| Index: src/a64/macro-assembler-a64.h
|
| diff --git a/src/a64/macro-assembler-a64.h b/src/a64/macro-assembler-a64.h
|
| deleted file mode 100644
|
| index ecc4a0ce02dd08cd42d1876d6e6cd549728c0b09..0000000000000000000000000000000000000000
|
| --- a/src/a64/macro-assembler-a64.h
|
| +++ /dev/null
|
| @@ -1,2303 +0,0 @@
|
| -// Copyright 2013 the V8 project authors. All rights reserved.
|
| -// Redistribution and use in source and binary forms, with or without
|
| -// modification, are permitted provided that the following conditions are
|
| -// met:
|
| -//
|
| -// * Redistributions of source code must retain the above copyright
|
| -// notice, this list of conditions and the following disclaimer.
|
| -// * Redistributions in binary form must reproduce the above
|
| -// copyright notice, this list of conditions and the following
|
| -// disclaimer in the documentation and/or other materials provided
|
| -// with the distribution.
|
| -// * Neither the name of Google Inc. nor the names of its
|
| -// contributors may be used to endorse or promote products derived
|
| -// from this software without specific prior written permission.
|
| -//
|
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| -
|
| -#ifndef V8_A64_MACRO_ASSEMBLER_A64_H_
|
| -#define V8_A64_MACRO_ASSEMBLER_A64_H_
|
| -
|
| -#include <vector>
|
| -
|
| -#include "v8globals.h"
|
| -#include "globals.h"
|
| -
|
| -#include "a64/assembler-a64-inl.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -#define LS_MACRO_LIST(V) \
|
| - V(Ldrb, Register&, rt, LDRB_w) \
|
| - V(Strb, Register&, rt, STRB_w) \
|
| - V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
|
| - V(Ldrh, Register&, rt, LDRH_w) \
|
| - V(Strh, Register&, rt, STRH_w) \
|
| - V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
|
| - V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
|
| - V(Str, CPURegister&, rt, StoreOpFor(rt)) \
|
| - V(Ldrsw, Register&, rt, LDRSW_x)
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Static helper functions
|
| -
|
| -// Generate a MemOperand for loading a field from an object.
|
| -inline MemOperand FieldMemOperand(Register object, int offset);
|
| -inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
|
| -
|
| -// Generate a MemOperand for loading a SMI from memory.
|
| -inline MemOperand UntagSmiMemOperand(Register object, int offset);
|
| -
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// MacroAssembler
|
| -
|
| -enum BranchType {
|
| - // Copies of architectural conditions.
|
| - // The associated conditions can be used in place of those, the code will
|
| - // take care of reinterpreting them with the correct type.
|
| - integer_eq = eq,
|
| - integer_ne = ne,
|
| - integer_hs = hs,
|
| - integer_lo = lo,
|
| - integer_mi = mi,
|
| - integer_pl = pl,
|
| - integer_vs = vs,
|
| - integer_vc = vc,
|
| - integer_hi = hi,
|
| - integer_ls = ls,
|
| - integer_ge = ge,
|
| - integer_lt = lt,
|
| - integer_gt = gt,
|
| - integer_le = le,
|
| - integer_al = al,
|
| - integer_nv = nv,
|
| -
|
| - // These two are *different* from the architectural codes al and nv.
|
| - // 'always' is used to generate unconditional branches.
|
| - // 'never' is used to not generate a branch (generally as the inverse
|
| - // branch type of 'always).
|
| - always, never,
|
| - // cbz and cbnz
|
| - reg_zero, reg_not_zero,
|
| - // tbz and tbnz
|
| - reg_bit_clear, reg_bit_set,
|
| -
|
| - // Aliases.
|
| - kBranchTypeFirstCondition = eq,
|
| - kBranchTypeLastCondition = nv,
|
| - kBranchTypeFirstUsingReg = reg_zero,
|
| - kBranchTypeFirstUsingBit = reg_bit_clear
|
| -};
|
| -
|
| -inline BranchType InvertBranchType(BranchType type) {
|
| - if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
|
| - return static_cast<BranchType>(
|
| - InvertCondition(static_cast<Condition>(type)));
|
| - } else {
|
| - return static_cast<BranchType>(type ^ 1);
|
| - }
|
| -}
|
| -
|
| -enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
| -enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
| -enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
|
| -enum TargetAddressStorageMode {
|
| - CAN_INLINE_TARGET_ADDRESS,
|
| - NEVER_INLINE_TARGET_ADDRESS
|
| -};
|
| -enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
|
| -enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
|
| -enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
|
| -enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
|
| -enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
|
| -
|
| -class MacroAssembler : public Assembler {
|
| - public:
|
| - MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
|
| -
|
| - inline Handle<Object> CodeObject();
|
| -
|
| - // Instruction set functions ------------------------------------------------
|
| - // Logical macros.
|
| - inline void And(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Ands(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Bic(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Bics(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Orr(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Orn(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Eor(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Eon(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Tst(const Register& rn, const Operand& operand);
|
| - void LogicalMacro(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - LogicalOp op);
|
| -
|
| - // Add and sub macros.
|
| - inline void Add(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Adds(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Sub(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Subs(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Cmn(const Register& rn, const Operand& operand);
|
| - inline void Cmp(const Register& rn, const Operand& operand);
|
| - inline void Neg(const Register& rd,
|
| - const Operand& operand);
|
| - inline void Negs(const Register& rd,
|
| - const Operand& operand);
|
| -
|
| - void AddSubMacro(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - FlagsUpdate S,
|
| - AddSubOp op);
|
| -
|
| - // Add/sub with carry macros.
|
| - inline void Adc(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Adcs(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Sbc(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Sbcs(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand);
|
| - inline void Ngc(const Register& rd,
|
| - const Operand& operand);
|
| - inline void Ngcs(const Register& rd,
|
| - const Operand& operand);
|
| - void AddSubWithCarryMacro(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - FlagsUpdate S,
|
| - AddSubWithCarryOp op);
|
| -
|
| - // Move macros.
|
| - void Mov(const Register& rd,
|
| - const Operand& operand,
|
| - DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
|
| - void Mov(const Register& rd, uint64_t imm);
|
| - inline void Mvn(const Register& rd, uint64_t imm);
|
| - void Mvn(const Register& rd, const Operand& operand);
|
| - static bool IsImmMovn(uint64_t imm, unsigned reg_size);
|
| - static bool IsImmMovz(uint64_t imm, unsigned reg_size);
|
| - static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
|
| -
|
| - // Conditional macros.
|
| - inline void Ccmp(const Register& rn,
|
| - const Operand& operand,
|
| - StatusFlags nzcv,
|
| - Condition cond);
|
| - inline void Ccmn(const Register& rn,
|
| - const Operand& operand,
|
| - StatusFlags nzcv,
|
| - Condition cond);
|
| - void ConditionalCompareMacro(const Register& rn,
|
| - const Operand& operand,
|
| - StatusFlags nzcv,
|
| - Condition cond,
|
| - ConditionalCompareOp op);
|
| - void Csel(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - Condition cond);
|
| -
|
| - // Load/store macros.
|
| -#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
|
| - inline void FN(const REGTYPE REG, const MemOperand& addr);
|
| - LS_MACRO_LIST(DECLARE_FUNCTION)
|
| -#undef DECLARE_FUNCTION
|
| -
|
| - void LoadStoreMacro(const CPURegister& rt,
|
| - const MemOperand& addr,
|
| - LoadStoreOp op);
|
| -
|
| - // V8-specific load/store helpers.
|
| - void Load(const Register& rt, const MemOperand& addr, Representation r);
|
| - void Store(const Register& rt, const MemOperand& addr, Representation r);
|
| -
|
| - // Remaining instructions are simple pass-through calls to the assembler.
|
| - inline void Adr(const Register& rd, Label* label);
|
| - inline void Asr(const Register& rd, const Register& rn, unsigned shift);
|
| - inline void Asr(const Register& rd, const Register& rn, const Register& rm);
|
| -
|
| - // Branch type inversion relies on these relations.
|
| - STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
|
| - (reg_bit_clear == (reg_bit_set ^ 1)) &&
|
| - (always == (never ^ 1)));
|
| -
|
| - void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
|
| -
|
| - inline void B(Label* label);
|
| - inline void B(Condition cond, Label* label);
|
| - void B(Label* label, Condition cond);
|
| - inline void Bfi(const Register& rd,
|
| - const Register& rn,
|
| - unsigned lsb,
|
| - unsigned width);
|
| - inline void Bfxil(const Register& rd,
|
| - const Register& rn,
|
| - unsigned lsb,
|
| - unsigned width);
|
| - inline void Bind(Label* label);
|
| - inline void Bl(Label* label);
|
| - inline void Blr(const Register& xn);
|
| - inline void Br(const Register& xn);
|
| - inline void Brk(int code);
|
| - void Cbnz(const Register& rt, Label* label);
|
| - void Cbz(const Register& rt, Label* label);
|
| - inline void Cinc(const Register& rd, const Register& rn, Condition cond);
|
| - inline void Cinv(const Register& rd, const Register& rn, Condition cond);
|
| - inline void Cls(const Register& rd, const Register& rn);
|
| - inline void Clz(const Register& rd, const Register& rn);
|
| - inline void Cneg(const Register& rd, const Register& rn, Condition cond);
|
| - inline void CzeroX(const Register& rd, Condition cond);
|
| - inline void CmovX(const Register& rd, const Register& rn, Condition cond);
|
| - inline void Cset(const Register& rd, Condition cond);
|
| - inline void Csetm(const Register& rd, Condition cond);
|
| - inline void Csinc(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - Condition cond);
|
| - inline void Csinv(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - Condition cond);
|
| - inline void Csneg(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - Condition cond);
|
| - inline void Dmb(BarrierDomain domain, BarrierType type);
|
| - inline void Dsb(BarrierDomain domain, BarrierType type);
|
| - inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
|
| - inline void Extr(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - unsigned lsb);
|
| - inline void Fabs(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Fadd(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fccmp(const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - StatusFlags nzcv,
|
| - Condition cond);
|
| - inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
|
| - inline void Fcmp(const FPRegister& fn, double value);
|
| - inline void Fcsel(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - Condition cond);
|
| - inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Fcvtas(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtau(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtms(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtmu(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtns(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtnu(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtzs(const Register& rd, const FPRegister& fn);
|
| - inline void Fcvtzu(const Register& rd, const FPRegister& fn);
|
| - inline void Fdiv(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fmadd(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa);
|
| - inline void Fmax(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fmaxnm(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fmin(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fminnm(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fmov(FPRegister fd, FPRegister fn);
|
| - inline void Fmov(FPRegister fd, Register rn);
|
| - // Provide explicit double and float interfaces for FP immediate moves, rather
|
| - // than relying on implicit C++ casts. This allows signalling NaNs to be
|
| - // preserved when the immediate matches the format of fd. Most systems convert
|
| - // signalling NaNs to quiet NaNs when converting between float and double.
