| Index: src/a64/macro-assembler-a64.cc
|
| diff --git a/src/a64/macro-assembler-a64.cc b/src/a64/macro-assembler-a64.cc
|
| deleted file mode 100644
|
| index 851f10aba83fcec7687e21c62ca6a86646246bbd..0000000000000000000000000000000000000000
|
| --- a/src/a64/macro-assembler-a64.cc
|
| +++ /dev/null
|
| @@ -1,5171 +0,0 @@
|
| -// Copyright 2013 the V8 project authors. All rights reserved.
|
| -// Redistribution and use in source and binary forms, with or without
|
| -// modification, are permitted provided that the following conditions are
|
| -// met:
|
| -//
|
| -// * Redistributions of source code must retain the above copyright
|
| -// notice, this list of conditions and the following disclaimer.
|
| -// * Redistributions in binary form must reproduce the above
|
| -// copyright notice, this list of conditions and the following
|
| -// disclaimer in the documentation and/or other materials provided
|
| -// with the distribution.
|
| -// * Neither the name of Google Inc. nor the names of its
|
| -// contributors may be used to endorse or promote products derived
|
| -// from this software without specific prior written permission.
|
| -//
|
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| -
|
| -#include "v8.h"
|
| -
|
| -#if V8_TARGET_ARCH_A64
|
| -
|
| -#include "bootstrapper.h"
|
| -#include "codegen.h"
|
| -#include "cpu-profiler.h"
|
| -#include "debug.h"
|
| -#include "isolate-inl.h"
|
| -#include "runtime.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
|
| -#define __
|
| -
|
| -
|
| -MacroAssembler::MacroAssembler(Isolate* arg_isolate,
|
| - byte * buffer,
|
| - unsigned buffer_size)
|
| - : Assembler(arg_isolate, buffer, buffer_size),
|
| - generating_stub_(false),
|
| -#if DEBUG
|
| - allow_macro_instructions_(true),
|
| -#endif
|
| - has_frame_(false),
|
| - use_real_aborts_(true),
|
| - sp_(jssp), tmp_list_(ip0, ip1), fptmp_list_(fp_scratch) {
|
| - if (isolate() != NULL) {
|
| - code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
|
| - isolate());
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LogicalMacro(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - LogicalOp op) {
|
| - UseScratchRegisterScope temps(this);
|
| -
|
| - if (operand.NeedsRelocation()) {
|
| - Register temp = temps.AcquireX();
|
| - LoadRelocated(temp, operand);
|
| - Logical(rd, rn, temp, op);
|
| -
|
| - } else if (operand.IsImmediate()) {
|
| - int64_t immediate = operand.immediate();
|
| - unsigned reg_size = rd.SizeInBits();
|
| - ASSERT(rd.Is64Bits() || is_uint32(immediate));
|
| -
|
| - // If the operation is NOT, invert the operation and immediate.
|
| - if ((op & NOT) == NOT) {
|
| - op = static_cast<LogicalOp>(op & ~NOT);
|
| - immediate = ~immediate;
|
| - if (rd.Is32Bits()) {
|
| - immediate &= kWRegMask;
|
| - }
|
| - }
|
| -
|
| - // Special cases for all set or all clear immediates.
|
| - if (immediate == 0) {
|
| - switch (op) {
|
| - case AND:
|
| - Mov(rd, 0);
|
| - return;
|
| - case ORR: // Fall through.
|
| - case EOR:
|
| - Mov(rd, rn);
|
| - return;
|
| - case ANDS: // Fall through.
|
| - case BICS:
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - } else if ((rd.Is64Bits() && (immediate == -1L)) ||
|
| - (rd.Is32Bits() && (immediate == 0xffffffffL))) {
|
| - switch (op) {
|
| - case AND:
|
| - Mov(rd, rn);
|
| - return;
|
| - case ORR:
|
| - Mov(rd, immediate);
|
| - return;
|
| - case EOR:
|
| - Mvn(rd, rn);
|
| - return;
|
| - case ANDS: // Fall through.
|
| - case BICS:
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| -
|
| - unsigned n, imm_s, imm_r;
|
| - if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
|
| - // Immediate can be encoded in the instruction.
|
| - LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
|
| - } else {
|
| - // Immediate can't be encoded: synthesize using move immediate.
