Index: src/a64/macro-assembler-a64.h |
diff --git a/src/a64/macro-assembler-a64.h b/src/a64/macro-assembler-a64.h |
deleted file mode 100644 |
index ecc4a0ce02dd08cd42d1876d6e6cd549728c0b09..0000000000000000000000000000000000000000 |
--- a/src/a64/macro-assembler-a64.h |
+++ /dev/null |
@@ -1,2303 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following |
-// disclaimer in the documentation and/or other materials provided |
-// with the distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived |
-// from this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-#ifndef V8_A64_MACRO_ASSEMBLER_A64_H_ |
-#define V8_A64_MACRO_ASSEMBLER_A64_H_ |
- |
-#include <vector> |
- |
-#include "v8globals.h" |
-#include "globals.h" |
- |
-#include "a64/assembler-a64-inl.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-#define LS_MACRO_LIST(V) \ |
- V(Ldrb, Register&, rt, LDRB_w) \ |
- V(Strb, Register&, rt, STRB_w) \ |
- V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \ |
- V(Ldrh, Register&, rt, LDRH_w) \ |
- V(Strh, Register&, rt, STRH_w) \ |
- V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \ |
- V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \ |
- V(Str, CPURegister&, rt, StoreOpFor(rt)) \ |
- V(Ldrsw, Register&, rt, LDRSW_x) |
- |
- |
-// ---------------------------------------------------------------------------- |
-// Static helper functions |
- |
-// Generate a MemOperand for loading a field from an object. |
-inline MemOperand FieldMemOperand(Register object, int offset); |
-inline MemOperand UntagSmiFieldMemOperand(Register object, int offset); |
- |
-// Generate a MemOperand for loading a SMI from memory. |
-inline MemOperand UntagSmiMemOperand(Register object, int offset); |
- |
- |
-// ---------------------------------------------------------------------------- |
-// MacroAssembler |
- |
-enum BranchType { |
- // Copies of architectural conditions. |
- // The associated conditions can be used in place of those, the code will |
- // take care of reinterpreting them with the correct type. |
- integer_eq = eq, |
- integer_ne = ne, |
- integer_hs = hs, |
- integer_lo = lo, |
- integer_mi = mi, |
- integer_pl = pl, |
- integer_vs = vs, |
- integer_vc = vc, |
- integer_hi = hi, |
- integer_ls = ls, |
- integer_ge = ge, |
- integer_lt = lt, |
- integer_gt = gt, |
- integer_le = le, |
- integer_al = al, |
- integer_nv = nv, |
- |
- // These two are *different* from the architectural codes al and nv. |
- // 'always' is used to generate unconditional branches. |
- // 'never' is used to not generate a branch (generally as the inverse |
- // branch type of 'always). |
- always, never, |
- // cbz and cbnz |
- reg_zero, reg_not_zero, |
- // tbz and tbnz |
- reg_bit_clear, reg_bit_set, |
- |
- // Aliases. |
- kBranchTypeFirstCondition = eq, |
- kBranchTypeLastCondition = nv, |
- kBranchTypeFirstUsingReg = reg_zero, |
- kBranchTypeFirstUsingBit = reg_bit_clear |
-}; |
- |
-inline BranchType InvertBranchType(BranchType type) { |
- if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { |
- return static_cast<BranchType>( |
- InvertCondition(static_cast<Condition>(type))); |
- } else { |
- return static_cast<BranchType>(type ^ 1); |
- } |
-} |
- |
-enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; |
-enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; |
-enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; |
-enum TargetAddressStorageMode { |
- CAN_INLINE_TARGET_ADDRESS, |
- NEVER_INLINE_TARGET_ADDRESS |
-}; |
-enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag }; |
-enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles }; |
-enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong }; |
-enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg }; |
-enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 }; |
- |
-class MacroAssembler : public Assembler { |
- public: |
- MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size); |
- |
- inline Handle<Object> CodeObject(); |
- |
- // Instruction set functions ------------------------------------------------ |
- // Logical macros. |
- inline void And(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Ands(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Bic(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Bics(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Orr(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Orn(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Eor(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Eon(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Tst(const Register& rn, const Operand& operand); |
- void LogicalMacro(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- LogicalOp op); |
- |
- // Add and sub macros. |
- inline void Add(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Adds(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Sub(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Subs(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Cmn(const Register& rn, const Operand& operand); |
- inline void Cmp(const Register& rn, const Operand& operand); |
- inline void Neg(const Register& rd, |
- const Operand& operand); |
- inline void Negs(const Register& rd, |
- const Operand& operand); |
- |
- void AddSubMacro(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- FlagsUpdate S, |
- AddSubOp op); |
- |
- // Add/sub with carry macros. |
- inline void Adc(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Adcs(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Sbc(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Sbcs(const Register& rd, |
- const Register& rn, |
- const Operand& operand); |
- inline void Ngc(const Register& rd, |
- const Operand& operand); |
- inline void Ngcs(const Register& rd, |
- const Operand& operand); |
- void AddSubWithCarryMacro(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- FlagsUpdate S, |
- AddSubWithCarryOp op); |
- |
- // Move macros. |
- void Mov(const Register& rd, |
- const Operand& operand, |
- DiscardMoveMode discard_mode = kDontDiscardForSameWReg); |
- void Mov(const Register& rd, uint64_t imm); |
- inline void Mvn(const Register& rd, uint64_t imm); |
- void Mvn(const Register& rd, const Operand& operand); |
- static bool IsImmMovn(uint64_t imm, unsigned reg_size); |
- static bool IsImmMovz(uint64_t imm, unsigned reg_size); |
- static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); |
- |
- // Conditional macros. |
- inline void Ccmp(const Register& rn, |
- const Operand& operand, |
- StatusFlags nzcv, |
- Condition cond); |
- inline void Ccmn(const Register& rn, |
- const Operand& operand, |
- StatusFlags nzcv, |
- Condition cond); |
- void ConditionalCompareMacro(const Register& rn, |
- const Operand& operand, |
- StatusFlags nzcv, |
- Condition cond, |
- ConditionalCompareOp op); |
- void Csel(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- Condition cond); |
- |
- // Load/store macros. |
-#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \ |
- inline void FN(const REGTYPE REG, const MemOperand& addr); |
- LS_MACRO_LIST(DECLARE_FUNCTION) |
-#undef DECLARE_FUNCTION |
- |
- void LoadStoreMacro(const CPURegister& rt, |
- const MemOperand& addr, |
- LoadStoreOp op); |
- |
- // V8-specific load/store helpers. |
- void Load(const Register& rt, const MemOperand& addr, Representation r); |
- void Store(const Register& rt, const MemOperand& addr, Representation r); |
- |
- // Remaining instructions are simple pass-through calls to the assembler. |
- inline void Adr(const Register& rd, Label* label); |
- inline void Asr(const Register& rd, const Register& rn, unsigned shift); |
- inline void Asr(const Register& rd, const Register& rn, const Register& rm); |
- |
- // Branch type inversion relies on these relations. |
- STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) && |
- (reg_bit_clear == (reg_bit_set ^ 1)) && |
- (always == (never ^ 1))); |
- |
- void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1); |
- |
- inline void B(Label* label); |
- inline void B(Condition cond, Label* label); |
- void B(Label* label, Condition cond); |
- inline void Bfi(const Register& rd, |
- const Register& rn, |
- unsigned lsb, |
- unsigned width); |
- inline void Bfxil(const Register& rd, |
- const Register& rn, |
- unsigned lsb, |
- unsigned width); |
- inline void Bind(Label* label); |
- inline void Bl(Label* label); |
- inline void Blr(const Register& xn); |
- inline void Br(const Register& xn); |
- inline void Brk(int code); |
- void Cbnz(const Register& rt, Label* label); |
- void Cbz(const Register& rt, Label* label); |
- inline void Cinc(const Register& rd, const Register& rn, Condition cond); |
- inline void Cinv(const Register& rd, const Register& rn, Condition cond); |
- inline void Cls(const Register& rd, const Register& rn); |
- inline void Clz(const Register& rd, const Register& rn); |
- inline void Cneg(const Register& rd, const Register& rn, Condition cond); |
- inline void CzeroX(const Register& rd, Condition cond); |
- inline void CmovX(const Register& rd, const Register& rn, Condition cond); |
- inline void Cset(const Register& rd, Condition cond); |
- inline void Csetm(const Register& rd, Condition cond); |
- inline void Csinc(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- Condition cond); |
- inline void Csinv(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- Condition cond); |
- inline void Csneg(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- Condition cond); |
- inline void Dmb(BarrierDomain domain, BarrierType type); |
- inline void Dsb(BarrierDomain domain, BarrierType type); |
- inline void Debug(const char* message, uint32_t code, Instr params = BREAK); |
- inline void Extr(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- unsigned lsb); |
- inline void Fabs(const FPRegister& fd, const FPRegister& fn); |
- inline void Fadd(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fccmp(const FPRegister& fn, |
- const FPRegister& fm, |
- StatusFlags nzcv, |
- Condition cond); |
- inline void Fcmp(const FPRegister& fn, const FPRegister& fm); |
- inline void Fcmp(const FPRegister& fn, double value); |
- inline void Fcsel(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm, |
- Condition cond); |
- inline void Fcvt(const FPRegister& fd, const FPRegister& fn); |
- inline void Fcvtas(const Register& rd, const FPRegister& fn); |
- inline void Fcvtau(const Register& rd, const FPRegister& fn); |
- inline void Fcvtms(const Register& rd, const FPRegister& fn); |
- inline void Fcvtmu(const Register& rd, const FPRegister& fn); |
- inline void Fcvtns(const Register& rd, const FPRegister& fn); |
- inline void Fcvtnu(const Register& rd, const FPRegister& fn); |
- inline void Fcvtzs(const Register& rd, const FPRegister& fn); |
- inline void Fcvtzu(const Register& rd, const FPRegister& fn); |