|
| - inline void Fmov(FPRegister fd, double imm);
|
| - inline void Fmov(FPRegister fd, float imm);
|
| - // Provide a template to allow other types to be converted automatically.
|
| - template<typename T>
|
| - void Fmov(FPRegister fd, T imm) {
|
| - ASSERT(allow_macro_instructions_);
|
| - Fmov(fd, static_cast<double>(imm));
|
| - }
|
| - inline void Fmov(Register rd, FPRegister fn);
|
| - inline void Fmsub(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa);
|
| - inline void Fmul(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Fneg(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Fnmadd(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa);
|
| - inline void Fnmsub(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa);
|
| - inline void Frinta(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Frintn(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Frintz(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
|
| - inline void Fsub(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm);
|
| - inline void Hint(SystemHint code);
|
| - inline void Hlt(int code);
|
| - inline void Isb();
|
| - inline void Ldnp(const CPURegister& rt,
|
| - const CPURegister& rt2,
|
| - const MemOperand& src);
|
| - inline void Ldp(const CPURegister& rt,
|
| - const CPURegister& rt2,
|
| - const MemOperand& src);
|
| - inline void Ldpsw(const Register& rt,
|
| - const Register& rt2,
|
| - const MemOperand& src);
|
| - // Provide both double and float interfaces for FP immediate loads, rather
|
| - // than relying on implicit C++ casts. This allows signalling NaNs to be
|
| - // preserved when the immediate matches the format of fd. Most systems convert
|
| - // signalling NaNs to quiet NaNs when converting between float and double.
|
| - inline void Ldr(const FPRegister& ft, double imm);
|
| - inline void Ldr(const FPRegister& ft, float imm);
|
| - inline void Ldr(const Register& rt, uint64_t imm);
|
| - inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
|
| - inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
|
| - inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Madd(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - const Register& ra);
|
| - inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Mov(const Register& rd, const Register& rm);
|
| - inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
|
| - inline void Mrs(const Register& rt, SystemRegister sysreg);
|
| - inline void Msr(SystemRegister sysreg, const Register& rt);
|
| - inline void Msub(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - const Register& ra);
|
| - inline void Mul(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Nop() { nop(); }
|
| - inline void Rbit(const Register& rd, const Register& rn);
|
| - inline void Ret(const Register& xn = lr);
|
| - inline void Rev(const Register& rd, const Register& rn);
|
| - inline void Rev16(const Register& rd, const Register& rn);
|
| - inline void Rev32(const Register& rd, const Register& rn);
|
| - inline void Ror(const Register& rd, const Register& rs, unsigned shift);
|
| - inline void Ror(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Sbfiz(const Register& rd,
|
| - const Register& rn,
|
| - unsigned lsb,
|
| - unsigned width);
|
| - inline void Sbfx(const Register& rd,
|
| - const Register& rn,
|
| - unsigned lsb,
|
| - unsigned width);
|
| - inline void Scvtf(const FPRegister& fd,
|
| - const Register& rn,
|
| - unsigned fbits = 0);
|
| - inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Smaddl(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - const Register& ra);
|
| - inline void Smsubl(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - const Register& ra);
|
| - inline void Smull(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm);
|
| - inline void Smulh(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm);
|
| - inline void Stnp(const CPURegister& rt,
|
| - const CPURegister& rt2,
|
| - const MemOperand& dst);
|
| - inline void Stp(const CPURegister& rt,
|
| - const CPURegister& rt2,
|
| - const MemOperand& dst);
|
| - inline void Sxtb(const Register& rd, const Register& rn);
|
| - inline void Sxth(const Register& rd, const Register& rn);
|
| - inline void Sxtw(const Register& rd, const Register& rn);
|
| - void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
|
| - void Tbz(const Register& rt, unsigned bit_pos, Label* label);
|
| - inline void Ubfiz(const Register& rd,
|
| - const Register& rn,
|
| - unsigned lsb,
|
| - unsigned width);
|
| - inline void Ubfx(const Register& rd,
|
| - const Register& rn,
|
| - unsigned lsb,
|
| - unsigned width);
|
| - inline void Ucvtf(const FPRegister& fd,
|
| - const Register& rn,
|
| - unsigned fbits = 0);
|
| - inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
|
| - inline void Umaddl(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - const Register& ra);
|
| - inline void Umsubl(const Register& rd,
|
| - const Register& rn,
|
| - const Register& rm,
|
| - const Register& ra);
|
| - inline void Uxtb(const Register& rd, const Register& rn);
|
| - inline void Uxth(const Register& rd, const Register& rn);
|
| - inline void Uxtw(const Register& rd, const Register& rn);
|
| -
|
| - // Pseudo-instructions ------------------------------------------------------
|
| -
|
| - // Compute rd = abs(rm).
|
| - // This function clobbers the condition flags.
|
| - //
|
| - // If rm is the minimum representable value, the result is not representable.
|
| - // Handlers for each case can be specified using the relevant labels.
|
| - void Abs(const Register& rd, const Register& rm,
|
| - Label * is_not_representable = NULL,
|
| - Label * is_representable = NULL);
|
| -
|
| - // Push or pop up to 4 registers of the same width to or from the stack,
|
| - // using the current stack pointer as set by SetStackPointer.
|
| - //
|
| - // If an argument register is 'NoReg', all further arguments are also assumed
|
| - // to be 'NoReg', and are thus not pushed or popped.
|
| - //
|
| - // Arguments are ordered such that "Push(a, b);" is functionally equivalent
|
| - // to "Push(a); Push(b);".
|
| - //
|
| - // It is valid to push the same register more than once, and there is no
|
| - // restriction on the order in which registers are specified.
|
| - //
|
| - // It is not valid to pop into the same register more than once in one
|
| - // operation, not even into the zero register.
|
| - //
|
| - // If the current stack pointer (as set by SetStackPointer) is csp, then it
|
| - // must be aligned to 16 bytes on entry and the total size of the specified
|
| - // registers must also be a multiple of 16 bytes.
|
| - //
|
| - // Even if the current stack pointer is not the system stack pointer (csp),
|
| - // Push (and derived methods) will still modify the system stack pointer in
|
| - // order to comply with ABI rules about accessing memory below the system
|
| - // stack pointer.
|
| - //
|
| - // Other than the registers passed into Pop, the stack pointer and (possibly)
|
| - // the system stack pointer, these methods do not modify any other registers.
|
| - void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
|
| - const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
|
| - void Push(const CPURegister& src0, const CPURegister& src1,
|
| - const CPURegister& src2, const CPURegister& src3,
|
| - const CPURegister& src4, const CPURegister& src5 = NoReg,
|
| - const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
|
| - void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
|
| - const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
|
| -
|
| - // Alternative forms of Push and Pop, taking a RegList or CPURegList that
|
| - // specifies the registers that are to be pushed or popped. Higher-numbered
|
| - // registers are associated with higher memory addresses (as in the A32 push
|
| - // and pop instructions).
|
| - //
|
| - // (Push|Pop)SizeRegList allow you to specify the register size as a
|
| - // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
|
| - // kSRegSizeInBits are supported.
|
| - //
|
| - // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
|
| - void PushCPURegList(CPURegList registers);
|
| - void PopCPURegList(CPURegList registers);
|
| -
|
| - inline void PushSizeRegList(RegList registers, unsigned reg_size,
|
| - CPURegister::RegisterType type = CPURegister::kRegister) {
|
| - PushCPURegList(CPURegList(type, reg_size, registers));
|
| - }
|
| - inline void PopSizeRegList(RegList registers, unsigned reg_size,
|
| - CPURegister::RegisterType type = CPURegister::kRegister) {
|
| - PopCPURegList(CPURegList(type, reg_size, registers));
|
| - }
|
| - inline void PushXRegList(RegList regs) {
|
| - PushSizeRegList(regs, kXRegSizeInBits);
|
| - }
|
| - inline void PopXRegList(RegList regs) {
|
| - PopSizeRegList(regs, kXRegSizeInBits);
|
| - }
|
| - inline void PushWRegList(RegList regs) {
|
| - PushSizeRegList(regs, kWRegSizeInBits);
|
| - }
|
| - inline void PopWRegList(RegList regs) {
|
| - PopSizeRegList(regs, kWRegSizeInBits);
|
| - }
|
| - inline void PushDRegList(RegList regs) {
|
| - PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
|
| - }
|
| - inline void PopDRegList(RegList regs) {
|
| - PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
|
| - }
|
| - inline void PushSRegList(RegList regs) {
|
| - PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
|
| - }
|
| - inline void PopSRegList(RegList regs) {
|
| - PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
|
| - }
|
| -
|
| - // Push the specified register 'count' times.
|
| - void PushMultipleTimes(CPURegister src, Register count);
|
| - void PushMultipleTimes(CPURegister src, int count);
|
| -
|
| - // This is a convenience method for pushing a single Handle<Object>.
|
| - inline void Push(Handle<Object> handle);
|
| - void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
|
| -
|
| - // Aliases of Push and Pop, required for V8 compatibility.
|
| - inline void push(Register src) {
|
| - Push(src);
|
| - }
|
| - inline void pop(Register dst) {
|
| - Pop(dst);
|
| - }
|
| -
|
| - // Sometimes callers need to push or pop multiple registers in a way that is
|
| - // difficult to structure efficiently for fixed Push or Pop calls. This scope
|
| - // allows push requests to be queued up, then flushed at once. The
|
| - // MacroAssembler will try to generate the most efficient sequence required.
|
| - //
|
| - // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
|
| - // register sizes and types.
|
| - class PushPopQueue {
|
| - public:
|
| - explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
|
| -
|
| - ~PushPopQueue() {
|
| - ASSERT(queued_.empty());
|
| - }
|
| -
|
| - void Queue(const CPURegister& rt) {
|
| - size_ += rt.SizeInBytes();
|
| - queued_.push_back(rt);
|
| - }
|
| -
|
| - void PushQueued();
|
| - void PopQueued();
|
| -
|
| - private:
|
| - MacroAssembler* masm_;
|
| - int size_;
|
| - std::vector<CPURegister> queued_;
|
| - };
|
| -
|
| - // Poke 'src' onto the stack. The offset is in bytes.