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - Mov(temp, immediate);
|
| - if (rd.Is(csp)) {
|
| - // If rd is the stack pointer we cannot use it as the destination
|
| - // register so we use the temp register as an intermediate again.
|
| - Logical(temp, rn, temp, op);
|
| - Mov(csp, temp);
|
| - } else {
|
| - Logical(rd, rn, temp, op);
|
| - }
|
| - }
|
| -
|
| - } else if (operand.IsExtendedRegister()) {
|
| - ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
|
| - // Add/sub extended supports shift <= 4. We want to support exactly the
|
| - // same modes here.
|
| - ASSERT(operand.shift_amount() <= 4);
|
| - ASSERT(operand.reg().Is64Bits() ||
|
| - ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - EmitExtendShift(temp, operand.reg(), operand.extend(),
|
| - operand.shift_amount());
|
| - Logical(rd, rn, temp, op);
|
| -
|
| - } else {
|
| - // The operand can be encoded in the instruction.
|
| - ASSERT(operand.IsShiftedRegister());
|
| - Logical(rd, rn, operand, op);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
|
| - ASSERT(allow_macro_instructions_);
|
| - ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
|
| - ASSERT(!rd.IsZero());
|
| -
|
| - // TODO(all) extend to support more immediates.
|
| - //
|
| - // Immediates on Aarch64 can be produced using an initial value, and zero to
|
| - // three move keep operations.
|
| - //
|
| - // Initial values can be generated with:
|
| - // 1. 64-bit move zero (movz).
|
| - // 2. 32-bit move inverted (movn).
|
| - // 3. 64-bit move inverted.
|
| - // 4. 32-bit orr immediate.
|
| - // 5. 64-bit orr immediate.
|
| - // Move-keep may then be used to modify each of the 16-bit half-words.
|
| - //
|
| - // The code below supports all five initial value generators, and
|
| - // applying move-keep operations to move-zero and move-inverted initial
|
| - // values.
|
| -
|
| - unsigned reg_size = rd.SizeInBits();
|
| - unsigned n, imm_s, imm_r;
|
| - if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
|
| - // Immediate can be represented in a move zero instruction. Movz can't
|
| - // write to the stack pointer.
|
| - movz(rd, imm);
|
| - } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
|
| - // Immediate can be represented in a move inverted instruction. Movn can't
|
| - // write to the stack pointer.
|
| - movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
|
| - } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
|
| - // Immediate can be represented in a logical orr instruction.
|
| - LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
|
| - } else {
|
| - // Generic immediate case. Imm will be represented by
|
| - // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
|
| - // A move-zero or move-inverted is generated for the first non-zero or
|
| - // non-0xffff immX, and a move-keep for subsequent non-zero immX.
|
| -
|
| - uint64_t ignored_halfword = 0;
|
| - bool invert_move = false;
|
| - // If the number of 0xffff halfwords is greater than the number of 0x0000
|
| - // halfwords, it's more efficient to use move-inverted.
|
| - if (CountClearHalfWords(~imm, reg_size) >
|
| - CountClearHalfWords(imm, reg_size)) {
|
| - ignored_halfword = 0xffffL;
|
| - invert_move = true;
|
| - }
|
| -
|
| - // Mov instructions can't move immediate values into the stack pointer, so
|
| - // set up a temporary register, if needed.