- inline void Fdiv(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fmadd(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm, |
- const FPRegister& fa); |
- inline void Fmax(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fmaxnm(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fmin(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fminnm(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fmov(FPRegister fd, FPRegister fn); |
- inline void Fmov(FPRegister fd, Register rn); |
- // Provide explicit double and float interfaces for FP immediate moves, rather |
- // than relying on implicit C++ casts. This allows signalling NaNs to be |
- // preserved when the immediate matches the format of fd. Most systems convert |
- // signalling NaNs to quiet NaNs when converting between float and double. |
- inline void Fmov(FPRegister fd, double imm); |
- inline void Fmov(FPRegister fd, float imm); |
- // Provide a template to allow other types to be converted automatically. |
- template<typename T> |
- void Fmov(FPRegister fd, T imm) { |
- ASSERT(allow_macro_instructions_); |
- Fmov(fd, static_cast<double>(imm)); |
- } |
- inline void Fmov(Register rd, FPRegister fn); |
- inline void Fmsub(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm, |
- const FPRegister& fa); |
- inline void Fmul(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Fneg(const FPRegister& fd, const FPRegister& fn); |
- inline void Fnmadd(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm, |
- const FPRegister& fa); |
- inline void Fnmsub(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm, |
- const FPRegister& fa); |
- inline void Frinta(const FPRegister& fd, const FPRegister& fn); |
- inline void Frintn(const FPRegister& fd, const FPRegister& fn); |
- inline void Frintz(const FPRegister& fd, const FPRegister& fn); |
- inline void Fsqrt(const FPRegister& fd, const FPRegister& fn); |
- inline void Fsub(const FPRegister& fd, |
- const FPRegister& fn, |
- const FPRegister& fm); |
- inline void Hint(SystemHint code); |
- inline void Hlt(int code); |
- inline void Isb(); |
- inline void Ldnp(const CPURegister& rt, |
- const CPURegister& rt2, |
- const MemOperand& src); |
- inline void Ldp(const CPURegister& rt, |
- const CPURegister& rt2, |
- const MemOperand& src); |
- inline void Ldpsw(const Register& rt, |
- const Register& rt2, |
- const MemOperand& src); |
- // Provide both double and float interfaces for FP immediate loads, rather |
- // than relying on implicit C++ casts. This allows signalling NaNs to be |
- // preserved when the immediate matches the format of fd. Most systems convert |
- // signalling NaNs to quiet NaNs when converting between float and double. |
- inline void Ldr(const FPRegister& ft, double imm); |
- inline void Ldr(const FPRegister& ft, float imm); |
- inline void Ldr(const Register& rt, uint64_t imm); |
- inline void Lsl(const Register& rd, const Register& rn, unsigned shift); |
- inline void Lsl(const Register& rd, const Register& rn, const Register& rm); |
- inline void Lsr(const Register& rd, const Register& rn, unsigned shift); |
- inline void Lsr(const Register& rd, const Register& rn, const Register& rm); |
- inline void Madd(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- const Register& ra); |
- inline void Mneg(const Register& rd, const Register& rn, const Register& rm); |
- inline void Mov(const Register& rd, const Register& rm); |
- inline void Movk(const Register& rd, uint64_t imm, int shift = -1); |
- inline void Mrs(const Register& rt, SystemRegister sysreg); |
- inline void Msr(SystemRegister sysreg, const Register& rt); |
- inline void Msub(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- const Register& ra); |
- inline void Mul(const Register& rd, const Register& rn, const Register& rm); |
- inline void Nop() { nop(); } |
- inline void Rbit(const Register& rd, const Register& rn); |
- inline void Ret(const Register& xn = lr); |
- inline void Rev(const Register& rd, const Register& rn); |
- inline void Rev16(const Register& rd, const Register& rn); |
- inline void Rev32(const Register& rd, const Register& rn); |
- inline void Ror(const Register& rd, const Register& rs, unsigned shift); |
- inline void Ror(const Register& rd, const Register& rn, const Register& rm); |
- inline void Sbfiz(const Register& rd, |
- const Register& rn, |
- unsigned lsb, |
- unsigned width); |
- inline void Sbfx(const Register& rd, |
- const Register& rn, |
- unsigned lsb, |
- unsigned width); |
- inline void Scvtf(const FPRegister& fd, |
- const Register& rn, |
- unsigned fbits = 0); |
- inline void Sdiv(const Register& rd, const Register& rn, const Register& rm); |
- inline void Smaddl(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- const Register& ra); |
- inline void Smsubl(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- const Register& ra); |
- inline void Smull(const Register& rd, |
- const Register& rn, |
- const Register& rm); |
- inline void Smulh(const Register& rd, |
- const Register& rn, |
- const Register& rm); |
- inline void Stnp(const CPURegister& rt, |
- const CPURegister& rt2, |
- const MemOperand& dst); |
- inline void Stp(const CPURegister& rt, |
- const CPURegister& rt2, |
- const MemOperand& dst); |
- inline void Sxtb(const Register& rd, const Register& rn); |
- inline void Sxth(const Register& rd, const Register& rn); |
- inline void Sxtw(const Register& rd, const Register& rn); |
- void Tbnz(const Register& rt, unsigned bit_pos, Label* label); |
- void Tbz(const Register& rt, unsigned bit_pos, Label* label); |
- inline void Ubfiz(const Register& rd, |
- const Register& rn, |
- unsigned lsb, |
- unsigned width); |
- inline void Ubfx(const Register& rd, |
- const Register& rn, |
- unsigned lsb, |
- unsigned width); |
- inline void Ucvtf(const FPRegister& fd, |
- const Register& rn, |
- unsigned fbits = 0); |
- inline void Udiv(const Register& rd, const Register& rn, const Register& rm); |
- inline void Umaddl(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- const Register& ra); |
- inline void Umsubl(const Register& rd, |
- const Register& rn, |
- const Register& rm, |
- const Register& ra); |
- inline void Uxtb(const Register& rd, const Register& rn); |
- inline void Uxth(const Register& rd, const Register& rn); |
- inline void Uxtw(const Register& rd, const Register& rn); |
- |
- // Pseudo-instructions ------------------------------------------------------ |
- |
- // Compute rd = abs(rm). |
- // This function clobbers the condition flags. |
- // |
- // If rm is the minimum representable value, the result is not representable. |
- // Handlers for each case can be specified using the relevant labels. |
- void Abs(const Register& rd, const Register& rm, |
- Label * is_not_representable = NULL, |
- Label * is_representable = NULL); |
- |
- // Push or pop up to 4 registers of the same width to or from the stack, |
- // using the current stack pointer as set by SetStackPointer. |
- // |
- // If an argument register is 'NoReg', all further arguments are also assumed |
- // to be 'NoReg', and are thus not pushed or popped. |
- // |
- // Arguments are ordered such that "Push(a, b);" is functionally equivalent |
- // to "Push(a); Push(b);". |
- // |
- // It is valid to push the same register more than once, and there is no |
- // restriction on the order in which registers are specified. |
- // |
- // It is not valid to pop into the same register more than once in one |
- // operation, not even into the zero register. |
- // |
- // If the current stack pointer (as set by SetStackPointer) is csp, then it |
- // must be aligned to 16 bytes on entry and the total size of the specified |
- // registers must also be a multiple of 16 bytes. |
- // |
- // Even if the current stack pointer is not the system stack pointer (csp), |
- // Push (and derived methods) will still modify the system stack pointer in |
- // order to comply with ABI rules about accessing memory below the system |
- // stack pointer. |
- // |
- // Other than the registers passed into Pop, the stack pointer and (possibly) |
- // the system stack pointer, these methods do not modify any other registers. |
- void Push(const CPURegister& src0, const CPURegister& src1 = NoReg, |
- const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg); |
- void Push(const CPURegister& src0, const CPURegister& src1, |
- const CPURegister& src2, const CPURegister& src3, |
- const CPURegister& src4, const CPURegister& src5 = NoReg, |
- const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg); |
- void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg, |
- const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg); |
- |
- // Alternative forms of Push and Pop, taking a RegList or CPURegList that |
- // specifies the registers that are to be pushed or popped. Higher-numbered |
- // registers are associated with higher memory addresses (as in the A32 push |
- // and pop instructions). |
- // |
- // (Push|Pop)SizeRegList allow you to specify the register size as a |
- // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and |
- // kSRegSizeInBits are supported. |
- // |
- // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred. |
- void PushCPURegList(CPURegList registers); |
- void PopCPURegList(CPURegList registers); |
- |
- inline void PushSizeRegList(RegList registers, unsigned reg_size, |
- CPURegister::RegisterType type = CPURegister::kRegister) { |
- PushCPURegList(CPURegList(type, reg_size, registers)); |
- } |
- inline void PopSizeRegList(RegList registers, unsigned reg_size, |
- CPURegister::RegisterType type = CPURegister::kRegister) { |
- PopCPURegList(CPURegList(type, reg_size, registers)); |
- } |
- inline void PushXRegList(RegList regs) { |
- PushSizeRegList(regs, kXRegSizeInBits); |
- } |
- inline void PopXRegList(RegList regs) { |
- PopSizeRegList(regs, kXRegSizeInBits); |
- } |
- inline void PushWRegList(RegList regs) { |
- PushSizeRegList(regs, kWRegSizeInBits); |
- } |
- inline void PopWRegList(RegList regs) { |
- PopSizeRegList(regs, kWRegSizeInBits); |
- } |
- inline void PushDRegList(RegList regs) { |
- PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister); |
- } |
- inline void PopDRegList(RegList regs) { |
- PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister); |
- } |
- inline void PushSRegList(RegList regs) { |
- PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister); |
- } |
- inline void PopSRegList(RegList regs) { |
- PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister); |
- } |
- |
- // Push the specified register 'count' times. |
- void PushMultipleTimes(CPURegister src, Register count); |
- void PushMultipleTimes(CPURegister src, int count); |
- |
- // This is a convenience method for pushing a single Handle<Object>. |
- inline void Push(Handle<Object> handle); |