|
| - //
|
| - // If the current stack pointer (according to StackPointer()) is csp, then
|
| - // csp must be aligned to 16 bytes.
|
| - void Poke(const CPURegister& src, const Operand& offset);
|
| -
|
| - // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
|
| - //
|
| - // If the current stack pointer (according to StackPointer()) is csp, then
|
| - // csp must be aligned to 16 bytes.
|
| - void Peek(const CPURegister& dst, const Operand& offset);
|
| -
|
| - // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
|
| - // with 'src2' at a higher address than 'src1'. The offset is in bytes.
|
| - //
|
| - // If the current stack pointer (according to StackPointer()) is csp, then
|
| - // csp must be aligned to 16 bytes.
|
| - void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
|
| -
|
| - // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
|
| - // values peeked will be adjacent, with the value in 'dst2' being from a
|
| - // higher address than 'dst1'. The offset is in bytes.
|
| - //
|
| - // If the current stack pointer (according to StackPointer()) is csp, then
|
| - // csp must be aligned to 16 bytes.
|
| - void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
|
| -
|
| - // Claim or drop stack space without actually accessing memory.
|
| - //
|
| - // In debug mode, both of these will write invalid data into the claimed or
|
| - // dropped space.
|
| - //
|
| - // If the current stack pointer (according to StackPointer()) is csp, then it
|
| - // must be aligned to 16 bytes and the size claimed or dropped must be a
|
| - // multiple of 16 bytes.
|
| - //
|
| - // Note that unit_size must be specified in bytes. For variants which take a
|
| - // Register count, the unit size must be a power of two.
|
| - inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
|
| - inline void Claim(const Register& count,
|
| - uint64_t unit_size = kXRegSize);
|
| - inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
|
| - inline void Drop(const Register& count,
|
| - uint64_t unit_size = kXRegSize);
|
| -
|
| - // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
|
| - // register.
|
| - inline void ClaimBySMI(const Register& count_smi,
|
| - uint64_t unit_size = kXRegSize);
|
| - inline void DropBySMI(const Register& count_smi,
|
| - uint64_t unit_size = kXRegSize);
|
| -
|
| - // Compare a register with an operand, and branch to label depending on the
|
| - // condition. May corrupt the status flags.
|
| - inline void CompareAndBranch(const Register& lhs,
|
| - const Operand& rhs,
|
| - Condition cond,
|
| - Label* label);
|
| -
|
| - // Test the bits of register defined by bit_pattern, and branch if ANY of
|
| - // those bits are set. May corrupt the status flags.
|
| - inline void TestAndBranchIfAnySet(const Register& reg,
|
| - const uint64_t bit_pattern,
|
| - Label* label);
|
| -
|
| - // Test the bits of register defined by bit_pattern, and branch if ALL of
|
| - // those bits are clear (ie. not set.) May corrupt the status flags.
|
| - inline void TestAndBranchIfAllClear(const Register& reg,
|
| - const uint64_t bit_pattern,
|
| - Label* label);
|
| -
|
| - // Insert one or more instructions into the instruction stream that encode
|
| - // some caller-defined data. The instructions used will be executable with no
|
| - // side effects.
|
| - inline void InlineData(uint64_t data);
|
| -
|
| - // Insert an instrumentation enable marker into the instruction stream.
|
| - inline void EnableInstrumentation();
|
| -
|
| - // Insert an instrumentation disable marker into the instruction stream.
|
| - inline void DisableInstrumentation();
|
| -
|
| - // Insert an instrumentation event marker into the instruction stream. These
|
| - // will be picked up by the instrumentation system to annotate an instruction
|
| - // profile. The argument marker_name must be a printable two character string;
|
| - // it will be encoded in the event marker.
|
| - inline void AnnotateInstrumentation(const char* marker_name);
|
| -
|
| - // If emit_debug_code() is true, emit a run-time check to ensure that
|
| - // StackPointer() does not point below the system stack pointer.
|
| - //
|
| - // Whilst it is architecturally legal for StackPointer() to point below csp,
|
| - // it can be evidence of a potential bug because the ABI forbids accesses
|
| - // below csp.
|
| - //
|
| - // If emit_debug_code() is false, this emits no code.
|
| - //
|
| - // If StackPointer() is the system stack pointer, this emits no code.
|
| - void AssertStackConsistency();
|
| -
|
| - // Preserve the callee-saved registers (as defined by AAPCS64).
|
| - //
|
| - // Higher-numbered registers are pushed before lower-numbered registers, and
|
| - // thus get higher addresses.
|
| - // Floating-point registers are pushed before general-purpose registers, and
|
| - // thus get higher addresses.
|
| - //
|
| - // Note that registers are not checked for invalid values. Use this method
|
| - // only if you know that the GC won't try to examine the values on the stack.
|
| - //
|
| - // This method must not be called unless the current stack pointer (as set by
|
| - // SetStackPointer) is the system stack pointer (csp), and is aligned to
|
| - // ActivationFrameAlignment().
|
| - void PushCalleeSavedRegisters();
|
| -
|
| - // Restore the callee-saved registers (as defined by AAPCS64).
|
| - //
|
| - // Higher-numbered registers are popped after lower-numbered registers, and
|
| - // thus come from higher addresses.
|
| - // Floating-point registers are popped after general-purpose registers, and
|
| - // thus come from higher addresses.
|
| - //
|
| - // This method must not be called unless the current stack pointer (as set by
|
| - // SetStackPointer) is the system stack pointer (csp), and is aligned to
|
| - // ActivationFrameAlignment().
|
| - void PopCalleeSavedRegisters();
|
| -
|
| - // Set the current stack pointer, but don't generate any code.
|
| - inline void SetStackPointer(const Register& stack_pointer) {
|
| - ASSERT(!TmpList()->IncludesAliasOf(stack_pointer));
|
| - sp_ = stack_pointer;
|
| - }
|
| -
|
| - // Return the current stack pointer, as set by SetStackPointer.
|
| - inline const Register& StackPointer() const {
|
| - return sp_;
|
| - }
|
| -
|
| - // Align csp for a frame, as per ActivationFrameAlignment, and make it the
|
| - // current stack pointer.
|
| - inline void AlignAndSetCSPForFrame() {
|
| - int sp_alignment = ActivationFrameAlignment();
|
| - // AAPCS64 mandates at least 16-byte alignment.
|
| - ASSERT(sp_alignment >= 16);
|
| - ASSERT(IsPowerOf2(sp_alignment));
|
| - Bic(csp, StackPointer(), sp_alignment - 1);
|
| - SetStackPointer(csp);
|
| - }
|
| -
|
| - // Push the system stack pointer (csp) down to allow the same to be done to
|
| - // the current stack pointer (according to StackPointer()). This must be
|
| - // called _before_ accessing the memory.
|
| - //
|
| - // This is necessary when pushing or otherwise adding things to the stack, to
|
| - // satisfy the AAPCS64 constraint that the memory below the system stack
|
| - // pointer is not accessed.
|
| - //
|
| - // This method asserts that StackPointer() is not csp, since the call does
|
| - // not make sense in that context.
|
| - inline void BumpSystemStackPointer(const Operand& space);
|
| -
|
| - // Helpers ------------------------------------------------------------------
|
| - // Root register.
|
| - inline void InitializeRootRegister();
|
| -
|
| - // Load an object from the root table.
|
| - void LoadRoot(Register destination,
|
| - Heap::RootListIndex index);
|
| - // Store an object to the root table.
|
| - void StoreRoot(Register source,
|
| - Heap::RootListIndex index);
|
| -
|
| - // Load both TrueValue and FalseValue roots.
|
| - void LoadTrueFalseRoots(Register true_root, Register false_root);
|
| -
|
| - void LoadHeapObject(Register dst, Handle<HeapObject> object);
|
| -
|
| - void LoadObject(Register result, Handle<Object> object) {
|
| - AllowDeferredHandleDereference heap_object_check;
|
| - if (object->IsHeapObject()) {
|
| - LoadHeapObject(result, Handle<HeapObject>::cast(object));
|
| - } else {
|
| - ASSERT(object->IsSmi());
|
| - Mov(result, Operand(object));
|
| - }
|
| - }
|
| -
|
| - static int SafepointRegisterStackIndex(int reg_code);
|
| -
|
| - // This is required for compatibility with architecture independant code.
|
| - // Remove if not needed.
|
| - inline void Move(Register dst, Register src) { Mov(dst, src); }
|
| -
|
| - void LoadInstanceDescriptors(Register map,
|
| - Register descriptors);
|
| - void EnumLengthUntagged(Register dst, Register map);
|
| - void EnumLengthSmi(Register dst, Register map);
|
| - void NumberOfOwnDescriptors(Register dst, Register map);
|
| -
|
| - template<typename Field>
|
| - void DecodeField(Register reg) {
|
| - static const uint64_t shift = Field::kShift + kSmiShift;
|
| - static const uint64_t setbits = CountSetBits(Field::kMask, 32);
|
| - Ubfx(reg, reg, shift, setbits);
|
| - }
|
| -
|
| - // ---- SMI and Number Utilities ----
|
| -
|
| - inline void SmiTag(Register dst, Register src);
|
| - inline void SmiTag(Register smi);
|
| - inline void SmiUntag(Register dst, Register src);
|
| - inline void SmiUntag(Register smi);
|
| - inline void SmiUntagToDouble(FPRegister dst,
|
| - Register src,
|
| - UntagMode mode = kNotSpeculativeUntag);
|
| - inline void SmiUntagToFloat(FPRegister dst,
|
| - Register src,
|
| - UntagMode mode = kNotSpeculativeUntag);
|
| -
|
| - // Compute the absolute value of 'smi' and leave the result in 'smi'
|
| - // register. If 'smi' is the most negative SMI, the absolute value cannot
|
| - // be represented as a SMI and a jump to 'slow' is done.
|
| - void SmiAbs(const Register& smi, Label* slow);
|
| -
|
| - inline void JumpIfSmi(Register value,
|
| - Label* smi_label,
|
| - Label* not_smi_label = NULL);
|
| - inline void JumpIfNotSmi(Register value, Label* not_smi_label);
|
| - inline void JumpIfBothSmi(Register value1,
|
| - Register value2,
|
| - Label* both_smi_label,
|
| - Label* not_smi_label = NULL);
|
| - inline void JumpIfEitherSmi(Register value1,
|
| - Register value2,
|
| - Label* either_smi_label,
|
| - Label* not_smi_label = NULL);
|
| - inline void JumpIfEitherNotSmi(Register value1,
|
| - Register value2,
|
| - Label* not_smi_label);
|
| - inline void JumpIfBothNotSmi(Register value1,
|
| - Register value2,
|
| - Label* not_smi_label);
|
| -
|
| - // Abort execution if argument is a smi, enabled via --debug-code.