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
|
| -
|
| - // Iterate through the halfwords. Use movn/movz for the first non-ignored
|
| - // halfword, and movk for subsequent halfwords.
|
| - ASSERT((reg_size % 16) == 0);
|
| - bool first_mov_done = false;
|
| - for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
|
| - uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
|
| - if (imm16 != ignored_halfword) {
|
| - if (!first_mov_done) {
|
| - if (invert_move) {
|
| - movn(temp, (~imm16) & 0xffffL, 16 * i);
|
| - } else {
|
| - movz(temp, imm16, 16 * i);
|
| - }
|
| - first_mov_done = true;
|
| - } else {
|
| - // Construct a wider constant.
|
| - movk(temp, imm16, 16 * i);
|
| - }
|
| - }
|
| - }
|
| - ASSERT(first_mov_done);
|
| -
|
| - // Move the temporary if the original destination register was the stack
|
| - // pointer.
|
| - if (rd.IsSP()) {
|
| - mov(rd, temp);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Mov(const Register& rd,
|
| - const Operand& operand,
|
| - DiscardMoveMode discard_mode) {
|
| - ASSERT(allow_macro_instructions_);
|
| - ASSERT(!rd.IsZero());
|
| -
|
| - // Provide a swap register for instructions that need to write into the
|
| - // system stack pointer (and can't do this inherently).
|
| - UseScratchRegisterScope temps(this);
|
| - Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
|
| -
|
| - if (operand.NeedsRelocation()) {
|
| - LoadRelocated(dst, operand);
|
| -
|
| - } else if (operand.IsImmediate()) {
|
| - // Call the macro assembler for generic immediates.
|
| - Mov(dst, operand.immediate());
|
| -
|
| - } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
|
| - // Emit a shift instruction if moving a shifted register. This operation
|
| - // could also be achieved using an orr instruction (like orn used by Mvn),
|
| - // but using a shift instruction makes the disassembly clearer.
|
| - EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
|
| -
|
| - } else if (operand.IsExtendedRegister()) {
|
| - // Emit an extend instruction if moving an extended register. This handles
|
| - // extend with post-shift operations, too.
|
| - EmitExtendShift(dst, operand.reg(), operand.extend(),
|
| - operand.shift_amount());
|
| -
|
| - } else {
|
| - // Otherwise, emit a register move only if the registers are distinct, or
|
| - // if they are not X registers.
|
| - //
|
| - // Note that mov(w0, w0) is not a no-op because it clears the top word of
|
| - // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
|
| - // registers is not required to clear the top word of the X register. In
|
| - // this case, the instruction is discarded.
|
| - //
|
| - // If csp is an operand, add #0 is emitted, otherwise, orr #0.
|
| - if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
|
| - (discard_mode == kDontDiscardForSameWReg))) {
|
| - Assembler::mov(rd, operand.reg());
|
| - }
|
| - // This case can handle writes into the system stack pointer directly.
|
| - dst = rd;
|
| - }
|
| -
|
| - // Copy the result to the system stack pointer.
|
| - if (!dst.Is(rd)) {
|
| - ASSERT(rd.IsSP());
|
| - Assembler::mov(rd, dst);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
|
| - ASSERT(allow_macro_instructions_);
|
| -
|
| - if (operand.NeedsRelocation()) {
|
| - LoadRelocated(rd, operand);
|
| - mvn(rd, rd);
|
| -
|
| - } else if (operand.IsImmediate()) {
|
| - // Call the macro assembler for generic immediates.
|
| - Mov(rd, ~operand.immediate());
|
| -
|
| - } else if (operand.IsExtendedRegister()) {
|
| - // Emit two instructions for the extend case. This differs from Mov, as
|
| - // the extend and invert can't be achieved in one instruction.