- void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } |
- |
- // Aliases of Push and Pop, required for V8 compatibility. |
- inline void push(Register src) { |
- Push(src); |
- } |
- inline void pop(Register dst) { |
- Pop(dst); |
- } |
- |
- // Sometimes callers need to push or pop multiple registers in a way that is |
- // difficult to structure efficiently for fixed Push or Pop calls. This scope |
- // allows push requests to be queued up, then flushed at once. The |
- // MacroAssembler will try to generate the most efficient sequence required. |
- // |
- // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of |
- // register sizes and types. |
- class PushPopQueue { |
- public: |
- explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { } |
- |
- ~PushPopQueue() { |
- ASSERT(queued_.empty()); |
- } |
- |
- void Queue(const CPURegister& rt) { |
- size_ += rt.SizeInBytes(); |
- queued_.push_back(rt); |
- } |
- |
- void PushQueued(); |
- void PopQueued(); |
- |
- private: |
- MacroAssembler* masm_; |
- int size_; |
- std::vector<CPURegister> queued_; |
- }; |
- |
- // Poke 'src' onto the stack. The offset is in bytes. |
- // |
- // If the current stack pointer (according to StackPointer()) is csp, then |
- // csp must be aligned to 16 bytes. |
- void Poke(const CPURegister& src, const Operand& offset); |
- |
- // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes. |
- // |
- // If the current stack pointer (according to StackPointer()) is csp, then |
- // csp must be aligned to 16 bytes. |
- void Peek(const CPURegister& dst, const Operand& offset); |
- |
- // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent |
- // with 'src2' at a higher address than 'src1'. The offset is in bytes. |
- // |
- // If the current stack pointer (according to StackPointer()) is csp, then |
- // csp must be aligned to 16 bytes. |
- void PokePair(const CPURegister& src1, const CPURegister& src2, int offset); |
- |
- // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The |
- // values peeked will be adjacent, with the value in 'dst2' being from a |
- // higher address than 'dst1'. The offset is in bytes. |
- // |
- // If the current stack pointer (according to StackPointer()) is csp, then |
- // csp must be aligned to 16 bytes. |
- void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset); |
- |
- // Claim or drop stack space without actually accessing memory. |
- // |
- // In debug mode, both of these will write invalid data into the claimed or |
- // dropped space. |
- // |
- // If the current stack pointer (according to StackPointer()) is csp, then it |
- // must be aligned to 16 bytes and the size claimed or dropped must be a |
- // multiple of 16 bytes. |
- // |
- // Note that unit_size must be specified in bytes. For variants which take a |
- // Register count, the unit size must be a power of two. |
- inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize); |
- inline void Claim(const Register& count, |
- uint64_t unit_size = kXRegSize); |
- inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize); |
- inline void Drop(const Register& count, |
- uint64_t unit_size = kXRegSize); |
- |
- // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a |
- // register. |
- inline void ClaimBySMI(const Register& count_smi, |
- uint64_t unit_size = kXRegSize); |
- inline void DropBySMI(const Register& count_smi, |
- uint64_t unit_size = kXRegSize); |
- |
- // Compare a register with an operand, and branch to label depending on the |
- // condition. May corrupt the status flags. |
- inline void CompareAndBranch(const Register& lhs, |
- const Operand& rhs, |
- Condition cond, |
- Label* label); |
- |
- // Test the bits of register defined by bit_pattern, and branch if ANY of |
- // those bits are set. May corrupt the status flags. |
- inline void TestAndBranchIfAnySet(const Register& reg, |
- const uint64_t bit_pattern, |
- Label* label); |
- |
- // Test the bits of register defined by bit_pattern, and branch if ALL of |
- // those bits are clear (ie. not set.) May corrupt the status flags. |
- inline void TestAndBranchIfAllClear(const Register& reg, |
- const uint64_t bit_pattern, |
- Label* label); |
- |
- // Insert one or more instructions into the instruction stream that encode |
- // some caller-defined data. The instructions used will be executable with no |
- // side effects. |
- inline void InlineData(uint64_t data); |
- |
- // Insert an instrumentation enable marker into the instruction stream. |
- inline void EnableInstrumentation(); |
- |
- // Insert an instrumentation disable marker into the instruction stream. |
- inline void DisableInstrumentation(); |
- |
- // Insert an instrumentation event marker into the instruction stream. These |
- // will be picked up by the instrumentation system to annotate an instruction |
- // profile. The argument marker_name must be a printable two character string; |
- // it will be encoded in the event marker. |
- inline void AnnotateInstrumentation(const char* marker_name); |
- |
- // If emit_debug_code() is true, emit a run-time check to ensure that |
- // StackPointer() does not point below the system stack pointer. |
- // |
- // Whilst it is architecturally legal for StackPointer() to point below csp, |
- // it can be evidence of a potential bug because the ABI forbids accesses |
- // below csp. |
- // |
- // If emit_debug_code() is false, this emits no code. |
- // |
- // If StackPointer() is the system stack pointer, this emits no code. |
- void AssertStackConsistency(); |
- |
- // Preserve the callee-saved registers (as defined by AAPCS64). |
- // |
- // Higher-numbered registers are pushed before lower-numbered registers, and |
- // thus get higher addresses. |
- // Floating-point registers are pushed before general-purpose registers, and |
- // thus get higher addresses. |
- // |
- // Note that registers are not checked for invalid values. Use this method |
- // only if you know that the GC won't try to examine the values on the stack. |
- // |
- // This method must not be called unless the current stack pointer (as set by |
- // SetStackPointer) is the system stack pointer (csp), and is aligned to |
- // ActivationFrameAlignment(). |
- void PushCalleeSavedRegisters(); |
- |
- // Restore the callee-saved registers (as defined by AAPCS64). |
- // |
- // Higher-numbered registers are popped after lower-numbered registers, and |
- // thus come from higher addresses. |
- // Floating-point registers are popped after general-purpose registers, and |
- // thus come from higher addresses. |
- // |
- // This method must not be called unless the current stack pointer (as set by |
- // SetStackPointer) is the system stack pointer (csp), and is aligned to |
- // ActivationFrameAlignment(). |
- void PopCalleeSavedRegisters(); |
- |
- // Set the current stack pointer, but don't generate any code. |
- inline void SetStackPointer(const Register& stack_pointer) { |
- ASSERT(!TmpList()->IncludesAliasOf(stack_pointer)); |
- sp_ = stack_pointer; |
- } |
- |
- // Return the current stack pointer, as set by SetStackPointer. |
- inline const Register& StackPointer() const { |
- return sp_; |
- } |
- |
- // Align csp for a frame, as per ActivationFrameAlignment, and make it the |
- // current stack pointer. |
- inline void AlignAndSetCSPForFrame() { |
- int sp_alignment = ActivationFrameAlignment(); |
- // AAPCS64 mandates at least 16-byte alignment. |
- ASSERT(sp_alignment >= 16); |
- ASSERT(IsPowerOf2(sp_alignment)); |
- Bic(csp, StackPointer(), sp_alignment - 1); |
- SetStackPointer(csp); |
- } |
- |
- // Push the system stack pointer (csp) down to allow the same to be done to |
- // the current stack pointer (according to StackPointer()). This must be |
- // called _before_ accessing the memory. |
- // |
- // This is necessary when pushing or otherwise adding things to the stack, to |
- // satisfy the AAPCS64 constraint that the memory below the system stack |
- // pointer is not accessed. |
- // |
- // This method asserts that StackPointer() is not csp, since the call does |
- // not make sense in that context. |
- inline void BumpSystemStackPointer(const Operand& space); |
- |
- // Helpers ------------------------------------------------------------------ |
- // Root register. |
- inline void InitializeRootRegister(); |
- |
- // Load an object from the root table. |
- void LoadRoot(Register destination, |
- Heap::RootListIndex index); |
- // Store an object to the root table. |
- void StoreRoot(Register source, |
- Heap::RootListIndex index); |
- |
- // Load both TrueValue and FalseValue roots. |
- void LoadTrueFalseRoots(Register true_root, Register false_root); |
- |
- void LoadHeapObject(Register dst, Handle<HeapObject> object); |
- |
- void LoadObject(Register result, Handle<Object> object) { |
- AllowDeferredHandleDereference heap_object_check; |
- if (object->IsHeapObject()) { |
- LoadHeapObject(result, Handle<HeapObject>::cast(object)); |
- } else { |
- ASSERT(object->IsSmi()); |
- Mov(result, Operand(object)); |
- } |
- } |
- |
- static int SafepointRegisterStackIndex(int reg_code); |
- |
- // This is required for compatibility with architecture independant code. |
- // Remove if not needed. |
- inline void Move(Register dst, Register src) { Mov(dst, src); } |
- |
- void LoadInstanceDescriptors(Register map, |
- Register descriptors); |
- void EnumLengthUntagged(Register dst, Register map); |
- void EnumLengthSmi(Register dst, Register map); |
- void NumberOfOwnDescriptors(Register dst, Register map); |
- |
- template<typename Field> |
- void DecodeField(Register reg) { |
- static const uint64_t shift = Field::kShift + kSmiShift; |
- static const uint64_t setbits = CountSetBits(Field::kMask, 32); |
- Ubfx(reg, reg, shift, setbits); |
- } |
- |
- // ---- SMI and Number Utilities ---- |
- |
- inline void SmiTag(Register dst, Register src); |
- inline void SmiTag(Register smi); |
- inline void SmiUntag(Register dst, Register src); |
- inline void SmiUntag(Register smi); |
- inline void SmiUntagToDouble(FPRegister dst, |
- Register src, |
- UntagMode mode = kNotSpeculativeUntag); |
- inline void SmiUntagToFloat(FPRegister dst, |
- Register src, |
- UntagMode mode = kNotSpeculativeUntag); |
- |
- // Compute the absolute value of 'smi' and leave the result in 'smi' |
- // register. If 'smi' is the most negative SMI, the absolute value cannot |
- // be represented as a SMI and a jump to 'slow' is done. |
- void SmiAbs(const Register& smi, Label* slow); |
- |
- inline void JumpIfSmi(Register value, |
- Label* smi_label, |
- Label* not_smi_label = NULL); |
- inline void JumpIfNotSmi(Register value, Label* not_smi_label); |
- inline void JumpIfBothSmi(Register value1, |
- Register value2, |
- Label* both_smi_label, |
- Label* not_smi_label = NULL); |
- inline void JumpIfEitherSmi(Register value1, |