|
| - void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
|
| - void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
|
| -
|
| - // Abort execution if argument is not a name, enabled via --debug-code.
|
| - void AssertName(Register object);
|
| -
|
| - // Abort execution if argument is not undefined or an AllocationSite, enabled
|
| - // via --debug-code.
|
| - void AssertUndefinedOrAllocationSite(Register object, Register scratch);
|
| -
|
| - // Abort execution if argument is not a string, enabled via --debug-code.
|
| - void AssertString(Register object);
|
| -
|
| - void JumpForHeapNumber(Register object,
|
| - Register heap_number_map,
|
| - Label* on_heap_number,
|
| - Label* on_not_heap_number = NULL);
|
| - void JumpIfHeapNumber(Register object,
|
| - Label* on_heap_number,
|
| - Register heap_number_map = NoReg);
|
| - void JumpIfNotHeapNumber(Register object,
|
| - Label* on_not_heap_number,
|
| - Register heap_number_map = NoReg);
|
| -
|
| - // Sets the vs flag if the input is -0.0.
|
| - void TestForMinusZero(DoubleRegister input);
|
| -
|
| - // Jump to label if the input double register contains -0.0.
|
| - void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
|
| -
|
| - // Generate code to do a lookup in the number string cache. If the number in
|
| - // the register object is found in the cache the generated code falls through
|
| - // with the result in the result register. The object and the result register
|
| - // can be the same. If the number is not found in the cache the code jumps to
|
| - // the label not_found with only the content of register object unchanged.
|
| - void LookupNumberStringCache(Register object,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* not_found);
|
| -
|
| - // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
|
| - // output.
|
| - void ClampInt32ToUint8(Register in_out);
|
| - void ClampInt32ToUint8(Register output, Register input);
|
| -
|
| - // Saturate a double in input to an unsigned 8-bit integer in output.
|
| - void ClampDoubleToUint8(Register output,
|
| - DoubleRegister input,
|
| - DoubleRegister dbl_scratch);
|
| -
|
| - // Try to convert a double to a signed 32-bit int.
|
| - // This succeeds if the result compares equal to the input, so inputs of -0.0
|
| - // are converted to 0 and handled as a success.
|
| - //
|
| - // On output the Z flag is set if the conversion was successful.
|
| - void TryConvertDoubleToInt32(Register as_int,
|
| - FPRegister value,
|
| - FPRegister scratch_d,
|
| - Label* on_successful_conversion = NULL,
|
| - Label* on_failed_conversion = NULL) {
|
| - ASSERT(as_int.Is32Bits());
|
| - TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
|
| - on_failed_conversion);
|
| - }
|
| -
|
| - // Try to convert a double to a signed 64-bit int.
|
| - // This succeeds if the result compares equal to the input, so inputs of -0.0
|
| - // are converted to 0 and handled as a success.
|
| - //
|
| - // On output the Z flag is set if the conversion was successful.
|
| - void TryConvertDoubleToInt64(Register as_int,
|
| - FPRegister value,
|
| - FPRegister scratch_d,
|
| - Label* on_successful_conversion = NULL,
|
| - Label* on_failed_conversion = NULL) {
|
| - ASSERT(as_int.Is64Bits());
|
| - TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion,
|
| - on_failed_conversion);
|
| - }
|
| -
|
| - // ---- Object Utilities ----
|
| -
|
| - // Copy fields from 'src' to 'dst', where both are tagged objects.
|
| - // The 'temps' list is a list of X registers which can be used for scratch
|
| - // values. The temps list must include at least one register.
|
| - //
|
| - // Currently, CopyFields cannot make use of more than three registers from
|
| - // the 'temps' list.
|
| - //
|
| - // CopyFields expects to be able to take at least two registers from
|
| - // MacroAssembler::TmpList().
|
| - void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
|
| -
|
| - // Starting at address in dst, initialize field_count 64-bit fields with
|
| - // 64-bit value in register filler. Register dst is corrupted.
|
| - void FillFields(Register dst,
|
| - Register field_count,
|
| - Register filler);
|
| -
|
| - // Copies a number of bytes from src to dst. All passed registers are
|
| - // clobbered. On exit src and dst will point to the place just after where the
|
| - // last byte was read or written and length will be zero. Hint may be used to
|
| - // determine which is the most efficient algorithm to use for copying.
|
| - void CopyBytes(Register dst,
|
| - Register src,
|
| - Register length,
|
| - Register scratch,
|
| - CopyHint hint = kCopyUnknown);
|
| -
|
| - // ---- String Utilities ----
|
| -
|
| -
|
| - // Jump to label if either object is not a sequential ASCII string.
|
| - // Optionally perform a smi check on the objects first.
|
| - void JumpIfEitherIsNotSequentialAsciiStrings(
|
| - Register first,
|
| - Register second,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* failure,
|
| - SmiCheckType smi_check = DO_SMI_CHECK);
|
| -
|
| - // Check if instance type is sequential ASCII string and jump to label if
|
| - // it is not.
|
| - void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
|
| - Register scratch,
|
| - Label* failure);
|
| -
|
| - // Checks if both instance types are sequential ASCII strings and jumps to
|
| - // label if either is not.
|
| - void JumpIfEitherInstanceTypeIsNotSequentialAscii(
|
| - Register first_object_instance_type,
|
| - Register second_object_instance_type,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* failure);
|
| -
|
| - // Checks if both instance types are sequential ASCII strings and jumps to
|
| - // label if either is not.
|
| - void JumpIfBothInstanceTypesAreNotSequentialAscii(
|
| - Register first_object_instance_type,
|
| - Register second_object_instance_type,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* failure);
|
| -
|
| - void JumpIfNotUniqueName(Register type, Label* not_unique_name);
|
| -
|
| - // ---- Calling / Jumping helpers ----
|
| -
|
| - // This is required for compatibility in architecture indepenedant code.
|
| - inline void jmp(Label* L) { B(L); }
|
| -
|
| - // Passes thrown value to the handler of top of the try handler chain.
|
| - // Register value must be x0.
|
| - void Throw(Register value,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4);
|
| -
|
| - // Propagates an uncatchable exception to the top of the current JS stack's
|
| - // handler chain. Register value must be x0.
|
| - void ThrowUncatchable(Register value,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4);
|
| -
|
| - // Throw a message string as an exception.
|
| - void Throw(BailoutReason reason);
|
| -
|
| - // Throw a message string as an exception if a condition is not true.
|
| - void ThrowIf(Condition cc, BailoutReason reason);
|
| -
|
| - // Throw a message string as an exception if the value is a smi.
|
| - void ThrowIfSmi(const Register& value, BailoutReason reason);
|
| -
|
| - void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
|
| - void TailCallStub(CodeStub* stub);
|
| -
|
| - void CallRuntime(const Runtime::Function* f,
|
| - int num_arguments,
|
| - SaveFPRegsMode save_doubles = kDontSaveFPRegs);
|
| -
|
| - void CallRuntime(Runtime::FunctionId id,
|
| - int num_arguments,
|
| - SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
| - CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
|
| - }
|
| -
|
| - void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
|
| - const Runtime::Function* function = Runtime::FunctionForId(id);
|
| - CallRuntime(function, function->nargs, kSaveFPRegs);
|
| - }
|
| -
|
| - void TailCallRuntime(Runtime::FunctionId fid,
|
| - int num_arguments,
|
| - int result_size);
|
| -
|
| - int ActivationFrameAlignment();
|
| -
|
| - // Calls a C function.
|
| - // The called function is not allowed to trigger a
|
| - // garbage collection, since that might move the code and invalidate the
|
| - // return address (unless this is somehow accounted for by the called
|
| - // function).
|
| - void CallCFunction(ExternalReference function,
|
| - int num_reg_arguments);
|
| - void CallCFunction(ExternalReference function,
|
| - int num_reg_arguments,
|
| - int num_double_arguments);
|
| - void CallCFunction(Register function,
|
| - int num_reg_arguments,
|
| - int num_double_arguments);
|
| -
|
| - // Calls an API function. Allocates HandleScope, extracts returned value
|
| - // from handle and propagates exceptions.
|
| - // 'stack_space' is the space to be unwound on exit (includes the call JS
|
| - // arguments space and the additional space allocated for the fast call).
|
| - // 'spill_offset' is the offset from the stack pointer where
|
| - // CallApiFunctionAndReturn can spill registers.
|
| - void CallApiFunctionAndReturn(Register function_address,
|
| - ExternalReference thunk_ref,
|
| - int stack_space,
|
| - int spill_offset,
|
| - MemOperand return_value_operand,
|
| - MemOperand* context_restore_operand);
|
| -
|
| - // The number of register that CallApiFunctionAndReturn will need to save on
|
| - // the stack. The space for these registers need to be allocated in the
|
| - // ExitFrame before calling CallApiFunctionAndReturn.
|
| - static const int kCallApiFunctionSpillSpace = 4;
|
| -
|
| - // Jump to a runtime routine.
|
| - void JumpToExternalReference(const ExternalReference& builtin);
|
| - // Tail call of a runtime routine (jump).
|
| - // Like JumpToExternalReference, but also takes care of passing the number
|
| - // of parameters.
|
| - void TailCallExternalReference(const ExternalReference& ext,
|
| - int num_arguments,
|
| - int result_size);
|
| - void CallExternalReference(const ExternalReference& ext,
|
| - int num_arguments);
|
| -
|
| -
|
| - // Invoke specified builtin JavaScript function. Adds an entry to
|
| - // the unresolved list if the name does not resolve.
|
| - void InvokeBuiltin(Builtins::JavaScript id,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper = NullCallWrapper());
|
| -
|
| - // Store the code object for the given builtin in the target register and
|
| - // setup the function in the function register.
|
| - void GetBuiltinEntry(Register target,
|
| - Register function,
|
| - Builtins::JavaScript id);
|
| -
|
| - // Store the function for the given builtin in the target register.
|
| - void GetBuiltinFunction(Register target, Builtins::JavaScript id);
|
| -
|
| - void Jump(Register target);
|
| - void Jump(Address target, RelocInfo::Mode rmode);
|
| - void Jump(Handle<Code> code, RelocInfo::Mode rmode);
|
| - void Jump(intptr_t target, RelocInfo::Mode rmode);
|
| -
|
| - void Call(Register target);
|
| - void Call(Label* target);
|
| - void Call(Address target, RelocInfo::Mode rmode);
|
| - void Call(Handle<Code> code,
|
| - RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
| - TypeFeedbackId ast_id = TypeFeedbackId::None());
|
| -
|
| - // For every Call variant, there is a matching CallSize function that returns
|
| - // the size (in bytes) of the call sequence.