|
| - EmitExtendShift(rd, operand.reg(), operand.extend(),
|
| - operand.shift_amount());
|
| - mvn(rd, rd);
|
| -
|
| - } else {
|
| - mvn(rd, operand);
|
| - }
|
| -}
|
| -
|
| -
|
| -unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
|
| - ASSERT((reg_size % 8) == 0);
|
| - int count = 0;
|
| - for (unsigned i = 0; i < (reg_size / 16); i++) {
|
| - if ((imm & 0xffff) == 0) {
|
| - count++;
|
| - }
|
| - imm >>= 16;
|
| - }
|
| - return count;
|
| -}
|
| -
|
| -
|
| -// The movz instruction can generate immediates containing an arbitrary 16-bit
|
| -// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
|
| -bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
|
| - ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
|
| - return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
|
| -}
|
| -
|
| -
|
| -// The movn instruction can generate immediates containing an arbitrary 16-bit
|
| -// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
|
| -bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
|
| - return IsImmMovz(~imm, reg_size);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ConditionalCompareMacro(const Register& rn,
|
| - const Operand& operand,
|
| - StatusFlags nzcv,
|
| - Condition cond,
|
| - ConditionalCompareOp op) {
|
| - ASSERT((cond != al) && (cond != nv));
|
| - if (operand.NeedsRelocation()) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - LoadRelocated(temp, operand);
|
| - ConditionalCompareMacro(rn, temp, nzcv, cond, op);
|
| -
|
| - } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
|
| - (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
|
| - // The immediate can be encoded in the instruction, or the operand is an
|
| - // unshifted register: call the assembler.
|
| - ConditionalCompare(rn, operand, nzcv, cond, op);
|
| -
|
| - } else {
|
| - // The operand isn't directly supported by the instruction: perform the
|
| - // operation on a temporary register.
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - Mov(temp, operand);
|
| - ConditionalCompare(rn, temp, nzcv, cond, op);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Csel(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - Condition cond) {
|
| - ASSERT(allow_macro_instructions_);
|
| - ASSERT(!rd.IsZero());
|
| - ASSERT((cond != al) && (cond != nv));
|
| - if (operand.IsImmediate()) {
|
| - // Immediate argument. Handle special cases of 0, 1 and -1 using zero
|
| - // register.
|
| - int64_t imm = operand.immediate();
|
| - Register zr = AppropriateZeroRegFor(rn);
|
| - if (imm == 0) {
|
| - csel(rd, rn, zr, cond);
|
| - } else if (imm == 1) {
|
| - csinc(rd, rn, zr, cond);
|
| - } else if (imm == -1) {
|
| - csinv(rd, rn, zr, cond);
|
| - } else {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - Mov(temp, operand.immediate());
|
| - csel(rd, rn, temp, cond);
|
| - }
|
| - } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
|
| - // Unshifted register argument.
|
| - csel(rd, rn, operand.reg(), cond);
|
| - } else {
|
| - // All other arguments.
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - Mov(temp, operand);
|
| - csel(rd, rn, temp, cond);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AddSubMacro(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - FlagsUpdate S,
|
| - AddSubOp op) {
|
| - if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
|
| - !operand.NeedsRelocation() && (S == LeaveFlags)) {
|
| - // The instruction would be a nop. Avoid generating useless code.
|
| - return;
|
| - }
|
| -
|
| - if (operand.NeedsRelocation()) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - LoadRelocated(temp, operand);
|
| - AddSubMacro(rd, rn, temp, S, op);
|
| - } else if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
|
| - (rn.IsZero() && !operand.IsShiftedRegister()) ||
|
| - (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - Mov(temp, operand);
|
| - AddSub(rd, rn, temp, S, op);
|
| - } else {
|
| - AddSub(rd, rn, operand, S, op);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - FlagsUpdate S,
|
| - AddSubWithCarryOp op) {
|
| - ASSERT(rd.SizeInBits() == rn.SizeInBits());
|
| - UseScratchRegisterScope temps(this);
|
| -
|
| - if (operand.NeedsRelocation()) {
|
| - Register temp = temps.AcquireX();
|
| - LoadRelocated(temp, operand);
|
| - AddSubWithCarryMacro(rd, rn, temp, S, op);
|
| -
|
| - } else if (operand.IsImmediate() ||
|
| - (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
|
| - // Add/sub with carry (immediate or ROR shifted register.)
