' can be used
- // in further computation.
- void LoadFromNumberDictionary(Label* miss,
- Register elements,
- Register key,
- Register result,
- Register scratch0,
- Register scratch1,
- Register scratch2,
- Register scratch3);
-
- // ---------------------------------------------------------------------------
- // Frames.
-
- // Activation support.
- void EnterFrame(StackFrame::Type type);
- void LeaveFrame(StackFrame::Type type);
-
- // Returns map with validated enum cache in object register.
- void CheckEnumCache(Register object,
- Register null_value,
- Register scratch0,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* call_runtime);
-
- // AllocationMemento support. Arrays may have an associated
- // AllocationMemento object that can be checked for in order to pretransition
- // to another type.
- // On entry, receiver should point to the array object.
- // If allocation info is present, the Z flag is set (so that the eq
- // condition will pass).
- void TestJSArrayForAllocationMemento(Register receiver,
- Register scratch1,
- Register scratch2,
- Label* no_memento_found);
-
- void JumpIfJSArrayHasAllocationMemento(Register receiver,
- Register scratch1,
- Register scratch2,
- Label* memento_found) {
- Label no_memento_found;
- TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
- &no_memento_found);
- B(eq, memento_found);
- Bind(&no_memento_found);
- }
-
- // The stack pointer has to switch between csp and jssp when setting up and
- // destroying the exit frame. Hence preserving/restoring the registers is
- // slightly more complicated than simple push/pop operations.
- void ExitFramePreserveFPRegs();
- void ExitFrameRestoreFPRegs();
-
- // Generates function and stub prologue code.
- void Prologue(PrologueFrameMode frame_mode);
-
- // Enter exit frame. Exit frames are used when calling C code from generated
- // (JavaScript) code.
- //
- // The stack pointer must be jssp on entry, and will be set to csp by this
- // function. The frame pointer is also configured, but the only other
- // registers modified by this function are the provided scratch register, and
- // jssp.
- //
- // The 'extra_space' argument can be used to allocate some space in the exit
- // frame that will be ignored by the GC. This space will be reserved in the
- // bottom of the frame immediately above the return address slot.
- //
- // Set up a stack frame and registers as follows:
- // fp[8]: CallerPC (lr)
- // fp -> fp[0]: CallerFP (old fp)
- // fp[-8]: SPOffset (new csp)
- // fp[-16]: CodeObject()
- // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
- // csp[8]: Memory reserved for the caller if extra_space != 0.
- // Alignment padding, if necessary.
- // csp -> csp[0]: Space reserved for the return address.
- //
- // This function also stores the new frame information in the top frame, so
- // that the new frame becomes the current frame.
- void EnterExitFrame(bool save_doubles,
- const Register& scratch,
- int extra_space = 0);
-
- // Leave the current exit frame, after a C function has returned to generated
- // (JavaScript) code.
- //
- // This effectively unwinds the operation of EnterExitFrame:
- // * Preserved doubles are restored (if restore_doubles is true).
- // * The frame information is removed from the top frame.
- // * The exit frame is dropped.
- // * The stack pointer is reset to jssp.
- //
- // The stack pointer must be csp on entry.
- void LeaveExitFrame(bool save_doubles,
- const Register& scratch,
- bool restore_context);
-
- void LoadContext(Register dst, int context_chain_length);
-
- // Emit code for a truncating division by a constant. The dividend register is
- // unchanged. Dividend and result must be different.
- void TruncatingDiv(Register result, Register dividend, int32_t divisor);
-
- // ---------------------------------------------------------------------------
- // StatsCounter support
-
- void SetCounter(StatsCounter* counter, int value, Register scratch1,
- Register scratch2);
- void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
- Register scratch2);
- void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
- Register scratch2);
-
- // ---------------------------------------------------------------------------
- // Garbage collector support (GC).
-
- enum RememberedSetFinalAction {
- kReturnAtEnd,
- kFallThroughAtEnd
- };
-
- // Record in the remembered set the fact that we have a pointer to new space
- // at the address pointed to by the addr register. Only works if addr is not
- // in new space.
- void RememberedSetHelper(Register object, // Used for debug code.
- Register addr,
- Register scratch1,
- SaveFPRegsMode save_fp,
- RememberedSetFinalAction and_then);
-
- // Push and pop the registers that can hold pointers, as defined by the
- // RegList constant kSafepointSavedRegisters.
- void PushSafepointRegisters();
- void PopSafepointRegisters();
-
- void PushSafepointFPRegisters();
- void PopSafepointFPRegisters();
-
- // Store value in register src in the safepoint stack slot for register dst.