|
| - static int CallSize(Register target);
|
| - static int CallSize(Label* target);
|
| - static int CallSize(Address target, RelocInfo::Mode rmode);
|
| - static int CallSize(Handle<Code> code,
|
| - RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
| - TypeFeedbackId ast_id = TypeFeedbackId::None());
|
| -
|
| - // Registers used through the invocation chain are hard-coded.
|
| - // We force passing the parameters to ensure the contracts are correctly
|
| - // honoured by the caller.
|
| - // 'function' must be x1.
|
| - // 'actual' must use an immediate or x0.
|
| - // 'expected' must use an immediate or x2.
|
| - // 'call_kind' must be x5.
|
| - void InvokePrologue(const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - Handle<Code> code_constant,
|
| - Register code_reg,
|
| - Label* done,
|
| - InvokeFlag flag,
|
| - bool* definitely_mismatches,
|
| - const CallWrapper& call_wrapper);
|
| - void InvokeCode(Register code,
|
| - const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper);
|
| - // Invoke the JavaScript function in the given register.
|
| - // Changes the current context to the context in the function before invoking.
|
| - void InvokeFunction(Register function,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper);
|
| - void InvokeFunction(Register function,
|
| - const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper);
|
| - void InvokeFunction(Handle<JSFunction> function,
|
| - const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper);
|
| -
|
| -
|
| - // ---- Floating point helpers ----
|
| -
|
| - // Perform a conversion from a double to a signed int64. If the input fits in
|
| - // range of the 64-bit result, execution branches to done. Otherwise,
|
| - // execution falls through, and the sign of the result can be used to
|
| - // determine if overflow was towards positive or negative infinity.
|
| - //
|
| - // On successful conversion, the least significant 32 bits of the result are
|
| - // equivalent to the ECMA-262 operation "ToInt32".
|
| - //
|
| - // Only public for the test code in test-code-stubs-a64.cc.
|
| - void TryConvertDoubleToInt64(Register result,
|
| - DoubleRegister input,
|
| - Label* done);
|
| -
|
| - // Performs a truncating conversion of a floating point number as used by
|
| - // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
|
| - // Exits with 'result' holding the answer.
|
| - void TruncateDoubleToI(Register result, DoubleRegister double_input);
|
| -
|
| - // Performs a truncating conversion of a heap number as used by
|
| - // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
|
| - // must be different registers. Exits with 'result' holding the answer.
|
| - void TruncateHeapNumberToI(Register result, Register object);
|
| -
|
| - // Converts the smi or heap number in object to an int32 using the rules
|
| - // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
|
| - // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
|
| - // different registers.
|
| - void TruncateNumberToI(Register object,
|
| - Register result,
|
| - Register heap_number_map,
|
| - Label* not_int32);
|
| -
|
| - // ---- Code generation helpers ----
|
| -
|
| - void set_generating_stub(bool value) { generating_stub_ = value; }
|
| - bool generating_stub() const { return generating_stub_; }
|
| -#if DEBUG
|
| - void set_allow_macro_instructions(bool value) {
|
| - allow_macro_instructions_ = value;
|
| - }
|
| - bool allow_macro_instructions() const { return allow_macro_instructions_; }
|
| -#endif
|
| - bool use_real_aborts() const { return use_real_aborts_; }
|
| - void set_has_frame(bool value) { has_frame_ = value; }
|
| - bool has_frame() const { return has_frame_; }
|
| - bool AllowThisStubCall(CodeStub* stub);
|
| -
|
| - class NoUseRealAbortsScope {
|
| - public:
|
| - explicit NoUseRealAbortsScope(MacroAssembler* masm) :
|
| - saved_(masm->use_real_aborts_), masm_(masm) {
|
| - masm_->use_real_aborts_ = false;
|
| - }
|
| - ~NoUseRealAbortsScope() {
|
| - masm_->use_real_aborts_ = saved_;
|
| - }
|
| - private:
|
| - bool saved_;
|
| - MacroAssembler* masm_;
|
| - };
|
| -
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| - // ---------------------------------------------------------------------------
|
| - // Debugger Support
|
| -
|
| - void DebugBreak();
|
| -#endif
|
| - // ---------------------------------------------------------------------------
|
| - // Exception handling
|
| -
|
| - // Push a new try handler and link into try handler chain.
|
| - void PushTryHandler(StackHandler::Kind kind, int handler_index);
|
| -
|
| - // Unlink the stack handler on top of the stack from the try handler chain.
|
| - // Must preserve the result register.
|
| - void PopTryHandler();
|
| -
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // Allocation support
|
| -
|
| - // Allocate an object in new space or old pointer space. The object_size is
|
| - // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
|
| - // is passed. The allocated object is returned in result.
|
| - //
|
| - // If the new space is exhausted control continues at the gc_required label.
|
| - // In this case, the result and scratch registers may still be clobbered.
|
| - // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
|
| - void Allocate(Register object_size,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required,
|
| - AllocationFlags flags);
|
| -
|
| - void Allocate(int object_size,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required,
|
| - AllocationFlags flags);
|
| -
|
| - // Undo allocation in new space. The object passed and objects allocated after
|
| - // it will no longer be allocated. The caller must make sure that no pointers
|
| - // are left to the object(s) no longer allocated as they would be invalid when
|
| - // allocation is undone.
|
| - void UndoAllocationInNewSpace(Register object, Register scratch);
|
| -
|
| - void AllocateTwoByteString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* gc_required);
|
| - void AllocateAsciiString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* gc_required);
|
| - void AllocateTwoByteConsString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required);
|
| - void AllocateAsciiConsString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required);
|
| - void AllocateTwoByteSlicedString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required);
|
| - void AllocateAsciiSlicedString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required);
|
| -
|
| - // Allocates a heap number or jumps to the gc_required label if the young
|
| - // space is full and a scavenge is needed.
|
| - // All registers are clobbered.
|
| - // If no heap_number_map register is provided, the function will take care of
|
| - // loading it.
|
| - void AllocateHeapNumber(Register result,
|
| - Label* gc_required,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register heap_number_map = NoReg);
|
| - void AllocateHeapNumberWithValue(Register result,
|
| - DoubleRegister value,
|
| - Label* gc_required,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register heap_number_map = NoReg);
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // Support functions.
|
| -
|
| - // Try to get function prototype of a function and puts the value in the
|
| - // result register. Checks that the function really is a function and jumps
|
| - // to the miss label if the fast checks fail. The function register will be
|
| - // untouched; the other registers may be clobbered.
|
| - enum BoundFunctionAction {
|
| - kMissOnBoundFunction,
|
| - kDontMissOnBoundFunction
|
| - };
|
| -
|
| - void TryGetFunctionPrototype(Register function,
|
| - Register result,
|
| - Register scratch,
|
| - Label* miss,
|
| - BoundFunctionAction action =
|
| - kDontMissOnBoundFunction);
|
| -
|
| - // Compare object type for heap object. heap_object contains a non-Smi
|
| - // whose object type should be compared with the given type. This both
|
| - // sets the flags and leaves the object type in the type_reg register.
|
| - // It leaves the map in the map register (unless the type_reg and map register
|
| - // are the same register). It leaves the heap object in the heap_object
|
| - // register unless the heap_object register is the same register as one of the
|
| - // other registers.
|
| - void CompareObjectType(Register heap_object,
|
| - Register map,
|
| - Register type_reg,
|
| - InstanceType type);
|
| -
|
| -
|
| - // Compare object type for heap object, and branch if equal (or not.)
|
| - // heap_object contains a non-Smi whose object type should be compared with
|
| - // the given type. This both sets the flags and leaves the object type in
|
| - // the type_reg register. It leaves the map in the map register (unless the
|
| - // type_reg and map register are the same register). It leaves the heap
|
| - // object in the heap_object register unless the heap_object register is the
|
| - // same register as one of the other registers.
|
| - void JumpIfObjectType(Register object,
|
| - Register map,
|
| - Register type_reg,
|
| - InstanceType type,
|
| - Label* if_cond_pass,
|
| - Condition cond = eq);
|
| -
|
| - void JumpIfNotObjectType(Register object,
|
| - Register map,
|
| - Register type_reg,
|
| - InstanceType type,
|
| - Label* if_not_object);
|
| -
|
| - // Compare instance type in a map. map contains a valid map object whose
|
| - // object type should be compared with the given type. This both
|
| - // sets the flags and leaves the object type in the type_reg register.
|
| - void CompareInstanceType(Register map,
|
| - Register type_reg,
|
| - InstanceType type);
|
| -
|
| - // Compare an object's map with the specified map. Condition flags are set
|
| - // with result of map compare.
|
| - void CompareMap(Register obj,
|
| - Register scratch,
|
| - Handle<Map> map);
|
| -
|
| - // As above, but the map of the object is already loaded into the register
|
| - // which is preserved by the code generated.
|
| - void CompareMap(Register obj_map,
|
| - Handle<Map> map);
|
| -
|
| - // Check if the map of an object is equal to a specified map and branch to
|
| - // label if not. Skip the smi check if not required (object is known to be a
|
| - // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
|
| - // against maps that are ElementsKind transition maps of the specified map.
|
| - void CheckMap(Register obj,
|
| - Register scratch,
|
| - Handle<Map> map,
|
| - Label* fail,
|
| - SmiCheckType smi_check_type);
|
| -
|
| -
|
| - void CheckMap(Register obj,
|
| - Register scratch,
|
| - Heap::RootListIndex index,
|
| - Label* fail,
|
| - SmiCheckType smi_check_type);
|
| -
|
| - // As above, but the map of the object is already loaded into obj_map, and is
|
| - // preserved.
|
| - void CheckMap(Register obj_map,
|
| - Handle<Map> map,
|
| - Label* fail,
|
| - SmiCheckType smi_check_type);
|
| -
|
| - // Check if the map of an object is equal to a specified map and branch to a
|
| - // specified target if equal. Skip the smi check if not required (object is
|
| - // known to be a heap object)
|
| - void DispatchMap(Register obj,
|
| - Register scratch,
|
| - Handle<Map> map,
|
| - Handle<Code> success,
|
| - SmiCheckType smi_check_type);
|
| -
|
| - // Test the bitfield of the heap object map with mask and set the condition
|
| - // flags. The object register is preserved.
|
| - void TestMapBitfield(Register object, uint64_t mask);
|
| -
|
| - // Load the elements kind field from a map, and return it in the result
|
| - // register.