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - Mov(temp, operand);
|
| - AddSubWithCarry(rd, rn, temp, S, op);
|
| -
|
| - } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
|
| - // Add/sub with carry (shifted register).
|
| - ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
|
| - ASSERT(operand.shift() != ROR);
|
| - ASSERT(is_uintn(operand.shift_amount(),
|
| - rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
|
| - : kWRegSizeInBitsLog2));
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
|
| - AddSubWithCarry(rd, rn, temp, S, op);
|
| -
|
| - } else if (operand.IsExtendedRegister()) {
|
| - // Add/sub with carry (extended register).
|
| - ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
|
| - // Add/sub extended supports a shift <= 4. We want to support exactly the
|
| - // same modes.
|
| - ASSERT(operand.shift_amount() <= 4);
|
| - ASSERT(operand.reg().Is64Bits() ||
|
| - ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
|
| - Register temp = temps.AcquireSameSizeAs(rn);
|
| - EmitExtendShift(temp, operand.reg(), operand.extend(),
|
| - operand.shift_amount());
|
| - AddSubWithCarry(rd, rn, temp, S, op);
|
| -
|
| - } else {
|
| - // The addressing mode is directly supported by the instruction.
|
| - AddSubWithCarry(rd, rn, operand, S, op);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
|
| - const MemOperand& addr,
|
| - LoadStoreOp op) {
|
| - int64_t offset = addr.offset();
|
| - LSDataSize size = CalcLSDataSize(op);
|
| -
|
| - // Check if an immediate offset fits in the immediate field of the
|
| - // appropriate instruction. If not, emit two instructions to perform
|
| - // the operation.
|
| - if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
|
| - !IsImmLSUnscaled(offset)) {
|
| - // Immediate offset that can't be encoded using unsigned or unscaled
|
| - // addressing modes.
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireSameSizeAs(addr.base());
|
| - Mov(temp, addr.offset());
|
| - LoadStore(rt, MemOperand(addr.base(), temp), op);
|
| - } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
|
| - // Post-index beyond unscaled addressing range.
|
| - LoadStore(rt, MemOperand(addr.base()), op);
|
| - add(addr.base(), addr.base(), offset);
|
| - } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
|
| - // Pre-index beyond unscaled addressing range.
|
| - add(addr.base(), addr.base(), offset);
|
| - LoadStore(rt, MemOperand(addr.base()), op);
|
| - } else {
|
| - // Encodable in one load/store instruction.
|
| - LoadStore(rt, addr, op);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Load(const Register& rt,
|
| - const MemOperand& addr,
|
| - Representation r) {
|
| - ASSERT(!r.IsDouble());
|
| -
|
| - if (r.IsInteger8()) {
|
| - Ldrsb(rt, addr);
|
| - } else if (r.IsUInteger8()) {
|
| - Ldrb(rt, addr);
|
| - } else if (r.IsInteger16()) {
|
| - Ldrsh(rt, addr);
|
| - } else if (r.IsUInteger16()) {
|
| - Ldrh(rt, addr);
|
| - } else if (r.IsInteger32()) {
|
| - Ldr(rt.W(), addr);
|
| - } else {
|
| - ASSERT(rt.Is64Bits());
|
| - Ldr(rt, addr);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Store(const Register& rt,
|
| - const MemOperand& addr,
|
| - Representation r) {
|
| - ASSERT(!r.IsDouble());
|
| -
|
| - if (r.IsInteger8() || r.IsUInteger8()) {
|
| - Strb(rt, addr);
|
| - } else if (r.IsInteger16() || r.IsUInteger16()) {
|
| - Strh(rt, addr);
|
| - } else if (r.IsInteger32()) {
|
| - Str(rt.W(), addr);
|
| - } else {
|
| - ASSERT(rt.Is64Bits());
|
| - Str(rt, addr);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
|
| - Label *label, ImmBranchType b_type) {
|
| - bool need_longer_range = false;
|
| - // There are two situations in which we care about the offset being out of
|
| - // range:
|
| - // - The label is bound but too far away.
|
| - // - The label is not bound but linked, and the previous branch
|
| - // instruction in the chain is too far away.
|
| - if (label->is_bound() || label->is_linked()) {
|
| - need_longer_range =
|
| - !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
|
| - }
|
| - if (!need_longer_range && !label->is_bound()) {
|
| - int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
|
| - unresolved_branches_.insert(
|
| - std::pair<int, FarBranchInfo>(max_reachable_pc,
|
| - FarBranchInfo(pc_offset(), label)));
|
| - // Also maintain the next pool check.