- Register value2, |
- Label* either_smi_label, |
- Label* not_smi_label = NULL); |
- inline void JumpIfEitherNotSmi(Register value1, |
- Register value2, |
- Label* not_smi_label); |
- inline void JumpIfBothNotSmi(Register value1, |
- Register value2, |
- Label* not_smi_label); |
- |
- // Abort execution if argument is a smi, enabled via --debug-code. |
- void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi); |
- void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi); |
- |
- // Abort execution if argument is not a name, enabled via --debug-code. |
- void AssertName(Register object); |
- |
- // Abort execution if argument is not undefined or an AllocationSite, enabled |
- // via --debug-code. |
- void AssertUndefinedOrAllocationSite(Register object, Register scratch); |
- |
- // Abort execution if argument is not a string, enabled via --debug-code. |
- void AssertString(Register object); |
- |
- void JumpForHeapNumber(Register object, |
- Register heap_number_map, |
- Label* on_heap_number, |
- Label* on_not_heap_number = NULL); |
- void JumpIfHeapNumber(Register object, |
- Label* on_heap_number, |
- Register heap_number_map = NoReg); |
- void JumpIfNotHeapNumber(Register object, |
- Label* on_not_heap_number, |
- Register heap_number_map = NoReg); |
- |
- // Sets the vs flag if the input is -0.0. |
- void TestForMinusZero(DoubleRegister input); |
- |
- // Jump to label if the input double register contains -0.0. |
- void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero); |
- |
- // Generate code to do a lookup in the number string cache. If the number in |
- // the register object is found in the cache the generated code falls through |
- // with the result in the result register. The object and the result register |
- // can be the same. If the number is not found in the cache the code jumps to |
- // the label not_found with only the content of register object unchanged. |
- void LookupNumberStringCache(Register object, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* not_found); |
- |
- // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in |
- // output. |
- void ClampInt32ToUint8(Register in_out); |
- void ClampInt32ToUint8(Register output, Register input); |
- |
- // Saturate a double in input to an unsigned 8-bit integer in output. |
- void ClampDoubleToUint8(Register output, |
- DoubleRegister input, |
- DoubleRegister dbl_scratch); |
- |
- // Try to convert a double to a signed 32-bit int. |
- // This succeeds if the result compares equal to the input, so inputs of -0.0 |
- // are converted to 0 and handled as a success. |
- // |
- // On output the Z flag is set if the conversion was successful. |
- void TryConvertDoubleToInt32(Register as_int, |
- FPRegister value, |
- FPRegister scratch_d, |
- Label* on_successful_conversion = NULL, |
- Label* on_failed_conversion = NULL) { |
- ASSERT(as_int.Is32Bits()); |
- TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion, |
- on_failed_conversion); |
- } |
- |
- // Try to convert a double to a signed 64-bit int. |
- // This succeeds if the result compares equal to the input, so inputs of -0.0 |
- // are converted to 0 and handled as a success. |
- // |
- // On output the Z flag is set if the conversion was successful. |
- void TryConvertDoubleToInt64(Register as_int, |
- FPRegister value, |
- FPRegister scratch_d, |
- Label* on_successful_conversion = NULL, |
- Label* on_failed_conversion = NULL) { |
- ASSERT(as_int.Is64Bits()); |
- TryConvertDoubleToInt(as_int, value, scratch_d, on_successful_conversion, |
- on_failed_conversion); |
- } |
- |
- // ---- Object Utilities ---- |
- |
- // Copy fields from 'src' to 'dst', where both are tagged objects. |
- // The 'temps' list is a list of X registers which can be used for scratch |
- // values. The temps list must include at least one register. |
- // |
- // Currently, CopyFields cannot make use of more than three registers from |
- // the 'temps' list. |
- // |
- // CopyFields expects to be able to take at least two registers from |
- // MacroAssembler::TmpList(). |
- void CopyFields(Register dst, Register src, CPURegList temps, unsigned count); |
- |
- // Starting at address in dst, initialize field_count 64-bit fields with |
- // 64-bit value in register filler. Register dst is corrupted. |
- void FillFields(Register dst, |
- Register field_count, |
- Register filler); |
- |
- // Copies a number of bytes from src to dst. All passed registers are |
- // clobbered. On exit src and dst will point to the place just after where the |
- // last byte was read or written and length will be zero. Hint may be used to |
- // determine which is the most efficient algorithm to use for copying. |
- void CopyBytes(Register dst, |
- Register src, |
- Register length, |
- Register scratch, |
- CopyHint hint = kCopyUnknown); |
- |
- // ---- String Utilities ---- |
- |
- |
- // Jump to label if either object is not a sequential ASCII string. |
- // Optionally perform a smi check on the objects first. |
- void JumpIfEitherIsNotSequentialAsciiStrings( |
- Register first, |
- Register second, |
- Register scratch1, |
- Register scratch2, |
- Label* failure, |
- SmiCheckType smi_check = DO_SMI_CHECK); |
- |
- // Check if instance type is sequential ASCII string and jump to label if |
- // it is not. |
- void JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
- Register scratch, |
- Label* failure); |
- |
- // Checks if both instance types are sequential ASCII strings and jumps to |
- // label if either is not. |
- void JumpIfEitherInstanceTypeIsNotSequentialAscii( |
- Register first_object_instance_type, |
- Register second_object_instance_type, |
- Register scratch1, |
- Register scratch2, |
- Label* failure); |
- |
- // Checks if both instance types are sequential ASCII strings and jumps to |
- // label if either is not. |
- void JumpIfBothInstanceTypesAreNotSequentialAscii( |
- Register first_object_instance_type, |
- Register second_object_instance_type, |
- Register scratch1, |
- Register scratch2, |
- Label* failure); |
- |
- void JumpIfNotUniqueName(Register type, Label* not_unique_name); |
- |
- // ---- Calling / Jumping helpers ---- |
- |
- // This is required for compatibility in architecture indepenedant code. |
- inline void jmp(Label* L) { B(L); } |
- |
- // Passes thrown value to the handler of top of the try handler chain. |
- // Register value must be x0. |
- void Throw(Register value, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4); |
- |
- // Propagates an uncatchable exception to the top of the current JS stack's |
- // handler chain. Register value must be x0. |
- void ThrowUncatchable(Register value, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4); |
- |
- // Throw a message string as an exception. |
- void Throw(BailoutReason reason); |
- |
- // Throw a message string as an exception if a condition is not true. |
- void ThrowIf(Condition cc, BailoutReason reason); |
- |
- // Throw a message string as an exception if the value is a smi. |
- void ThrowIfSmi(const Register& value, BailoutReason reason); |
- |
- void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); |
- void TailCallStub(CodeStub* stub); |
- |
- void CallRuntime(const Runtime::Function* f, |
- int num_arguments, |
- SaveFPRegsMode save_doubles = kDontSaveFPRegs); |
- |
- void CallRuntime(Runtime::FunctionId id, |
- int num_arguments, |
- SaveFPRegsMode save_doubles = kDontSaveFPRegs) { |
- CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles); |
- } |
- |
- void CallRuntimeSaveDoubles(Runtime::FunctionId id) { |
- const Runtime::Function* function = Runtime::FunctionForId(id); |
- CallRuntime(function, function->nargs, kSaveFPRegs); |
- } |
- |
- void TailCallRuntime(Runtime::FunctionId fid, |
- int num_arguments, |
- int result_size); |
- |
- int ActivationFrameAlignment(); |
- |
- // Calls a C function. |
- // The called function is not allowed to trigger a |
- // garbage collection, since that might move the code and invalidate the |
- // return address (unless this is somehow accounted for by the called |
- // function). |
- void CallCFunction(ExternalReference function, |
- int num_reg_arguments); |
- void CallCFunction(ExternalReference function, |
- int num_reg_arguments, |
- int num_double_arguments); |
- void CallCFunction(Register function, |
- int num_reg_arguments, |
- int num_double_arguments); |
- |
- // Calls an API function. Allocates HandleScope, extracts returned value |
- // from handle and propagates exceptions. |
- // 'stack_space' is the space to be unwound on exit (includes the call JS |
- // arguments space and the additional space allocated for the fast call). |
- // 'spill_offset' is the offset from the stack pointer where |
- // CallApiFunctionAndReturn can spill registers. |
- void CallApiFunctionAndReturn(Register function_address, |
- ExternalReference thunk_ref, |
- int stack_space, |
- int spill_offset, |
- MemOperand return_value_operand, |
- MemOperand* context_restore_operand); |
- |
- // The number of register that CallApiFunctionAndReturn will need to save on |
- // the stack. The space for these registers need to be allocated in the |
- // ExitFrame before calling CallApiFunctionAndReturn. |
- static const int kCallApiFunctionSpillSpace = 4; |
- |
- // Jump to a runtime routine. |
- void JumpToExternalReference(const ExternalReference& builtin); |
- // Tail call of a runtime routine (jump). |
- // Like JumpToExternalReference, but also takes care of passing the number |
- // of parameters. |
- void TailCallExternalReference(const ExternalReference& ext, |
- int num_arguments, |
- int result_size); |
- void CallExternalReference(const ExternalReference& ext, |
- int num_arguments); |
- |
- |
- // Invoke specified builtin JavaScript function. Adds an entry to |
- // the unresolved list if the name does not resolve. |
- void InvokeBuiltin(Builtins::JavaScript id, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper = NullCallWrapper()); |
- |
- // Store the code object for the given builtin in the target register and |
- // setup the function in the function register. |
- void GetBuiltinEntry(Register target, |
- Register function, |
- Builtins::JavaScript id); |
- |
- // Store the function for the given builtin in the target register. |
- void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
- |
- void Jump(Register target); |
- void Jump(Address target, RelocInfo::Mode rmode); |
- void Jump(Handle<Code> code, RelocInfo::Mode rmode); |
- void Jump(intptr_t target, RelocInfo::Mode rmode); |
- |
- void Call(Register target); |
- void Call(Label* target); |
- void Call(Address target, RelocInfo::Mode rmode); |
- void Call(Handle<Code> code, |
- RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
- TypeFeedbackId ast_id = TypeFeedbackId::None()); |
- |