|
| - void LoadElementsKindFromMap(Register result, Register map);
|
| -
|
| - // Compare the object in a register to a value from the root list.
|
| - void CompareRoot(const Register& obj, Heap::RootListIndex index);
|
| -
|
| - // Compare the object in a register to a value and jump if they are equal.
|
| - void JumpIfRoot(const Register& obj,
|
| - Heap::RootListIndex index,
|
| - Label* if_equal);
|
| -
|
| - // Compare the object in a register to a value and jump if they are not equal.
|
| - void JumpIfNotRoot(const Register& obj,
|
| - Heap::RootListIndex index,
|
| - Label* if_not_equal);
|
| -
|
| - // Load and check the instance type of an object for being a unique name.
|
| - // Loads the type into the second argument register.
|
| - // The object and type arguments can be the same register; in that case it
|
| - // will be overwritten with the type.
|
| - // Fall-through if the object was a string and jump on fail otherwise.
|
| - inline void IsObjectNameType(Register object, Register type, Label* fail);
|
| -
|
| - inline void IsObjectJSObjectType(Register heap_object,
|
| - Register map,
|
| - Register scratch,
|
| - Label* fail);
|
| -
|
| - // Check the instance type in the given map to see if it corresponds to a
|
| - // JS object type. Jump to the fail label if this is not the case and fall
|
| - // through otherwise. However if fail label is NULL, no branch will be
|
| - // performed and the flag will be updated. You can test the flag for "le"
|
| - // condition to test if it is a valid JS object type.
|
| - inline void IsInstanceJSObjectType(Register map,
|
| - Register scratch,
|
| - Label* fail);
|
| -
|
| - // Load and check the instance type of an object for being a string.
|
| - // Loads the type into the second argument register.
|
| - // The object and type arguments can be the same register; in that case it
|
| - // will be overwritten with the type.
|
| - // Jumps to not_string or string appropriate. If the appropriate label is
|
| - // NULL, fall through.
|
| - inline void IsObjectJSStringType(Register object, Register type,
|
| - Label* not_string, Label* string = NULL);
|
| -
|
| - // Compare the contents of a register with an operand, and branch to true,
|
| - // false or fall through, depending on condition.
|
| - void CompareAndSplit(const Register& lhs,
|
| - const Operand& rhs,
|
| - Condition cond,
|
| - Label* if_true,
|
| - Label* if_false,
|
| - Label* fall_through);
|
| -
|
| - // Test the bits of register defined by bit_pattern, and branch to
|
| - // if_any_set, if_all_clear or fall_through accordingly.
|
| - void TestAndSplit(const Register& reg,
|
| - uint64_t bit_pattern,
|
| - Label* if_all_clear,
|
| - Label* if_any_set,
|
| - Label* fall_through);
|
| -
|
| - // Check if a map for a JSObject indicates that the object has fast elements.
|
| - // Jump to the specified label if it does not.
|
| - void CheckFastElements(Register map, Register scratch, Label* fail);
|
| -
|
| - // Check if a map for a JSObject indicates that the object can have both smi
|
| - // and HeapObject elements. Jump to the specified label if it does not.
|
| - void CheckFastObjectElements(Register map, Register scratch, Label* fail);
|
| -
|
| - // Check to see if number can be stored as a double in FastDoubleElements.
|
| - // If it can, store it at the index specified by key_reg in the array,
|
| - // otherwise jump to fail.
|
| - void StoreNumberToDoubleElements(Register value_reg,
|
| - Register key_reg,
|
| - Register elements_reg,
|
| - Register scratch1,
|
| - FPRegister fpscratch1,
|
| - FPRegister fpscratch2,
|
| - Label* fail,
|
| - int elements_offset = 0);
|
| -
|
| - // Picks out an array index from the hash field.
|
| - // Register use:
|
| - // hash - holds the index's hash. Clobbered.
|
| - // index - holds the overwritten index on exit.
|
| - void IndexFromHash(Register hash, Register index);
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // Inline caching support.
|
| -
|
| - void EmitSeqStringSetCharCheck(Register string,
|
| - Register index,
|
| - SeqStringSetCharCheckIndexType index_type,
|
| - Register scratch,
|
| - uint32_t encoding_mask);
|
| -
|
| - // Generate code for checking access rights - used for security checks
|
| - // on access to global objects across environments. The holder register
|
| - // is left untouched, whereas both scratch registers are clobbered.
|
| - void CheckAccessGlobalProxy(Register holder_reg,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* miss);
|
| -
|
| - // Hash the interger value in 'key' register.
|
| - // It uses the same algorithm as ComputeIntegerHash in utils.h.
|
| - void GetNumberHash(Register key, Register scratch);
|
| -
|
| - // Load value from the dictionary.
|
| - //
|
| - // elements - holds the slow-case elements of the receiver on entry.
|
| - // Unchanged unless 'result' is the same register.
|
| - //
|
| - // key - holds the smi key on entry.
|
| - // Unchanged unless 'result' is the same register.
|
| - //
|
| - // result - holds the result on exit if the load succeeded.
|
| - // Allowed to be the same as 'key' or 'result'.
|
| - // Unchanged on bailout so 'key' or 'result' can be used
|
| - // in further computation.
|
| - void LoadFromNumberDictionary(Label* miss,
|
| - Register elements,
|
| - Register key,
|
| - Register result,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3);
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // Frames.
|
| -
|
| - // Activation support.
|
| - void EnterFrame(StackFrame::Type type);
|
| - void LeaveFrame(StackFrame::Type type);
|
| -
|
| - // Returns map with validated enum cache in object register.
|
| - void CheckEnumCache(Register object,
|
| - Register null_value,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* call_runtime);
|
| -
|
| - // AllocationMemento support. Arrays may have an associated
|
| - // AllocationMemento object that can be checked for in order to pretransition
|
| - // to another type.
|
| - // On entry, receiver should point to the array object.
|
| - // If allocation info is present, the Z flag is set (so that the eq
|
| - // condition will pass).
|
| - void TestJSArrayForAllocationMemento(Register receiver,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* no_memento_found);
|
| -
|
| - void JumpIfJSArrayHasAllocationMemento(Register receiver,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* memento_found) {
|
| - Label no_memento_found;
|
| - TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
|
| - &no_memento_found);
|
| - B(eq, memento_found);
|
| - Bind(&no_memento_found);
|
| - }
|
| -
|
| - // The stack pointer has to switch between csp and jssp when setting up and
|
| - // destroying the exit frame. Hence preserving/restoring the registers is
|
| - // slightly more complicated than simple push/pop operations.
|
| - void ExitFramePreserveFPRegs();
|
| - void ExitFrameRestoreFPRegs();
|
| -
|
| - // Generates function and stub prologue code.
|
| - void Prologue(PrologueFrameMode frame_mode);
|
| -
|
| - // Enter exit frame. Exit frames are used when calling C code from generated
|
| - // (JavaScript) code.
|
| - //
|
| - // The stack pointer must be jssp on entry, and will be set to csp by this
|
| - // function. The frame pointer is also configured, but the only other
|
| - // registers modified by this function are the provided scratch register, and
|
| - // jssp.
|
| - //
|
| - // The 'extra_space' argument can be used to allocate some space in the exit
|
| - // frame that will be ignored by the GC. This space will be reserved in the
|
| - // bottom of the frame immediately above the return address slot.
|
| - //
|
| - // Set up a stack frame and registers as follows:
|
| - // fp[8]: CallerPC (lr)
|
| - // fp -> fp[0]: CallerFP (old fp)
|
| - // fp[-8]: SPOffset (new csp)
|
| - // fp[-16]: CodeObject()
|
| - // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
|
| - // csp[8]: Memory reserved for the caller if extra_space != 0.
|
| - // Alignment padding, if necessary.
|
| - // csp -> csp[0]: Space reserved for the return address.
|
| - //
|
| - // This function also stores the new frame information in the top frame, so
|
| - // that the new frame becomes the current frame.
|
| - void EnterExitFrame(bool save_doubles,
|
| - const Register& scratch,
|
| - int extra_space = 0);
|
| -
|
| - // Leave the current exit frame, after a C function has returned to generated
|
| - // (JavaScript) code.
|
| - //
|
| - // This effectively unwinds the operation of EnterExitFrame:
|
| - // * Preserved doubles are restored (if restore_doubles is true).
|
| - // * The frame information is removed from the top frame.
|
| - // * The exit frame is dropped.
|
| - // * The stack pointer is reset to jssp.
|
| - //
|
| - // The stack pointer must be csp on entry.
|
| - void LeaveExitFrame(bool save_doubles,
|
| - const Register& scratch,
|
| - bool restore_context);
|
| -
|
| - void LoadContext(Register dst, int context_chain_length);
|
| -
|
| - // Emit code for a truncating division by a constant. The dividend register is
|
| - // unchanged. Dividend and result must be different.
|
| - void TruncatingDiv(Register result, Register dividend, int32_t divisor);
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // StatsCounter support
|
| -
|
| - void SetCounter(StatsCounter* counter, int value, Register scratch1,
|
| - Register scratch2);
|
| - void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
|
| - Register scratch2);
|
| - void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
|
| - Register scratch2);
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // Garbage collector support (GC).
|
| -
|
| - enum RememberedSetFinalAction {
|
| - kReturnAtEnd,
|
| - kFallThroughAtEnd
|
| - };
|
| -
|
| - // Record in the remembered set the fact that we have a pointer to new space
|
| - // at the address pointed to by the addr register. Only works if addr is not
|
| - // in new space.
|
| - void RememberedSetHelper(Register object, // Used for debug code.
|
| - Register addr,
|
| - Register scratch1,
|
| - SaveFPRegsMode save_fp,
|
| - RememberedSetFinalAction and_then);
|
| -
|
| - // Push and pop the registers that can hold pointers, as defined by the
|
| - // RegList constant kSafepointSavedRegisters.
|
| - void PushSafepointRegisters();
|
| - void PopSafepointRegisters();
|
| -
|
| - void PushSafepointFPRegisters();
|
| - void PopSafepointFPRegisters();
|
| -
|
| - // Store value in register src in the safepoint stack slot for register dst.
|
| - void StoreToSafepointRegisterSlot(Register src, Register dst) {
|
| - Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
|
| - }
|
| -
|
| - // Load the value of the src register from its safepoint stack slot
|
| - // into register dst.