|
| - next_veneer_pool_check_ =
|
| - Min(next_veneer_pool_check_,
|
| - max_reachable_pc - kVeneerDistanceCheckMargin);
|
| - }
|
| - return need_longer_range;
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
|
| - ASSERT((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
|
| - (bit == -1 || type >= kBranchTypeFirstUsingBit));
|
| - if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
|
| - B(static_cast<Condition>(type), label);
|
| - } else {
|
| - switch (type) {
|
| - case always: B(label); break;
|
| - case never: break;
|
| - case reg_zero: Cbz(reg, label); break;
|
| - case reg_not_zero: Cbnz(reg, label); break;
|
| - case reg_bit_clear: Tbz(reg, bit, label); break;
|
| - case reg_bit_set: Tbnz(reg, bit, label); break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::B(Label* label, Condition cond) {
|
| - ASSERT(allow_macro_instructions_);
|
| - ASSERT((cond != al) && (cond != nv));
|
| -
|
| - Label done;
|
| - bool need_extra_instructions =
|
| - NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
|
| -
|
| - if (need_extra_instructions) {
|
| - b(&done, InvertCondition(cond));
|
| - B(label);
|
| - } else {
|
| - b(label, cond);
|
| - }
|
| - bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
|
| - ASSERT(allow_macro_instructions_);
|
| -
|
| - Label done;
|
| - bool need_extra_instructions =
|
| - NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
|
| -
|
| - if (need_extra_instructions) {
|
| - tbz(rt, bit_pos, &done);
|
| - B(label);
|
| - } else {
|
| - tbnz(rt, bit_pos, label);
|
| - }
|
| - bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
|
| - ASSERT(allow_macro_instructions_);
|
| -
|
| - Label done;
|
| - bool need_extra_instructions =
|
| - NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
|
| -
|
| - if (need_extra_instructions) {
|
| - tbnz(rt, bit_pos, &done);
|
| - B(label);
|
| - } else {
|
| - tbz(rt, bit_pos, label);
|
| - }
|
| - bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Cbnz(const Register& rt, Label* label) {
|
| - ASSERT(allow_macro_instructions_);
|
| -
|
| - Label done;
|
| - bool need_extra_instructions =
|
| - NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
|
| -
|
| - if (need_extra_instructions) {
|
| - cbz(rt, &done);
|
| - B(label);
|
| - } else {
|
| - cbnz(rt, label);
|
| - }
|
| - bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Cbz(const Register& rt, Label* label) {
|
| - ASSERT(allow_macro_instructions_);
|
| -
|
| - Label done;
|
| - bool need_extra_instructions =
|
| - NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
|
| -
|
| - if (need_extra_instructions) {
|
| - cbnz(rt, &done);
|
| - B(label);
|
| - } else {
|
| - cbz(rt, label);
|
| - }
|
| - bind(&done);
|
| -}
|
| -
|
| -
|
| -// Pseudo-instructions.
|
| -
|
| -
|
| -void MacroAssembler::Abs(const Register& rd, const Register& rm,
|
| - Label* is_not_representable,
|
| - Label* is_representable) {
|
| - ASSERT(allow_macro_instructions_);
|
| - ASSERT(AreSameSizeAndType(rd, rm));
|
| -
|
| - Cmp(rm, 1);
|
| - Cneg(rd, rm, lt);
|
| -
|
| - // If the comparison sets the v flag, the input was the smallest value
|
| - // representable by rm, and the mathematical result of abs(rm) is not
|
| - // representable using two's complement.
|
| - if ((is_not_representable != NULL) && (is_representable != NULL)) {
|
| - B(is_not_representable, vs);
|
| - B(is_representable);
|
| - } else if (is_not_representable != NULL) {
|
| - B(is_not_representable, vs);
|
| - } else if (is_representable != NULL) {
|
| - B(is_representable, vc);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Abstracted stack operations.