- // For every Call variant, there is a matching CallSize function that returns |
- // the size (in bytes) of the call sequence. |
- static int CallSize(Register target); |
- static int CallSize(Label* target); |
- static int CallSize(Address target, RelocInfo::Mode rmode); |
- static int CallSize(Handle<Code> code, |
- RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
- TypeFeedbackId ast_id = TypeFeedbackId::None()); |
- |
- // Registers used through the invocation chain are hard-coded. |
- // We force passing the parameters to ensure the contracts are correctly |
- // honoured by the caller. |
- // 'function' must be x1. |
- // 'actual' must use an immediate or x0. |
- // 'expected' must use an immediate or x2. |
- // 'call_kind' must be x5. |
- void InvokePrologue(const ParameterCount& expected, |
- const ParameterCount& actual, |
- Handle<Code> code_constant, |
- Register code_reg, |
- Label* done, |
- InvokeFlag flag, |
- bool* definitely_mismatches, |
- const CallWrapper& call_wrapper); |
- void InvokeCode(Register code, |
- const ParameterCount& expected, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper); |
- // Invoke the JavaScript function in the given register. |
- // Changes the current context to the context in the function before invoking. |
- void InvokeFunction(Register function, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper); |
- void InvokeFunction(Register function, |
- const ParameterCount& expected, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper); |
- void InvokeFunction(Handle<JSFunction> function, |
- const ParameterCount& expected, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper); |
- |
- |
- // ---- Floating point helpers ---- |
- |
- // Perform a conversion from a double to a signed int64. If the input fits in |
- // range of the 64-bit result, execution branches to done. Otherwise, |
- // execution falls through, and the sign of the result can be used to |
- // determine if overflow was towards positive or negative infinity. |
- // |
- // On successful conversion, the least significant 32 bits of the result are |
- // equivalent to the ECMA-262 operation "ToInt32". |
- // |
- // Only public for the test code in test-code-stubs-a64.cc. |
- void TryConvertDoubleToInt64(Register result, |
- DoubleRegister input, |
- Label* done); |
- |
- // Performs a truncating conversion of a floating point number as used by |
- // the JS bitwise operations. See ECMA-262 9.5: ToInt32. |
- // Exits with 'result' holding the answer. |
- void TruncateDoubleToI(Register result, DoubleRegister double_input); |
- |
- // Performs a truncating conversion of a heap number as used by |
- // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input' |
- // must be different registers. Exits with 'result' holding the answer. |
- void TruncateHeapNumberToI(Register result, Register object); |
- |
- // Converts the smi or heap number in object to an int32 using the rules |
- // for ToInt32 as described in ECMAScript 9.5.: the value is truncated |
- // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be |
- // different registers. |
- void TruncateNumberToI(Register object, |
- Register result, |
- Register heap_number_map, |
- Label* not_int32); |
- |
- // ---- Code generation helpers ---- |
- |
- void set_generating_stub(bool value) { generating_stub_ = value; } |
- bool generating_stub() const { return generating_stub_; } |
-#if DEBUG |
- void set_allow_macro_instructions(bool value) { |
- allow_macro_instructions_ = value; |
- } |
- bool allow_macro_instructions() const { return allow_macro_instructions_; } |
-#endif |
- bool use_real_aborts() const { return use_real_aborts_; } |
- void set_has_frame(bool value) { has_frame_ = value; } |
- bool has_frame() const { return has_frame_; } |
- bool AllowThisStubCall(CodeStub* stub); |
- |
- class NoUseRealAbortsScope { |
- public: |
- explicit NoUseRealAbortsScope(MacroAssembler* masm) : |
- saved_(masm->use_real_aborts_), masm_(masm) { |
- masm_->use_real_aborts_ = false; |
- } |
- ~NoUseRealAbortsScope() { |
- masm_->use_real_aborts_ = saved_; |
- } |
- private: |
- bool saved_; |
- MacroAssembler* masm_; |
- }; |
- |
-#ifdef ENABLE_DEBUGGER_SUPPORT |
- // --------------------------------------------------------------------------- |
- // Debugger Support |
- |
- void DebugBreak(); |
-#endif |
- // --------------------------------------------------------------------------- |
- // Exception handling |
- |
- // Push a new try handler and link into try handler chain. |
- void PushTryHandler(StackHandler::Kind kind, int handler_index); |
- |
- // Unlink the stack handler on top of the stack from the try handler chain. |
- // Must preserve the result register. |
- void PopTryHandler(); |
- |
- |
- // --------------------------------------------------------------------------- |
- // Allocation support |
- |
- // Allocate an object in new space or old pointer space. The object_size is |
- // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS |
- // is passed. The allocated object is returned in result. |
- // |
- // If the new space is exhausted control continues at the gc_required label. |
- // In this case, the result and scratch registers may still be clobbered. |
- // If flags includes TAG_OBJECT, the result is tagged as as a heap object. |
- void Allocate(Register object_size, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required, |
- AllocationFlags flags); |
- |
- void Allocate(int object_size, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required, |
- AllocationFlags flags); |
- |
- // Undo allocation in new space. The object passed and objects allocated after |
- // it will no longer be allocated. The caller must make sure that no pointers |
- // are left to the object(s) no longer allocated as they would be invalid when |
- // allocation is undone. |
- void UndoAllocationInNewSpace(Register object, Register scratch); |
- |
- void AllocateTwoByteString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* gc_required); |
- void AllocateAsciiString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* gc_required); |
- void AllocateTwoByteConsString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required); |
- void AllocateAsciiConsString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required); |
- void AllocateTwoByteSlicedString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required); |
- void AllocateAsciiSlicedString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required); |
- |
- // Allocates a heap number or jumps to the gc_required label if the young |
- // space is full and a scavenge is needed. |
- // All registers are clobbered. |
- // If no heap_number_map register is provided, the function will take care of |
- // loading it. |
- void AllocateHeapNumber(Register result, |
- Label* gc_required, |
- Register scratch1, |
- Register scratch2, |
- Register heap_number_map = NoReg); |
- void AllocateHeapNumberWithValue(Register result, |
- DoubleRegister value, |
- Label* gc_required, |
- Register scratch1, |
- Register scratch2, |
- Register heap_number_map = NoReg); |
- |
- // --------------------------------------------------------------------------- |
- // Support functions. |
- |
- // Try to get function prototype of a function and puts the value in the |
- // result register. Checks that the function really is a function and jumps |
- // to the miss label if the fast checks fail. The function register will be |
- // untouched; the other registers may be clobbered. |
- enum BoundFunctionAction { |
- kMissOnBoundFunction, |
- kDontMissOnBoundFunction |
- }; |
- |
- void TryGetFunctionPrototype(Register function, |
- Register result, |
- Register scratch, |
- Label* miss, |
- BoundFunctionAction action = |
- kDontMissOnBoundFunction); |
- |
- // Compare object type for heap object. heap_object contains a non-Smi |
- // whose object type should be compared with the given type. This both |
- // sets the flags and leaves the object type in the type_reg register. |
- // It leaves the map in the map register (unless the type_reg and map register |
- // are the same register). It leaves the heap object in the heap_object |
- // register unless the heap_object register is the same register as one of the |
- // other registers. |
- void CompareObjectType(Register heap_object, |
- Register map, |
- Register type_reg, |
- InstanceType type); |
- |
- |
- // Compare object type for heap object, and branch if equal (or not.) |
- // heap_object contains a non-Smi whose object type should be compared with |
- // the given type. This both sets the flags and leaves the object type in |
- // the type_reg register. It leaves the map in the map register (unless the |
- // type_reg and map register are the same register). It leaves the heap |
- // object in the heap_object register unless the heap_object register is the |
- // same register as one of the other registers. |
- void JumpIfObjectType(Register object, |
- Register map, |
- Register type_reg, |
- InstanceType type, |
- Label* if_cond_pass, |
- Condition cond = eq); |
- |
- void JumpIfNotObjectType(Register object, |
- Register map, |
- Register type_reg, |
- InstanceType type, |
- Label* if_not_object); |
- |
- // Compare instance type in a map. map contains a valid map object whose |
- // object type should be compared with the given type. This both |
- // sets the flags and leaves the object type in the type_reg register. |
- void CompareInstanceType(Register map, |
- Register type_reg, |
- InstanceType type); |
- |
- // Compare an object's map with the specified map. Condition flags are set |
- // with result of map compare. |
- void CompareMap(Register obj, |
- Register scratch, |
- Handle<Map> map); |
- |
- // As above, but the map of the object is already loaded into the register |
- // which is preserved by the code generated. |
- void CompareMap(Register obj_map, |
- Handle<Map> map); |
- |
- // Check if the map of an object is equal to a specified map and branch to |
- // label if not. Skip the smi check if not required (object is known to be a |
- // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match |
- // against maps that are ElementsKind transition maps of the specified map. |
- void CheckMap(Register obj, |
- Register scratch, |
- Handle<Map> map, |
- Label* fail, |
- SmiCheckType smi_check_type); |
- |
- |
- void CheckMap(Register obj, |
- Register scratch, |
- Heap::RootListIndex index, |
- Label* fail, |
- SmiCheckType smi_check_type); |
- |
- // As above, but the map of the object is already loaded into obj_map, and is |
- // preserved. |
- void CheckMap(Register obj_map, |
- Handle<Map> map, |
- Label* fail, |
- SmiCheckType smi_check_type); |
- |
- // Check if the map of an object is equal to a specified map and branch to a |