- void StoreToSafepointRegisterSlot(Register src, Register dst) {
- Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
- }
-
- // Load the value of the src register from its safepoint stack slot
- // into register dst.
- void LoadFromSafepointRegisterSlot(Register dst, Register src) {
- Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
- }
-
- void CheckPageFlagSet(const Register& object,
- const Register& scratch,
- int mask,
- Label* if_any_set);
-
- void CheckPageFlagClear(const Register& object,
- const Register& scratch,
- int mask,
- Label* if_all_clear);
-
- void CheckMapDeprecated(Handle<Map> map,
- Register scratch,
- Label* if_deprecated);
-
- // Check if object is in new space and jump accordingly.
- // Register 'object' is preserved.
- void JumpIfNotInNewSpace(Register object,
- Label* branch) {
- InNewSpace(object, ne, branch);
- }
-
- void JumpIfInNewSpace(Register object,
- Label* branch) {
- InNewSpace(object, eq, branch);
- }
-
- // Notify the garbage collector that we wrote a pointer into an object.
- // |object| is the object being stored into, |value| is the object being
- // stored. value and scratch registers are clobbered by the operation.
- // The offset is the offset from the start of the object, not the offset from
- // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
- void RecordWriteField(
- Register object,
- int offset,
- Register value,
- Register scratch,
- LinkRegisterStatus lr_status,
- SaveFPRegsMode save_fp,
- RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
- SmiCheck smi_check = INLINE_SMI_CHECK);
-
- // As above, but the offset has the tag presubtracted. For use with
- // MemOperand(reg, off).
- inline void RecordWriteContextSlot(
- Register context,
- int offset,
- Register value,
- Register scratch,
- LinkRegisterStatus lr_status,
- SaveFPRegsMode save_fp,
- RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
- SmiCheck smi_check = INLINE_SMI_CHECK) {
- RecordWriteField(context,
- offset + kHeapObjectTag,
- value,
- scratch,
- lr_status,
- save_fp,
- remembered_set_action,
- smi_check);
- }
-
- // For a given |object| notify the garbage collector that the slot |address|
- // has been written. |value| is the object being stored. The value and
- // address registers are clobbered by the operation.
- void RecordWrite(
- Register object,
- Register address,
- Register value,
- LinkRegisterStatus lr_status,
- SaveFPRegsMode save_fp,
- RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
- SmiCheck smi_check = INLINE_SMI_CHECK);
-
- // Checks the color of an object. If the object is already grey or black
- // then we just fall through, since it is already live. If it is white and
- // we can determine that it doesn't need to be scanned, then we just mark it
- // black and fall through. For the rest we jump to the label so the
- // incremental marker can fix its assumptions.
- void EnsureNotWhite(Register object,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4,
- Label* object_is_white_and_not_data);
-
- // Detects conservatively whether an object is data-only, i.e. it does need to
- // be scanned by the garbage collector.
- void JumpIfDataObject(Register value,
- Register scratch,
- Label* not_data_object);
-
- // Helper for finding the mark bits for an address.
- // Note that the behaviour slightly differs from other architectures.
- // On exit:
- // - addr_reg is unchanged.
- // - The bitmap register points at the word with the mark bits.
- // - The shift register contains the index of the first color bit for this
- // object in the bitmap.
- inline void GetMarkBits(Register addr_reg,
- Register bitmap_reg,
- Register shift_reg);
-
- // Check if an object has a given incremental marking color.
- void HasColor(Register object,
- Register scratch0,
- Register scratch1,
- Label* has_color,
- int first_bit,
- int second_bit);
-
- void JumpIfBlack(Register object,
- Register scratch0,
- Register scratch1,
- Label* on_black);
-
-
- // Get the location of a relocated constant (its address in the constant pool)
- // from its load site.
- void GetRelocatedValueLocation(Register ldr_location,
- Register result);
-
-
- // ---------------------------------------------------------------------------
- // Debugging.
-
- // Calls Abort(msg) if the condition cond is not satisfied.
- // Use --debug_code to enable.
- void Assert(Condition cond, BailoutReason reason);
- void AssertRegisterIsClear(Register reg, BailoutReason reason);
- void AssertRegisterIsRoot(
- Register reg,
- Heap::RootListIndex index,
- BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
- void AssertFastElements(Register elements);
-
- // Abort if the specified register contains the invalid color bit pattern.
- // The pattern must be in bits [1:0] of 'reg' register.
- //
- // If emit_debug_code() is false, this emits no code.
- void AssertHasValidColor(const Register& reg);
-
- // Abort if 'object' register doesn't point to a string object.