|
| - void LoadFromSafepointRegisterSlot(Register dst, Register src) {
|
| - Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
|
| - }
|
| -
|
| - void CheckPageFlagSet(const Register& object,
|
| - const Register& scratch,
|
| - int mask,
|
| - Label* if_any_set);
|
| -
|
| - void CheckPageFlagClear(const Register& object,
|
| - const Register& scratch,
|
| - int mask,
|
| - Label* if_all_clear);
|
| -
|
| - void CheckMapDeprecated(Handle<Map> map,
|
| - Register scratch,
|
| - Label* if_deprecated);
|
| -
|
| - // Check if object is in new space and jump accordingly.
|
| - // Register 'object' is preserved.
|
| - void JumpIfNotInNewSpace(Register object,
|
| - Label* branch) {
|
| - InNewSpace(object, ne, branch);
|
| - }
|
| -
|
| - void JumpIfInNewSpace(Register object,
|
| - Label* branch) {
|
| - InNewSpace(object, eq, branch);
|
| - }
|
| -
|
| - // Notify the garbage collector that we wrote a pointer into an object.
|
| - // |object| is the object being stored into, |value| is the object being
|
| - // stored. value and scratch registers are clobbered by the operation.
|
| - // The offset is the offset from the start of the object, not the offset from
|
| - // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
|
| - void RecordWriteField(
|
| - Register object,
|
| - int offset,
|
| - Register value,
|
| - Register scratch,
|
| - LinkRegisterStatus lr_status,
|
| - SaveFPRegsMode save_fp,
|
| - RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
| - SmiCheck smi_check = INLINE_SMI_CHECK);
|
| -
|
| - // As above, but the offset has the tag presubtracted. For use with
|
| - // MemOperand(reg, off).
|
| - inline void RecordWriteContextSlot(
|
| - Register context,
|
| - int offset,
|
| - Register value,
|
| - Register scratch,
|
| - LinkRegisterStatus lr_status,
|
| - SaveFPRegsMode save_fp,
|
| - RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
| - SmiCheck smi_check = INLINE_SMI_CHECK) {
|
| - RecordWriteField(context,
|
| - offset + kHeapObjectTag,
|
| - value,
|
| - scratch,
|
| - lr_status,
|
| - save_fp,
|
| - remembered_set_action,
|
| - smi_check);
|
| - }
|
| -
|
| - // For a given |object| notify the garbage collector that the slot |address|
|
| - // has been written. |value| is the object being stored. The value and
|
| - // address registers are clobbered by the operation.
|
| - void RecordWrite(
|
| - Register object,
|
| - Register address,
|
| - Register value,
|
| - LinkRegisterStatus lr_status,
|
| - SaveFPRegsMode save_fp,
|
| - RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
| - SmiCheck smi_check = INLINE_SMI_CHECK);
|
| -
|
| - // Checks the color of an object. If the object is already grey or black
|
| - // then we just fall through, since it is already live. If it is white and
|
| - // we can determine that it doesn't need to be scanned, then we just mark it
|
| - // black and fall through. For the rest we jump to the label so the
|
| - // incremental marker can fix its assumptions.
|
| - void EnsureNotWhite(Register object,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4,
|
| - Label* object_is_white_and_not_data);
|
| -
|
| - // Detects conservatively whether an object is data-only, i.e. it does need to
|
| - // be scanned by the garbage collector.
|
| - void JumpIfDataObject(Register value,
|
| - Register scratch,
|
| - Label* not_data_object);
|
| -
|
| - // Helper for finding the mark bits for an address.
|
| - // Note that the behaviour slightly differs from other architectures.
|
| - // On exit:
|
| - // - addr_reg is unchanged.
|
| - // - The bitmap register points at the word with the mark bits.
|
| - // - The shift register contains the index of the first color bit for this
|
| - // object in the bitmap.
|
| - inline void GetMarkBits(Register addr_reg,
|
| - Register bitmap_reg,
|
| - Register shift_reg);
|
| -
|
| - // Check if an object has a given incremental marking color.
|
| - void HasColor(Register object,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Label* has_color,
|
| - int first_bit,
|
| - int second_bit);
|
| -
|
| - void JumpIfBlack(Register object,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Label* on_black);
|
| -
|
| -
|
| - // Get the location of a relocated constant (its address in the constant pool)
|
| - // from its load site.
|
| - void GetRelocatedValueLocation(Register ldr_location,
|
| - Register result);
|
| -
|
| -
|
| - // ---------------------------------------------------------------------------
|
| - // Debugging.
|
| -
|
| - // Calls Abort(msg) if the condition cond is not satisfied.
|
| - // Use --debug_code to enable.
|
| - void Assert(Condition cond, BailoutReason reason);
|
| - void AssertRegisterIsClear(Register reg, BailoutReason reason);
|
| - void AssertRegisterIsRoot(
|
| - Register reg,
|
| - Heap::RootListIndex index,
|
| - BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
|
| - void AssertFastElements(Register elements);
|
| -
|
| - // Abort if the specified register contains the invalid color bit pattern.
|
| - // The pattern must be in bits [1:0] of 'reg' register.
|
| - //
|
| - // If emit_debug_code() is false, this emits no code.
|
| - void AssertHasValidColor(const Register& reg);
|
| -
|
| - // Abort if 'object' register doesn't point to a string object.
|
| - //
|
| - // If emit_debug_code() is false, this emits no code.
|
| - void AssertIsString(const Register& object);
|
| -
|
| - // Like Assert(), but always enabled.
|
| - void Check(Condition cond, BailoutReason reason);
|
| - void CheckRegisterIsClear(Register reg, BailoutReason reason);
|
| -
|
| - // Print a message to stderr and abort execution.
|
| - void Abort(BailoutReason reason);
|
| -
|
| - // Conditionally load the cached Array transitioned map of type
|
| - // transitioned_kind from the native context if the map in register
|
| - // map_in_out is the cached Array map in the native context of
|
| - // expected_kind.
|
| - void LoadTransitionedArrayMapConditional(
|
| - ElementsKind expected_kind,
|
| - ElementsKind transitioned_kind,
|
| - Register map_in_out,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* no_map_match);
|
| -
|
| - void LoadGlobalFunction(int index, Register function);
|
| -
|
| - // Load the initial map from the global function. The registers function and
|
| - // map can be the same, function is then overwritten.
|
| - void LoadGlobalFunctionInitialMap(Register function,
|
| - Register map,
|
| - Register scratch);
|
| -
|
| - CPURegList* TmpList() { return &tmp_list_; }
|
| - CPURegList* FPTmpList() { return &fptmp_list_; }
|
| -
|
| - // Like printf, but print at run-time from generated code.
|
| - //
|
| - // The caller must ensure that arguments for floating-point placeholders
|
| - // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
|
| - // placeholders are Registers.
|
| - //
|
| - // A maximum of four arguments may be given to any single Printf call. The
|
| - // arguments must be of the same type, but they do not need to have the same
|
| - // size.
|
| - //
|
| - // The following registers cannot be printed:
|
| - // StackPointer(), csp.
|
| - //
|
| - // This function automatically preserves caller-saved registers so that
|
| - // calling code can use Printf at any point without having to worry about
|
| - // corruption. The preservation mechanism generates a lot of code. If this is
|
| - // a problem, preserve the important registers manually and then call
|
| - // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
|
| - // implicitly preserved.
|
| - //
|
| - // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be
|
| - // preserved, and can be printed. This allows Printf to be used during debug
|
| - // code.
|
| - //
|
| - // This function assumes (and asserts) that the current stack pointer is
|
| - // callee-saved, not caller-saved. This is most likely the case anyway, as a
|
| - // caller-saved stack pointer doesn't make a lot of sense.
|
| - void Printf(const char * format,
|
| - const CPURegister& arg0 = NoCPUReg,
|
| - const CPURegister& arg1 = NoCPUReg,
|
| - const CPURegister& arg2 = NoCPUReg,
|
| - const CPURegister& arg3 = NoCPUReg);
|
| -
|
| - // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
|
| - //
|
| - // The return code from the system printf call will be returned in x0.
|
| - void PrintfNoPreserve(const char * format,
|
| - const CPURegister& arg0 = NoCPUReg,
|
| - const CPURegister& arg1 = NoCPUReg,
|
| - const CPURegister& arg2 = NoCPUReg,
|
| - const CPURegister& arg3 = NoCPUReg);
|
| -
|
| - // Code ageing support functions.
|
| -
|
| - // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a
|
| - // function as old, it replaces some of the function prologue (generated by
|
| - // FullCodeGenerator::Generate) with a call to a special stub (ultimately
|
| - // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
|
| - // function prologue to its initial young state (indicating that it has been
|
| - // recently run) and continues. A young function is therefore one which has a
|
| - // normal frame setup sequence, and an old function has a code age sequence
|
| - // which calls a code ageing stub.
|
| -
|
| - // Set up a basic stack frame for young code (or code exempt from ageing) with
|
| - // type FUNCTION. It may be patched later for code ageing support. This is
|
| - // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
|
| - //
|
| - // This function takes an Assembler so it can be called from either a
|
| - // MacroAssembler or a PatchingAssembler context.
|
| - static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
|
| -
|
| - // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
|
| - void EmitFrameSetupForCodeAgePatching();
|
| -
|
| - // Emit a code age sequence that calls the relevant code age stub. The code
|
| - // generated by this sequence is expected to replace the code generated by
|
| - // EmitFrameSetupForCodeAgePatching, and represents an old function.
|
| - //
|
| - // If stub is NULL, this function generates the code age sequence but omits
|
| - // the stub address that is normally embedded in the instruction stream. This
|
| - // can be used by debug code to verify code age sequences.
|
| - static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
|
| -
|
| - // Call EmitCodeAgeSequence from a MacroAssembler context.
|
| - void EmitCodeAgeSequence(Code* stub);
|
| -
|
| - // Return true if the sequence is a young sequence geneated by
|
| - // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
|
| - // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
|
| - static bool IsYoungSequence(byte* sequence);
|
| -
|
| -#ifdef DEBUG
|
| - // Return true if the sequence is a code age sequence generated by
|
| - // EmitCodeAgeSequence.
|
| - static bool IsCodeAgeSequence(byte* sequence);
|
| -#endif
|
| -
|
| - // Jumps to found label if a prototype map has dictionary elements.
|
| - void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
|
| - Register scratch1, Label* found);
|
| -
|
| - private:
|
| - // Helpers for CopyFields.
|
| - // These each implement CopyFields in a different way.
|
| - void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
|
| - Register scratch1, Register scratch2,
|
| - Register scratch3, Register scratch4,
|
| - Register scratch5);
|
| - void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
|
| - Register scratch1, Register scratch2,
|
| - Register scratch3, Register scratch4);
|
| - void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
|
| - Register scratch1, Register scratch2,
|
| - Register scratch3);
|
| -
|
| - // The actual Push and Pop implementations. These don't generate any code
|
| - // other than that required for the push or pop. This allows
|
| - // (Push|Pop)CPURegList to bundle together run-time assertions for a large
|
| - // block of registers.