- // specified target if equal. Skip the smi check if not required (object is |
- // known to be a heap object) |
- void DispatchMap(Register obj, |
- Register scratch, |
- Handle<Map> map, |
- Handle<Code> success, |
- SmiCheckType smi_check_type); |
- |
- // Test the bitfield of the heap object map with mask and set the condition |
- // flags. The object register is preserved. |
- void TestMapBitfield(Register object, uint64_t mask); |
- |
- // Load the elements kind field from a map, and return it in the result |
- // register. |
- void LoadElementsKindFromMap(Register result, Register map); |
- |
- // Compare the object in a register to a value from the root list. |
- void CompareRoot(const Register& obj, Heap::RootListIndex index); |
- |
- // Compare the object in a register to a value and jump if they are equal. |
- void JumpIfRoot(const Register& obj, |
- Heap::RootListIndex index, |
- Label* if_equal); |
- |
- // Compare the object in a register to a value and jump if they are not equal. |
- void JumpIfNotRoot(const Register& obj, |
- Heap::RootListIndex index, |
- Label* if_not_equal); |
- |
- // Load and check the instance type of an object for being a unique name. |
- // Loads the type into the second argument register. |
- // The object and type arguments can be the same register; in that case it |
- // will be overwritten with the type. |
- // Fall-through if the object was a string and jump on fail otherwise. |
- inline void IsObjectNameType(Register object, Register type, Label* fail); |
- |
- inline void IsObjectJSObjectType(Register heap_object, |
- Register map, |
- Register scratch, |
- Label* fail); |
- |
- // Check the instance type in the given map to see if it corresponds to a |
- // JS object type. Jump to the fail label if this is not the case and fall |
- // through otherwise. However if fail label is NULL, no branch will be |
- // performed and the flag will be updated. You can test the flag for "le" |
- // condition to test if it is a valid JS object type. |
- inline void IsInstanceJSObjectType(Register map, |
- Register scratch, |
- Label* fail); |
- |
- // Load and check the instance type of an object for being a string. |
- // Loads the type into the second argument register. |
- // The object and type arguments can be the same register; in that case it |
- // will be overwritten with the type. |
- // Jumps to not_string or string appropriate. If the appropriate label is |
- // NULL, fall through. |
- inline void IsObjectJSStringType(Register object, Register type, |
- Label* not_string, Label* string = NULL); |
- |
- // Compare the contents of a register with an operand, and branch to true, |
- // false or fall through, depending on condition. |
- void CompareAndSplit(const Register& lhs, |
- const Operand& rhs, |
- Condition cond, |
- Label* if_true, |
- Label* if_false, |
- Label* fall_through); |
- |
- // Test the bits of register defined by bit_pattern, and branch to |
- // if_any_set, if_all_clear or fall_through accordingly. |
- void TestAndSplit(const Register& reg, |
- uint64_t bit_pattern, |
- Label* if_all_clear, |
- Label* if_any_set, |
- Label* fall_through); |
- |
- // Check if a map for a JSObject indicates that the object has fast elements. |
- // Jump to the specified label if it does not. |
- void CheckFastElements(Register map, Register scratch, Label* fail); |
- |
- // Check if a map for a JSObject indicates that the object can have both smi |
- // and HeapObject elements. Jump to the specified label if it does not. |
- void CheckFastObjectElements(Register map, Register scratch, Label* fail); |
- |
- // Check to see if number can be stored as a double in FastDoubleElements. |
- // If it can, store it at the index specified by key_reg in the array, |
- // otherwise jump to fail. |
- void StoreNumberToDoubleElements(Register value_reg, |
- Register key_reg, |
- Register elements_reg, |
- Register scratch1, |
- FPRegister fpscratch1, |
- FPRegister fpscratch2, |
- Label* fail, |
- int elements_offset = 0); |
- |
- // Picks out an array index from the hash field. |
- // Register use: |
- // hash - holds the index's hash. Clobbered. |
- // index - holds the overwritten index on exit. |
- void IndexFromHash(Register hash, Register index); |
- |
- // --------------------------------------------------------------------------- |
- // Inline caching support. |
- |
- void EmitSeqStringSetCharCheck(Register string, |
- Register index, |
- SeqStringSetCharCheckIndexType index_type, |
- Register scratch, |
- uint32_t encoding_mask); |
- |
- // Generate code for checking access rights - used for security checks |
- // on access to global objects across environments. The holder register |
- // is left untouched, whereas both scratch registers are clobbered. |
- void CheckAccessGlobalProxy(Register holder_reg, |
- Register scratch1, |
- Register scratch2, |
- Label* miss); |
- |
- // Hash the interger value in 'key' register. |
- // It uses the same algorithm as ComputeIntegerHash in utils.h. |
- void GetNumberHash(Register key, Register scratch); |
- |
- // Load value from the dictionary. |
- // |
- // elements - holds the slow-case elements of the receiver on entry. |
- // Unchanged unless 'result' is the same register. |
- // |
- // key - holds the smi key on entry. |
- // Unchanged unless 'result' is the same register. |
- // |
- // result - holds the result on exit if the load succeeded. |
- // Allowed to be the same as 'key' or 'result'. |
- // Unchanged on bailout so 'key' or 'result' can be used |
- // in further computation. |
- void LoadFromNumberDictionary(Label* miss, |
- Register elements, |
- Register key, |
- Register result, |
- Register scratch0, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3); |
- |
- // --------------------------------------------------------------------------- |
- // Frames. |
- |
- // Activation support. |
- void EnterFrame(StackFrame::Type type); |
- void LeaveFrame(StackFrame::Type type); |
- |
- // Returns map with validated enum cache in object register. |
- void CheckEnumCache(Register object, |
- Register null_value, |
- Register scratch0, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* call_runtime); |
- |
- // AllocationMemento support. Arrays may have an associated |
- // AllocationMemento object that can be checked for in order to pretransition |
- // to another type. |
- // On entry, receiver should point to the array object. |
- // If allocation info is present, the Z flag is set (so that the eq |
- // condition will pass). |
- void TestJSArrayForAllocationMemento(Register receiver, |
- Register scratch1, |
- Register scratch2, |
- Label* no_memento_found); |
- |
- void JumpIfJSArrayHasAllocationMemento(Register receiver, |
- Register scratch1, |
- Register scratch2, |
- Label* memento_found) { |
- Label no_memento_found; |
- TestJSArrayForAllocationMemento(receiver, scratch1, scratch2, |
- &no_memento_found); |
- B(eq, memento_found); |
- Bind(&no_memento_found); |
- } |
- |
- // The stack pointer has to switch between csp and jssp when setting up and |
- // destroying the exit frame. Hence preserving/restoring the registers is |
- // slightly more complicated than simple push/pop operations. |
- void ExitFramePreserveFPRegs(); |
- void ExitFrameRestoreFPRegs(); |
- |
- // Generates function and stub prologue code. |
- void Prologue(PrologueFrameMode frame_mode); |
- |
- // Enter exit frame. Exit frames are used when calling C code from generated |
- // (JavaScript) code. |
- // |
- // The stack pointer must be jssp on entry, and will be set to csp by this |
- // function. The frame pointer is also configured, but the only other |
- // registers modified by this function are the provided scratch register, and |
- // jssp. |
- // |
- // The 'extra_space' argument can be used to allocate some space in the exit |
- // frame that will be ignored by the GC. This space will be reserved in the |
- // bottom of the frame immediately above the return address slot. |
- // |
- // Set up a stack frame and registers as follows: |
- // fp[8]: CallerPC (lr) |
- // fp -> fp[0]: CallerFP (old fp) |
- // fp[-8]: SPOffset (new csp) |
- // fp[-16]: CodeObject() |
- // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true. |
- // csp[8]: Memory reserved for the caller if extra_space != 0. |
- // Alignment padding, if necessary. |
- // csp -> csp[0]: Space reserved for the return address. |
- // |
- // This function also stores the new frame information in the top frame, so |
- // that the new frame becomes the current frame. |
- void EnterExitFrame(bool save_doubles, |
- const Register& scratch, |
- int extra_space = 0); |
- |
- // Leave the current exit frame, after a C function has returned to generated |
- // (JavaScript) code. |
- // |
- // This effectively unwinds the operation of EnterExitFrame: |
- // * Preserved doubles are restored (if restore_doubles is true). |
- // * The frame information is removed from the top frame. |
- // * The exit frame is dropped. |
- // * The stack pointer is reset to jssp. |
- // |
- // The stack pointer must be csp on entry. |
- void LeaveExitFrame(bool save_doubles, |
- const Register& scratch, |
- bool restore_context); |
- |
- void LoadContext(Register dst, int context_chain_length); |
- |
- // Emit code for a truncating division by a constant. The dividend register is |
- // unchanged. Dividend and result must be different. |
- void TruncatingDiv(Register result, Register dividend, int32_t divisor); |
- |
- // --------------------------------------------------------------------------- |
- // StatsCounter support |
- |
- void SetCounter(StatsCounter* counter, int value, Register scratch1, |
- Register scratch2); |
- void IncrementCounter(StatsCounter* counter, int value, Register scratch1, |
- Register scratch2); |
- void DecrementCounter(StatsCounter* counter, int value, Register scratch1, |
- Register scratch2); |
- |
- // --------------------------------------------------------------------------- |
- // Garbage collector support (GC). |
- |
- enum RememberedSetFinalAction { |
- kReturnAtEnd, |
- kFallThroughAtEnd |
- }; |
- |
- // Record in the remembered set the fact that we have a pointer to new space |
- // at the address pointed to by the addr register. Only works if addr is not |
- // in new space. |
- void RememberedSetHelper(Register object, // Used for debug code. |
- Register addr, |
- Register scratch1, |
- SaveFPRegsMode save_fp, |
- RememberedSetFinalAction and_then); |
- |
- // Push and pop the registers that can hold pointers, as defined by the |
- // RegList constant kSafepointSavedRegisters. |
- void PushSafepointRegisters(); |
- void PopSafepointRegisters(); |
- |
- void PushSafepointFPRegisters(); |
- void PopSafepointFPRegisters(); |
- |
- // Store value in register src in the safepoint stack slot for register dst. |