- //
- // If emit_debug_code() is false, this emits no code.
- void AssertIsString(const Register& object);
-
- // Like Assert(), but always enabled.
- void Check(Condition cond, BailoutReason reason);
- void CheckRegisterIsClear(Register reg, BailoutReason reason);
-
- // Print a message to stderr and abort execution.
- void Abort(BailoutReason reason);
-
- // Conditionally load the cached Array transitioned map of type
- // transitioned_kind from the native context if the map in register
- // map_in_out is the cached Array map in the native context of
- // expected_kind.
- void LoadTransitionedArrayMapConditional(
- ElementsKind expected_kind,
- ElementsKind transitioned_kind,
- Register map_in_out,
- Register scratch1,
- Register scratch2,
- Label* no_map_match);
-
- void LoadGlobalFunction(int index, Register function);
-
- // Load the initial map from the global function. The registers function and
- // map can be the same, function is then overwritten.
- void LoadGlobalFunctionInitialMap(Register function,
- Register map,
- Register scratch);
-
- CPURegList* TmpList() { return &tmp_list_; }
- CPURegList* FPTmpList() { return &fptmp_list_; }
-
- // Like printf, but print at run-time from generated code.
- //
- // The caller must ensure that arguments for floating-point placeholders
- // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
- // placeholders are Registers.
- //
- // A maximum of four arguments may be given to any single Printf call. The
- // arguments must be of the same type, but they do not need to have the same
- // size.
- //
- // The following registers cannot be printed:
- // StackPointer(), csp.
- //
- // This function automatically preserves caller-saved registers so that
- // calling code can use Printf at any point without having to worry about
- // corruption. The preservation mechanism generates a lot of code. If this is
- // a problem, preserve the important registers manually and then call
- // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
- // implicitly preserved.
- //
- // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be
- // preserved, and can be printed. This allows Printf to be used during debug
- // code.
- //
- // This function assumes (and asserts) that the current stack pointer is
- // callee-saved, not caller-saved. This is most likely the case anyway, as a
- // caller-saved stack pointer doesn't make a lot of sense.
- void Printf(const char * format,
- const CPURegister& arg0 = NoCPUReg,
- const CPURegister& arg1 = NoCPUReg,
- const CPURegister& arg2 = NoCPUReg,
- const CPURegister& arg3 = NoCPUReg);
-
- // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
- //
- // The return code from the system printf call will be returned in x0.
- void PrintfNoPreserve(const char * format,
- const CPURegister& arg0 = NoCPUReg,
- const CPURegister& arg1 = NoCPUReg,
- const CPURegister& arg2 = NoCPUReg,
- const CPURegister& arg3 = NoCPUReg);
-
- // Code ageing support functions.
-
- // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a
- // function as old, it replaces some of the function prologue (generated by
- // FullCodeGenerator::Generate) with a call to a special stub (ultimately
- // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
- // function prologue to its initial young state (indicating that it has been
- // recently run) and continues. A young function is therefore one which has a
- // normal frame setup sequence, and an old function has a code age sequence
- // which calls a code ageing stub.
-
- // Set up a basic stack frame for young code (or code exempt from ageing) with
- // type FUNCTION. It may be patched later for code ageing support. This is
- // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
- //
- // This function takes an Assembler so it can be called from either a
- // MacroAssembler or a PatchingAssembler context.
- static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
-
- // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
- void EmitFrameSetupForCodeAgePatching();
-
- // Emit a code age sequence that calls the relevant code age stub. The code
- // generated by this sequence is expected to replace the code generated by
- // EmitFrameSetupForCodeAgePatching, and represents an old function.
- //
- // If stub is NULL, this function generates the code age sequence but omits
- // the stub address that is normally embedded in the instruction stream. This
- // can be used by debug code to verify code age sequences.
- static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
-
- // Call EmitCodeAgeSequence from a MacroAssembler context.
- void EmitCodeAgeSequence(Code* stub);
-
- // Return true if the sequence is a young sequence geneated by
- // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
- // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
- static bool IsYoungSequence(byte* sequence);
-
-#ifdef DEBUG
- // Return true if the sequence is a code age sequence generated by
- // EmitCodeAgeSequence.
- static bool IsCodeAgeSequence(byte* sequence);
-#endif
-
- // Jumps to found label if a prototype map has dictionary elements.
- void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
- Register scratch1, Label* found);
-
- private:
- // Helpers for CopyFields.
- // These each implement CopyFields in a different way.