|
| - //
|
| - // Note that size is per register, and is specified in bytes.
|
| - void PushHelper(int count, int size,
|
| - const CPURegister& src0, const CPURegister& src1,
|
| - const CPURegister& src2, const CPURegister& src3);
|
| - void PopHelper(int count, int size,
|
| - const CPURegister& dst0, const CPURegister& dst1,
|
| - const CPURegister& dst2, const CPURegister& dst3);
|
| -
|
| - // Perform necessary maintenance operations before a push or pop.
|
| - //
|
| - // Note that size is specified in bytes.
|
| - void PrepareForPush(Operand total_size);
|
| - void PrepareForPop(Operand total_size);
|
| -
|
| - void PrepareForPush(int count, int size) { PrepareForPush(count * size); }
|
| - void PrepareForPop(int count, int size) { PrepareForPop(count * size); }
|
| -
|
| - // Call Printf. On a native build, a simple call will be generated, but if the
|
| - // simulator is being used then a suitable pseudo-instruction is used. The
|
| - // arguments and stack (csp) must be prepared by the caller as for a normal
|
| - // AAPCS64 call to 'printf'.
|
| - //
|
| - // The 'type' argument specifies the type of the optional arguments.
|
| - void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister);
|
| -
|
| - // Helper for throwing exceptions. Compute a handler address and jump to
|
| - // it. See the implementation for register usage.
|
| - void JumpToHandlerEntry(Register exception,
|
| - Register object,
|
| - Register state,
|
| - Register scratch1,
|
| - Register scratch2);
|
| -
|
| - // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
|
| - void InNewSpace(Register object,
|
| - Condition cond, // eq for new space, ne otherwise.
|
| - Label* branch);
|
| -
|
| - // Try to convert a double to an int so that integer fast-paths may be
|
| - // used. Not every valid integer value is guaranteed to be caught.
|
| - // It supports both 32-bit and 64-bit integers depending whether 'as_int'
|
| - // is a W or X register.
|
| - //
|
| - // This does not distinguish between +0 and -0, so if this distinction is
|
| - // important it must be checked separately.
|
| - //
|
| - // On output the Z flag is set if the conversion was successful.
|
| - void TryConvertDoubleToInt(Register as_int,
|
| - FPRegister value,
|
| - FPRegister scratch_d,
|
| - Label* on_successful_conversion = NULL,
|
| - Label* on_failed_conversion = NULL);
|
| -
|
| - bool generating_stub_;
|
| -#if DEBUG
|
| - // Tell whether any of the macro instruction can be used. When false the
|
| - // MacroAssembler will assert if a method which can emit a variable number
|
| - // of instructions is called.
|
| - bool allow_macro_instructions_;
|
| -#endif
|
| - bool has_frame_;
|
| -
|
| - // The Abort method should call a V8 runtime function, but the CallRuntime
|
| - // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
|
| - // use a simpler abort mechanism that doesn't depend on CEntryStub.
|
| - //
|
| - // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
|
| - // being generated.
|
| - bool use_real_aborts_;
|
| -
|
| - // This handle will be patched with the code object on installation.
|
| - Handle<Object> code_object_;
|
| -
|
| - // The register to use as a stack pointer for stack operations.
|
| - Register sp_;
|
| -
|
| - // Scratch registers available for use by the MacroAssembler.
|
| - CPURegList tmp_list_;
|
| - CPURegList fptmp_list_;
|
| -
|
| - void InitializeNewString(Register string,
|
| - Register length,
|
| - Heap::RootListIndex map_index,
|
| - Register scratch1,
|
| - Register scratch2);
|
| -
|
| - public:
|
| - // Far branches resolving.
|
| - //
|
| - // The various classes of branch instructions with immediate offsets have
|
| - // different ranges. While the Assembler will fail to assemble a branch
|
| - // exceeding its range, the MacroAssembler offers a mechanism to resolve
|
| - // branches to too distant targets, either by tweaking the generated code to
|
| - // use branch instructions with wider ranges or generating veneers.
|
| - //
|
| - // Currently branches to distant targets are resolved using unconditional
|
| - // branch isntructions with a range of +-128MB. If that becomes too little
|
| - // (!), the mechanism can be extended to generate special veneers for really
|
| - // far targets.
|
| -
|
| - // Helps resolve branching to labels potentially out of range.
|
| - // If the label is not bound, it registers the information necessary to later
|
| - // be able to emit a veneer for this branch if necessary.
|
| - // If the label is bound, it returns true if the label (or the previous link
|
| - // in the label chain) is out of range. In that case the caller is responsible
|
| - // for generating appropriate code.
|
| - // Otherwise it returns false.
|
| - // This function also checks wether veneers need to be emitted.
|
| - bool NeedExtraInstructionsOrRegisterBranch(Label *label,
|
| - ImmBranchType branch_type);
|
| -};
|
| -
|
| -
|
| -// Use this scope when you need a one-to-one mapping bewteen methods and
|
| -// instructions. This scope prevents the MacroAssembler from being called and
|
| -// literal pools from being emitted. It also asserts the number of instructions
|
| -// emitted is what you specified when creating the scope.
|
| -class InstructionAccurateScope BASE_EMBEDDED {
|
| - public:
|
| - InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
|
| - : masm_(masm)
|
| -#ifdef DEBUG
|
| - ,
|
| - size_(count * kInstructionSize)
|
| -#endif
|
| - {
|
| - // Before blocking the const pool, see if it needs to be emitted.
|
| - masm_->CheckConstPool(false, true);
|
| -
|
| - masm_->StartBlockConstPool();
|
| -#ifdef DEBUG
|
| - if (count != 0) {
|
| - masm_->bind(&start_);
|
| - }
|
| - previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
|
| - masm_->set_allow_macro_instructions(false);
|
| -#endif
|
| - }
|
| -
|
| - ~InstructionAccurateScope() {
|
| - masm_->EndBlockConstPool();
|
| -#ifdef DEBUG
|
| - if (start_.is_bound()) {
|
| - ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
|
| - }
|
| - masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
|
| -#endif
|
| - }
|
| -
|
| - private:
|
| - MacroAssembler* masm_;
|
| -#ifdef DEBUG
|
| - size_t size_;
|
| - Label start_;
|
| - bool previous_allow_macro_instructions_;
|
| -#endif
|
| -};
|
| -
|
| -
|
| -// This scope utility allows scratch registers to be managed safely. The
|
| -// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
|
| -// registers. These registers can be allocated on demand, and will be returned
|
| -// at the end of the scope.
|
| -//
|
| -// When the scope ends, the MacroAssembler's lists will be restored to their
|
| -// original state, even if the lists were modified by some other means.
|
| -class UseScratchRegisterScope {
|
| - public:
|
| - explicit UseScratchRegisterScope(MacroAssembler* masm)
|
| - : available_(masm->TmpList()),
|
| - availablefp_(masm->FPTmpList()),
|
| - old_available_(available_->list()),
|
| - old_availablefp_(availablefp_->list()) {
|
| - ASSERT(available_->type() == CPURegister::kRegister);
|
| - ASSERT(availablefp_->type() == CPURegister::kFPRegister);
|
| - }
|
| -
|
| - ~UseScratchRegisterScope();
|
| -
|
| - // Take a register from the appropriate temps list. It will be returned
|
| - // automatically when the scope ends.
|
| - Register AcquireW() { return AcquireNextAvailable(available_).W(); }
|
| - Register AcquireX() { return AcquireNextAvailable(available_).X(); }
|
| - FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
|
| - FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
|
| -
|
| - Register AcquireSameSizeAs(const Register& reg);
|
| - FPRegister AcquireSameSizeAs(const FPRegister& reg);
|
| -
|
| - private:
|
| - static CPURegister AcquireNextAvailable(CPURegList* available);
|
| -
|
| - // Available scratch registers.
|
| - CPURegList* available_; // kRegister
|
| - CPURegList* availablefp_; // kFPRegister
|
| -
|
| - // The state of the available lists at the start of this scope.
|
| - RegList old_available_; // kRegister
|
| - RegList old_availablefp_; // kFPRegister
|
| -};
|
| -
|
| -
|
| -inline MemOperand ContextMemOperand(Register context, int index) {
|
| - return MemOperand(context, Context::SlotOffset(index));
|
| -}
|
| -
|
| -inline MemOperand GlobalObjectMemOperand() {
|
| - return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
|
| -}
|
| -
|
| -
|
| -// Encode and decode information about patchable inline SMI checks.
|
| -class InlineSmiCheckInfo {
|
| - public:
|
| - explicit InlineSmiCheckInfo(Address info);
|
| -
|
| - bool HasSmiCheck() const {
|
| - return smi_check_ != NULL;
|
| - }
|
| -
|
| - const Register& SmiRegister() const {
|
| - return reg_;
|
| - }
|
| -
|
| - Instruction* SmiCheck() const {
|
| - return smi_check_;
|
| - }
|
| -
|
| - // Use MacroAssembler::InlineData to emit information about patchable inline
|
| - // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
|
| - // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
|
| - //
|
| - // The generated patch information can be read using the InlineSMICheckInfo
|
| - // class.
|
| - static void Emit(MacroAssembler* masm, const Register& reg,
|
| - const Label* smi_check);
|
| -
|
| - // Emit information to indicate that there is no inline SMI check.
|
| - static void EmitNotInlined(MacroAssembler* masm) {
|
| - Label unbound;
|
| - Emit(masm, NoReg, &unbound);
|
| - }
|
| -
|
| - private:
|
| - Register reg_;
|
| - Instruction* smi_check_;
|
| -
|
| - // Fields in the data encoded by InlineData.
|
| -
|
| - // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
|
| - // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
|
| - // used in a patchable check. The Emit() method checks this.
|
| - //
|
| - // Note that the total size of the fields is restricted by the underlying
|
| - // storage size handled by the BitField class, which is a uint32_t.
|
| - class RegisterBits : public BitField<unsigned, 0, 5> {};
|
| - class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
|
| -};
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#ifdef GENERATED_CODE_COVERAGE
|
| -#error "Unsupported option"
|
| -#define CODE_COVERAGE_STRINGIFY(x) #x
|
| -#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
| -#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
| -#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
|
| -#else
|
| -#define ACCESS_MASM(masm) masm->
|
| -#endif
|
| -
|
| -#endif // V8_A64_MACRO_ASSEMBLER_A64_H_
|
|
|