- void StoreToSafepointRegisterSlot(Register src, Register dst) { |
- Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); |
- } |
- |
- // Load the value of the src register from its safepoint stack slot |
- // into register dst. |
- void LoadFromSafepointRegisterSlot(Register dst, Register src) { |
- Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); |
- } |
- |
- void CheckPageFlagSet(const Register& object, |
- const Register& scratch, |
- int mask, |
- Label* if_any_set); |
- |
- void CheckPageFlagClear(const Register& object, |
- const Register& scratch, |
- int mask, |
- Label* if_all_clear); |
- |
- void CheckMapDeprecated(Handle<Map> map, |
- Register scratch, |
- Label* if_deprecated); |
- |
- // Check if object is in new space and jump accordingly. |
- // Register 'object' is preserved. |
- void JumpIfNotInNewSpace(Register object, |
- Label* branch) { |
- InNewSpace(object, ne, branch); |
- } |
- |
- void JumpIfInNewSpace(Register object, |
- Label* branch) { |
- InNewSpace(object, eq, branch); |
- } |
- |
- // Notify the garbage collector that we wrote a pointer into an object. |
- // |object| is the object being stored into, |value| is the object being |
- // stored. value and scratch registers are clobbered by the operation. |
- // The offset is the offset from the start of the object, not the offset from |
- // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
- void RecordWriteField( |
- Register object, |
- int offset, |
- Register value, |
- Register scratch, |
- LinkRegisterStatus lr_status, |
- SaveFPRegsMode save_fp, |
- RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
- SmiCheck smi_check = INLINE_SMI_CHECK); |
- |
- // As above, but the offset has the tag presubtracted. For use with |
- // MemOperand(reg, off). |
- inline void RecordWriteContextSlot( |
- Register context, |
- int offset, |
- Register value, |
- Register scratch, |
- LinkRegisterStatus lr_status, |
- SaveFPRegsMode save_fp, |
- RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
- SmiCheck smi_check = INLINE_SMI_CHECK) { |
- RecordWriteField(context, |
- offset + kHeapObjectTag, |
- value, |
- scratch, |
- lr_status, |
- save_fp, |
- remembered_set_action, |
- smi_check); |
- } |
- |
- // For a given |object| notify the garbage collector that the slot |address| |
- // has been written. |value| is the object being stored. The value and |
- // address registers are clobbered by the operation. |
- void RecordWrite( |
- Register object, |
- Register address, |
- Register value, |
- LinkRegisterStatus lr_status, |
- SaveFPRegsMode save_fp, |
- RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
- SmiCheck smi_check = INLINE_SMI_CHECK); |
- |
- // Checks the color of an object. If the object is already grey or black |
- // then we just fall through, since it is already live. If it is white and |
- // we can determine that it doesn't need to be scanned, then we just mark it |
- // black and fall through. For the rest we jump to the label so the |
- // incremental marker can fix its assumptions. |
- void EnsureNotWhite(Register object, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4, |
- Label* object_is_white_and_not_data); |
- |
- // Detects conservatively whether an object is data-only, i.e. it does need to |
- // be scanned by the garbage collector. |
- void JumpIfDataObject(Register value, |
- Register scratch, |
- Label* not_data_object); |
- |
- // Helper for finding the mark bits for an address. |
- // Note that the behaviour slightly differs from other architectures. |
- // On exit: |
- // - addr_reg is unchanged. |
- // - The bitmap register points at the word with the mark bits. |
- // - The shift register contains the index of the first color bit for this |
- // object in the bitmap. |
- inline void GetMarkBits(Register addr_reg, |
- Register bitmap_reg, |
- Register shift_reg); |
- |
- // Check if an object has a given incremental marking color. |
- void HasColor(Register object, |
- Register scratch0, |
- Register scratch1, |
- Label* has_color, |
- int first_bit, |
- int second_bit); |
- |
- void JumpIfBlack(Register object, |
- Register scratch0, |
- Register scratch1, |
- Label* on_black); |
- |
- |
- // Get the location of a relocated constant (its address in the constant pool) |
- // from its load site. |
- void GetRelocatedValueLocation(Register ldr_location, |
- Register result); |
- |
- |
- // --------------------------------------------------------------------------- |
- // Debugging. |
- |
- // Calls Abort(msg) if the condition cond is not satisfied. |
- // Use --debug_code to enable. |
- void Assert(Condition cond, BailoutReason reason); |
- void AssertRegisterIsClear(Register reg, BailoutReason reason); |
- void AssertRegisterIsRoot( |
- Register reg, |
- Heap::RootListIndex index, |
- BailoutReason reason = kRegisterDidNotMatchExpectedRoot); |
- void AssertFastElements(Register elements); |
- |
- // Abort if the specified register contains the invalid color bit pattern. |
- // The pattern must be in bits [1:0] of 'reg' register. |
- // |
- // If emit_debug_code() is false, this emits no code. |
- void AssertHasValidColor(const Register& reg); |
- |
- // Abort if 'object' register doesn't point to a string object. |
- // |
- // If emit_debug_code() is false, this emits no code. |
- void AssertIsString(const Register& object); |
- |
- // Like Assert(), but always enabled. |
- void Check(Condition cond, BailoutReason reason); |
- void CheckRegisterIsClear(Register reg, BailoutReason reason); |
- |
- // Print a message to stderr and abort execution. |
- void Abort(BailoutReason reason); |
- |
- // Conditionally load the cached Array transitioned map of type |
- // transitioned_kind from the native context if the map in register |
- // map_in_out is the cached Array map in the native context of |
- // expected_kind. |
- void LoadTransitionedArrayMapConditional( |
- ElementsKind expected_kind, |
- ElementsKind transitioned_kind, |
- Register map_in_out, |
- Register scratch1, |
- Register scratch2, |
- Label* no_map_match); |
- |
- void LoadGlobalFunction(int index, Register function); |
- |
- // Load the initial map from the global function. The registers function and |
- // map can be the same, function is then overwritten. |
- void LoadGlobalFunctionInitialMap(Register function, |
- Register map, |
- Register scratch); |
- |
- CPURegList* TmpList() { return &tmp_list_; } |
- CPURegList* FPTmpList() { return &fptmp_list_; } |
- |
- // Like printf, but print at run-time from generated code. |
- // |
- // The caller must ensure that arguments for floating-point placeholders |
- // (such as %e, %f or %g) are FPRegisters, and that arguments for integer |
- // placeholders are Registers. |
- // |
- // A maximum of four arguments may be given to any single Printf call. The |
- // arguments must be of the same type, but they do not need to have the same |
- // size. |
- // |
- // The following registers cannot be printed: |
- // StackPointer(), csp. |
- // |
- // This function automatically preserves caller-saved registers so that |
- // calling code can use Printf at any point without having to worry about |
- // corruption. The preservation mechanism generates a lot of code. If this is |
- // a problem, preserve the important registers manually and then call |
- // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are |
- // implicitly preserved. |
- // |
- // Unlike many MacroAssembler functions, x8 and x9 are guaranteed to be |
- // preserved, and can be printed. This allows Printf to be used during debug |
- // code. |
- // |
- // This function assumes (and asserts) that the current stack pointer is |
- // callee-saved, not caller-saved. This is most likely the case anyway, as a |
- // caller-saved stack pointer doesn't make a lot of sense. |
- void Printf(const char * format, |
- const CPURegister& arg0 = NoCPUReg, |
- const CPURegister& arg1 = NoCPUReg, |
- const CPURegister& arg2 = NoCPUReg, |
- const CPURegister& arg3 = NoCPUReg); |
- |
- // Like Printf, but don't preserve any caller-saved registers, not even 'lr'. |
- // |
- // The return code from the system printf call will be returned in x0. |
- void PrintfNoPreserve(const char * format, |
- const CPURegister& arg0 = NoCPUReg, |
- const CPURegister& arg1 = NoCPUReg, |
- const CPURegister& arg2 = NoCPUReg, |
- const CPURegister& arg3 = NoCPUReg); |
- |
- // Code ageing support functions. |
- |
- // Code ageing on A64 works similarly to on ARM. When V8 wants to mark a |
- // function as old, it replaces some of the function prologue (generated by |
- // FullCodeGenerator::Generate) with a call to a special stub (ultimately |
- // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the |
- // function prologue to its initial young state (indicating that it has been |
- // recently run) and continues. A young function is therefore one which has a |
- // normal frame setup sequence, and an old function has a code age sequence |
- // which calls a code ageing stub. |
- |
- // Set up a basic stack frame for young code (or code exempt from ageing) with |
- // type FUNCTION. It may be patched later for code ageing support. This is |
- // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence. |
- // |
- // This function takes an Assembler so it can be called from either a |
- // MacroAssembler or a PatchingAssembler context. |
- static void EmitFrameSetupForCodeAgePatching(Assembler* assm); |
- |
- // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context. |
- void EmitFrameSetupForCodeAgePatching(); |
- |
- // Emit a code age sequence that calls the relevant code age stub. The code |
- // generated by this sequence is expected to replace the code generated by |
- // EmitFrameSetupForCodeAgePatching, and represents an old function. |
- // |
- // If stub is NULL, this function generates the code age sequence but omits |
- // the stub address that is normally embedded in the instruction stream. This |
- // can be used by debug code to verify code age sequences. |
- static void EmitCodeAgeSequence(Assembler* assm, Code* stub); |
- |
- // Call EmitCodeAgeSequence from a MacroAssembler context. |
- void EmitCodeAgeSequence(Code* stub); |
- |
- // Return true if the sequence is a young sequence geneated by |
- // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the |
- // sequence is a code age sequence (emitted by EmitCodeAgeSequence). |
- static bool IsYoungSequence(byte* sequence); |
- |
-#ifdef DEBUG |
- // Return true if the sequence is a code age sequence generated by |
- // EmitCodeAgeSequence. |
- static bool IsCodeAgeSequence(byte* sequence); |
-#endif |
- |
- // Jumps to found label if a prototype map has dictionary elements. |
- void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, |
- Register scratch1, Label* found); |
- |
- private: |
- // Helpers for CopyFields. |