- void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
- Register scratch1, Register scratch2,
- Register scratch3, Register scratch4,
- Register scratch5);
- void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
- Register scratch1, Register scratch2,
- Register scratch3, Register scratch4);
- void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
- Register scratch1, Register scratch2,
- Register scratch3);
-
- // The actual Push and Pop implementations. These don't generate any code
- // other than that required for the push or pop. This allows
- // (Push|Pop)CPURegList to bundle together run-time assertions for a large
- // block of registers.
- //
- // Note that size is per register, and is specified in bytes.
- void PushHelper(int count, int size,
- const CPURegister& src0, const CPURegister& src1,
- const CPURegister& src2, const CPURegister& src3);
- void PopHelper(int count, int size,
- const CPURegister& dst0, const CPURegister& dst1,
- const CPURegister& dst2, const CPURegister& dst3);
-
- // Perform necessary maintenance operations before a push or pop.
- //
- // Note that size is specified in bytes.
- void PrepareForPush(Operand total_size);
- void PrepareForPop(Operand total_size);
-
- void PrepareForPush(int count, int size) { PrepareForPush(count * size); }
- void PrepareForPop(int count, int size) { PrepareForPop(count * size); }
-
- // Call Printf. On a native build, a simple call will be generated, but if the
- // simulator is being used then a suitable pseudo-instruction is used. The
- // arguments and stack (csp) must be prepared by the caller as for a normal
- // AAPCS64 call to 'printf'.
- //
- // The 'type' argument specifies the type of the optional arguments.
- void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister);
-
- // Helper for throwing exceptions. Compute a handler address and jump to
- // it. See the implementation for register usage.
- void JumpToHandlerEntry(Register exception,
- Register object,
- Register state,
- Register scratch1,
- Register scratch2);
-
- // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
- void InNewSpace(Register object,
- Condition cond, // eq for new space, ne otherwise.
- Label* branch);
-
- // Try to convert a double to an int so that integer fast-paths may be
- // used. Not every valid integer value is guaranteed to be caught.
- // It supports both 32-bit and 64-bit integers depending whether 'as_int'
- // is a W or X register.
- //
- // This does not distinguish between +0 and -0, so if this distinction is
- // important it must be checked separately.
- //
- // On output the Z flag is set if the conversion was successful.
- void TryConvertDoubleToInt(Register as_int,
- FPRegister value,
- FPRegister scratch_d,
- Label* on_successful_conversion = NULL,
- Label* on_failed_conversion = NULL);
-
- bool generating_stub_;
-#if DEBUG
- // Tell whether any of the macro instruction can be used. When false the
- // MacroAssembler will assert if a method which can emit a variable number
- // of instructions is called.
- bool allow_macro_instructions_;
-#endif
- bool has_frame_;
-
- // The Abort method should call a V8 runtime function, but the CallRuntime
- // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
- // use a simpler abort mechanism that doesn't depend on CEntryStub.
- //
- // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
- // being generated.
- bool use_real_aborts_;
-
- // This handle will be patched with the code object on installation.
- Handle<Object> code_object_;
-
- // The register to use as a stack pointer for stack operations.
- Register sp_;
-
- // Scratch registers available for use by the MacroAssembler.
- CPURegList tmp_list_;
- CPURegList fptmp_list_;
-
- void InitializeNewString(Register string,
- Register length,
- Heap::RootListIndex map_index,
- Register scratch1,
- Register scratch2);
-
- public:
- // Far branches resolving.
- //
- // The various classes of branch instructions with immediate offsets have
- // different ranges. While the Assembler will fail to assemble a branch
- // exceeding its range, the MacroAssembler offers a mechanism to resolve
- // branches to too distant targets, either by tweaking the generated code to
- // use branch instructions with wider ranges or generating veneers.
- //
- // Currently branches to distant targets are resolved using unconditional
- // branch isntructions with a range of +-128MB. If that becomes too little
- // (!), the mechanism can be extended to generate special veneers for really
- // far targets.
-
- // Helps resolve branching to labels potentially out of range.
- // If the label is not bound, it registers the information necessary to later
- // be able to emit a veneer for this branch if necessary.
- // If the label is bound, it returns true if the label (or the previous link
- // in the label chain) is out of range. In that case the caller is responsible
- // for generating appropriate code.
- // Otherwise it returns false.
- // This function also checks wether veneers need to be emitted.
- bool NeedExtraInstructionsOrRegisterBranch(Label *label,
- ImmBranchType branch_type);
-};
-
-
-// Use this scope when you need a one-to-one mapping bewteen methods and
-// instructions. This scope prevents the MacroAssembler from being called and
-// literal pools from being emitted. It also asserts the number of instructions
-// emitted is what you specified when creating the scope.