|
| -
|
| -
|
| -void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
|
| - const CPURegister& src2, const CPURegister& src3) {
|
| - ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
|
| -
|
| - int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
|
| - int size = src0.SizeInBytes();
|
| -
|
| - PrepareForPush(count, size);
|
| - PushHelper(count, size, src0, src1, src2, src3);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
|
| - const CPURegister& src2, const CPURegister& src3,
|
| - const CPURegister& src4, const CPURegister& src5,
|
| - const CPURegister& src6, const CPURegister& src7) {
|
| - ASSERT(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
|
| -
|
| - int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
|
| - int size = src0.SizeInBytes();
|
| -
|
| - PrepareForPush(count, size);
|
| - PushHelper(4, size, src0, src1, src2, src3);
|
| - PushHelper(count - 4, size, src4, src5, src6, src7);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
|
| - const CPURegister& dst2, const CPURegister& dst3) {
|
| - // It is not valid to pop into the same register more than once in one
|
| - // instruction, not even into the zero register.
|
| - ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
|
| - ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
|
| - ASSERT(dst0.IsValid());
|
| -
|
| - int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
|
| - int size = dst0.SizeInBytes();
|
| -
|
| - PrepareForPop(count, size);
|
| - PopHelper(count, size, dst0, dst1, dst2, dst3);
|
| -
|
| - if (!csp.Is(StackPointer()) && emit_debug_code()) {
|
| - // It is safe to leave csp where it is when unwinding the JavaScript stack,
|
| - // but if we keep it matching StackPointer, the simulator can detect memory
|
| - // accesses in the now-free part of the stack.
|
| - Mov(csp, StackPointer());
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushPopQueue::PushQueued() {
|
| - if (queued_.empty()) return;
|
| -
|
| - masm_->PrepareForPush(size_);
|
| -
|
| - int count = queued_.size();
|
| - int index = 0;
|
| - while (index < count) {
|
| - // PushHelper can only handle registers with the same size and type, and it
|
| - // can handle only four at a time. Batch them up accordingly.
|
| - CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
|
| - int batch_index = 0;
|
| - do {
|
| - batch[batch_index++] = queued_[index++];
|
| - } while ((batch_index < 4) && (index < count) &&
|
| - batch[0].IsSameSizeAndType(queued_[index]));
|
| -
|
| - masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
|
| - batch[0], batch[1], batch[2], batch[3]);
|
| - }
|
| -
|
| - queued_.clear();
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushPopQueue::PopQueued() {
|
| - if (queued_.empty()) return;
|
| -
|
| - masm_->PrepareForPop(size_);
|
| -
|
| - int count = queued_.size();
|
| - int index = 0;
|
| - while (index < count) {
|
| - // PopHelper can only handle registers with the same size and type, and it
|
| - // can handle only four at a time. Batch them up accordingly.
|
| - CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
|
| - int batch_index = 0;
|
| - do {
|
| - batch[batch_index++] = queued_[index++];
|
| - } while ((batch_index < 4) && (index < count) &&
|
| - batch[0].IsSameSizeAndType(queued_[index]));
|
| -
|
| - masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
|
| - batch[0], batch[1], batch[2], batch[3]);
|
| - }
|
| -
|
| - queued_.clear();
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushCPURegList(CPURegList registers) {
|
| - int size = registers.RegisterSizeInBytes();
|
| -
|
| - PrepareForPush(registers.Count(), size);
|
| - // Push up to four registers at a time because if the current stack pointer is
|
| - // csp and reg_size is 32, registers must be pushed in blocks of four in order
|
| - // to maintain the 16-byte alignment for csp.