- // These each implement CopyFields in a different way. |
- void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count, |
- Register scratch1, Register scratch2, |
- Register scratch3, Register scratch4, |
- Register scratch5); |
- void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count, |
- Register scratch1, Register scratch2, |
- Register scratch3, Register scratch4); |
- void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count, |
- Register scratch1, Register scratch2, |
- Register scratch3); |
- |
- // The actual Push and Pop implementations. These don't generate any code |
- // other than that required for the push or pop. This allows |
- // (Push|Pop)CPURegList to bundle together run-time assertions for a large |
- // block of registers. |
- // |
- // Note that size is per register, and is specified in bytes. |
- void PushHelper(int count, int size, |
- const CPURegister& src0, const CPURegister& src1, |
- const CPURegister& src2, const CPURegister& src3); |
- void PopHelper(int count, int size, |
- const CPURegister& dst0, const CPURegister& dst1, |
- const CPURegister& dst2, const CPURegister& dst3); |
- |
- // Perform necessary maintenance operations before a push or pop. |
- // |
- // Note that size is specified in bytes. |
- void PrepareForPush(Operand total_size); |
- void PrepareForPop(Operand total_size); |
- |
- void PrepareForPush(int count, int size) { PrepareForPush(count * size); } |
- void PrepareForPop(int count, int size) { PrepareForPop(count * size); } |
- |
- // Call Printf. On a native build, a simple call will be generated, but if the |
- // simulator is being used then a suitable pseudo-instruction is used. The |
- // arguments and stack (csp) must be prepared by the caller as for a normal |
- // AAPCS64 call to 'printf'. |
- // |
- // The 'type' argument specifies the type of the optional arguments. |
- void CallPrintf(CPURegister::RegisterType type = CPURegister::kNoRegister); |
- |
- // Helper for throwing exceptions. Compute a handler address and jump to |
- // it. See the implementation for register usage. |
- void JumpToHandlerEntry(Register exception, |
- Register object, |
- Register state, |
- Register scratch1, |
- Register scratch2); |
- |
- // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. |
- void InNewSpace(Register object, |
- Condition cond, // eq for new space, ne otherwise. |
- Label* branch); |
- |
- // Try to convert a double to an int so that integer fast-paths may be |
- // used. Not every valid integer value is guaranteed to be caught. |
- // It supports both 32-bit and 64-bit integers depending whether 'as_int' |
- // is a W or X register. |
- // |
- // This does not distinguish between +0 and -0, so if this distinction is |
- // important it must be checked separately. |
- // |
- // On output the Z flag is set if the conversion was successful. |
- void TryConvertDoubleToInt(Register as_int, |
- FPRegister value, |
- FPRegister scratch_d, |
- Label* on_successful_conversion = NULL, |
- Label* on_failed_conversion = NULL); |
- |
- bool generating_stub_; |
-#if DEBUG |
- // Tell whether any of the macro instruction can be used. When false the |
- // MacroAssembler will assert if a method which can emit a variable number |
- // of instructions is called. |
- bool allow_macro_instructions_; |
-#endif |
- bool has_frame_; |
- |
- // The Abort method should call a V8 runtime function, but the CallRuntime |
- // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will |
- // use a simpler abort mechanism that doesn't depend on CEntryStub. |
- // |
- // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is |
- // being generated. |
- bool use_real_aborts_; |
- |
- // This handle will be patched with the code object on installation. |
- Handle<Object> code_object_; |
- |
- // The register to use as a stack pointer for stack operations. |
- Register sp_; |
- |
- // Scratch registers available for use by the MacroAssembler. |
- CPURegList tmp_list_; |
- CPURegList fptmp_list_; |
- |
- void InitializeNewString(Register string, |
- Register length, |
- Heap::RootListIndex map_index, |
- Register scratch1, |
- Register scratch2); |
- |
- public: |
- // Far branches resolving. |
- // |
- // The various classes of branch instructions with immediate offsets have |
- // different ranges. While the Assembler will fail to assemble a branch |
- // exceeding its range, the MacroAssembler offers a mechanism to resolve |
- // branches to too distant targets, either by tweaking the generated code to |
- // use branch instructions with wider ranges or generating veneers. |
- // |
- // Currently branches to distant targets are resolved using unconditional |
- // branch isntructions with a range of +-128MB. If that becomes too little |
- // (!), the mechanism can be extended to generate special veneers for really |
- // far targets. |
- |
- // Helps resolve branching to labels potentially out of range. |
- // If the label is not bound, it registers the information necessary to later |
- // be able to emit a veneer for this branch if necessary. |
- // If the label is bound, it returns true if the label (or the previous link |
- // in the label chain) is out of range. In that case the caller is responsible |
- // for generating appropriate code. |
- // Otherwise it returns false. |
- // This function also checks wether veneers need to be emitted. |
- bool NeedExtraInstructionsOrRegisterBranch(Label *label, |
- ImmBranchType branch_type); |
-}; |
- |
- |
-// Use this scope when you need a one-to-one mapping bewteen methods and |
-// instructions. This scope prevents the MacroAssembler from being called and |
-// literal pools from being emitted. It also asserts the number of instructions |
-// emitted is what you specified when creating the scope. |
-class InstructionAccurateScope BASE_EMBEDDED { |
- public: |
- InstructionAccurateScope(MacroAssembler* masm, size_t count = 0) |
- : masm_(masm) |
-#ifdef DEBUG |
- , |
- size_(count * kInstructionSize) |
-#endif |
- { |
- // Before blocking the const pool, see if it needs to be emitted. |
- masm_->CheckConstPool(false, true); |
- |
- masm_->StartBlockConstPool(); |
-#ifdef DEBUG |
- if (count != 0) { |
- masm_->bind(&start_); |
- } |
- previous_allow_macro_instructions_ = masm_->allow_macro_instructions(); |
- masm_->set_allow_macro_instructions(false); |
-#endif |
- } |
- |
- ~InstructionAccurateScope() { |
- masm_->EndBlockConstPool(); |
-#ifdef DEBUG |
- if (start_.is_bound()) { |
- ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_); |
- } |
- masm_->set_allow_macro_instructions(previous_allow_macro_instructions_); |
-#endif |
- } |
- |
- private: |
- MacroAssembler* masm_; |
-#ifdef DEBUG |
- size_t size_; |
- Label start_; |
- bool previous_allow_macro_instructions_; |
-#endif |
-}; |
- |
- |
-// This scope utility allows scratch registers to be managed safely. The |
-// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch |
-// registers. These registers can be allocated on demand, and will be returned |
-// at the end of the scope. |
-// |
-// When the scope ends, the MacroAssembler's lists will be restored to their |
-// original state, even if the lists were modified by some other means. |
-class UseScratchRegisterScope { |
- public: |
- explicit UseScratchRegisterScope(MacroAssembler* masm) |
- : available_(masm->TmpList()), |
- availablefp_(masm->FPTmpList()), |
- old_available_(available_->list()), |
- old_availablefp_(availablefp_->list()) { |
- ASSERT(available_->type() == CPURegister::kRegister); |
- ASSERT(availablefp_->type() == CPURegister::kFPRegister); |
- } |
- |
- ~UseScratchRegisterScope(); |
- |
- // Take a register from the appropriate temps list. It will be returned |
- // automatically when the scope ends. |
- Register AcquireW() { return AcquireNextAvailable(available_).W(); } |
- Register AcquireX() { return AcquireNextAvailable(available_).X(); } |
- FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); } |
- FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); } |
- |
- Register AcquireSameSizeAs(const Register& reg); |
- FPRegister AcquireSameSizeAs(const FPRegister& reg); |
- |
- private: |
- static CPURegister AcquireNextAvailable(CPURegList* available); |
- |
- // Available scratch registers. |
- CPURegList* available_; // kRegister |
- CPURegList* availablefp_; // kFPRegister |
- |
- // The state of the available lists at the start of this scope. |
- RegList old_available_; // kRegister |
- RegList old_availablefp_; // kFPRegister |
-}; |
- |
- |
-inline MemOperand ContextMemOperand(Register context, int index) { |
- return MemOperand(context, Context::SlotOffset(index)); |
-} |
- |
-inline MemOperand GlobalObjectMemOperand() { |
- return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX); |
-} |
- |
- |
-// Encode and decode information about patchable inline SMI checks. |
-class InlineSmiCheckInfo { |
- public: |
- explicit InlineSmiCheckInfo(Address info); |
- |
- bool HasSmiCheck() const { |
- return smi_check_ != NULL; |
- } |
- |
- const Register& SmiRegister() const { |
- return reg_; |
- } |
- |
- Instruction* SmiCheck() const { |
- return smi_check_; |
- } |
- |
- // Use MacroAssembler::InlineData to emit information about patchable inline |
- // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to |
- // indicate that there is no inline SMI check. Note that 'reg' cannot be csp. |
- // |
- // The generated patch information can be read using the InlineSMICheckInfo |
- // class. |
- static void Emit(MacroAssembler* masm, const Register& reg, |
- const Label* smi_check); |
- |
- // Emit information to indicate that there is no inline SMI check. |
- static void EmitNotInlined(MacroAssembler* masm) { |
- Label unbound; |
- Emit(masm, NoReg, &unbound); |
- } |
- |
- private: |
- Register reg_; |
- Instruction* smi_check_; |
- |
- // Fields in the data encoded by InlineData. |
- |
- // A width of 5 (Rd_width) for the SMI register preclues the use of csp, |
- // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be |
- // used in a patchable check. The Emit() method checks this. |
- // |
- // Note that the total size of the fields is restricted by the underlying |
- // storage size handled by the BitField class, which is a uint32_t. |
- class RegisterBits : public BitField<unsigned, 0, 5> {}; |
- class DeltaBits : public BitField<uint32_t, 5, 32-5> {}; |
-}; |
- |
-} } // namespace v8::internal |
- |
-#ifdef GENERATED_CODE_COVERAGE |
-#error "Unsupported option" |
-#define CODE_COVERAGE_STRINGIFY(x) #x |
-#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
-#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
-#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> |
-#else |
-#define ACCESS_MASM(masm) masm-> |
-#endif |
- |
-#endif // V8_A64_MACRO_ASSEMBLER_A64_H_ |