-class InstructionAccurateScope BASE_EMBEDDED {
- public:
- InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
- : masm_(masm)
-#ifdef DEBUG
- ,
- size_(count * kInstructionSize)
-#endif
- {
- // Before blocking the const pool, see if it needs to be emitted.
- masm_->CheckConstPool(false, true);
-
- masm_->StartBlockConstPool();
-#ifdef DEBUG
- if (count != 0) {
- masm_->bind(&start_);
- }
- previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
- masm_->set_allow_macro_instructions(false);
-#endif
- }
-
- ~InstructionAccurateScope() {
- masm_->EndBlockConstPool();
-#ifdef DEBUG
- if (start_.is_bound()) {
- ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
- }
- masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
-#endif
- }
-
- private:
- MacroAssembler* masm_;
-#ifdef DEBUG
- size_t size_;
- Label start_;
- bool previous_allow_macro_instructions_;
-#endif
-};
-
-
-// This scope utility allows scratch registers to be managed safely. The
-// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
-// registers. These registers can be allocated on demand, and will be returned
-// at the end of the scope.
-//
-// When the scope ends, the MacroAssembler's lists will be restored to their
-// original state, even if the lists were modified by some other means.
-class UseScratchRegisterScope {
- public:
- explicit UseScratchRegisterScope(MacroAssembler* masm)
- : available_(masm->TmpList()),
- availablefp_(masm->FPTmpList()),
- old_available_(available_->list()),
- old_availablefp_(availablefp_->list()) {
- ASSERT(available_->type() == CPURegister::kRegister);
- ASSERT(availablefp_->type() == CPURegister::kFPRegister);
- }
-
- ~UseScratchRegisterScope();
-
- // Take a register from the appropriate temps list. It will be returned
- // automatically when the scope ends.
- Register AcquireW() { return AcquireNextAvailable(available_).W(); }
- Register AcquireX() { return AcquireNextAvailable(available_).X(); }
- FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
- FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
-
- Register AcquireSameSizeAs(const Register& reg);
- FPRegister AcquireSameSizeAs(const FPRegister& reg);
-
- private:
- static CPURegister AcquireNextAvailable(CPURegList* available);
-
- // Available scratch registers.
- CPURegList* available_; // kRegister
- CPURegList* availablefp_; // kFPRegister
-
- // The state of the available lists at the start of this scope.
- RegList old_available_; // kRegister
- RegList old_availablefp_; // kFPRegister
-};
-
-
-inline MemOperand ContextMemOperand(Register context, int index) {
- return MemOperand(context, Context::SlotOffset(index));
-}
-
-inline MemOperand GlobalObjectMemOperand() {
- return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
-}
-
-
-// Encode and decode information about patchable inline SMI checks.
-class InlineSmiCheckInfo {
- public:
- explicit InlineSmiCheckInfo(Address info);
-
- bool HasSmiCheck() const {
- return smi_check_ != NULL;
- }
-
- const Register& SmiRegister() const {
- return reg_;
- }
-
- Instruction* SmiCheck() const {
- return smi_check_;
- }
-
- // Use MacroAssembler::InlineData to emit information about patchable inline
- // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
- // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
- //
- // The generated patch information can be read using the InlineSMICheckInfo
- // class.
- static void Emit(MacroAssembler* masm, const Register& reg,
- const Label* smi_check);
-
- // Emit information to indicate that there is no inline SMI check.
- static void EmitNotInlined(MacroAssembler* masm) {
- Label unbound;
- Emit(masm, NoReg, &unbound);
- }
-
- private:
- Register reg_;
- Instruction* smi_check_;
-
- // Fields in the data encoded by InlineData.
-
- // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
- // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
- // used in a patchable check. The Emit() method checks this.
- //
- // Note that the total size of the fields is restricted by the underlying
- // storage size handled by the BitField class, which is a uint32_t.
- class RegisterBits : public BitField<unsigned, 0, 5> {};
- class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
-};
-
-} } // namespace v8::internal
-
-#ifdef GENERATED_CODE_COVERAGE
-#error "Unsupported option"
-#define CODE_COVERAGE_STRINGIFY(x) #x
-#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
-#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
-#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
-#else
-#define ACCESS_MASM(masm) masm->
-#endif
-
-#endif // V8_A64_MACRO_ASSEMBLER_A64_H_
« no previous file with comments | « src/a64/lithium-gap-resolver-a64.cc ('k') | src/a64/macro-assembler-a64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698