|
| - while (!registers.IsEmpty()) {
|
| - int count_before = registers.Count();
|
| - const CPURegister& src0 = registers.PopHighestIndex();
|
| - const CPURegister& src1 = registers.PopHighestIndex();
|
| - const CPURegister& src2 = registers.PopHighestIndex();
|
| - const CPURegister& src3 = registers.PopHighestIndex();
|
| - int count = count_before - registers.Count();
|
| - PushHelper(count, size, src0, src1, src2, src3);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PopCPURegList(CPURegList registers) {
|
| - int size = registers.RegisterSizeInBytes();
|
| -
|
| - PrepareForPop(registers.Count(), size);
|
| - // Pop up to four registers at a time because if the current stack pointer is
|
| - // csp and reg_size is 32, registers must be pushed in blocks of four in
|
| - // order to maintain the 16-byte alignment for csp.
|
| - while (!registers.IsEmpty()) {
|
| - int count_before = registers.Count();
|
| - const CPURegister& dst0 = registers.PopLowestIndex();
|
| - const CPURegister& dst1 = registers.PopLowestIndex();
|
| - const CPURegister& dst2 = registers.PopLowestIndex();
|
| - const CPURegister& dst3 = registers.PopLowestIndex();
|
| - int count = count_before - registers.Count();
|
| - PopHelper(count, size, dst0, dst1, dst2, dst3);
|
| - }
|
| -
|
| - if (!csp.Is(StackPointer()) && emit_debug_code()) {
|
| - // It is safe to leave csp where it is when unwinding the JavaScript stack,
|
| - // but if we keep it matching StackPointer, the simulator can detect memory
|
| - // accesses in the now-free part of the stack.
|
| - Mov(csp, StackPointer());
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
|
| - int size = src.SizeInBytes();
|
| -
|
| - PrepareForPush(count, size);
|
| -
|
| - if (FLAG_optimize_for_size && count > 8) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| -
|
| - Label loop;
|
| - __ Mov(temp, count / 2);
|
| - __ Bind(&loop);
|
| - PushHelper(2, size, src, src, NoReg, NoReg);
|
| - __ Subs(temp, temp, 1);
|
| - __ B(ne, &loop);
|
| -
|
| - count %= 2;
|
| - }
|
| -
|
| - // Push up to four registers at a time if possible because if the current
|
| - // stack pointer is csp and the register size is 32, registers must be pushed
|
| - // in blocks of four in order to maintain the 16-byte alignment for csp.
|
| - while (count >= 4) {
|
| - PushHelper(4, size, src, src, src, src);
|
| - count -= 4;
|
| - }
|
| - if (count >= 2) {
|
| - PushHelper(2, size, src, src, NoReg, NoReg);
|
| - count -= 2;
|
| - }
|
| - if (count == 1) {
|
| - PushHelper(1, size, src, NoReg, NoReg, NoReg);
|
| - count -= 1;
|
| - }
|
| - ASSERT(count == 0);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
|
| - PrepareForPush(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
|
| -
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireSameSizeAs(count);
|
| -
|
| - if (FLAG_optimize_for_size) {
|
| - Label loop, done;
|
| -
|
| - Subs(temp, count, 1);
|
| - B(mi, &done);
|
| -
|
| - // Push all registers individually, to save code size.
|
| - Bind(&loop);
|
| - Subs(temp, temp, 1);
|
| - PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
|
| - B(pl, &loop);
|
| -
|
| - Bind(&done);
|
| - } else {
|
| - Label loop, leftover2, leftover1, done;
|
| -
|
| - Subs(temp, count, 4);
|
| - B(mi, &leftover2);
|
| -
|
| - // Push groups of four first.
|
| - Bind(&loop);
|
| - Subs(temp, temp, 4);
|
| - PushHelper(4, src.SizeInBytes(), src, src, src, src);
|
| - B(pl, &loop);
|
| -
|
| - // Push groups of two.
|
| - Bind(&leftover2);
|
| - Tbz(count, 1, &leftover1);
|
| - PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
|
| -
|
| - // Push the last one (if required).
|
| - Bind(&leftover1);
|
| - Tbz(count, 0, &done);
|
| - PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
|
| -
|
| - Bind(&done);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushHelper(int count, int size,
|
| - const CPURegister& src0,
|
| - const CPURegister& src1,
|
| - const CPURegister& src2,
|
| - const CPURegister& src3) {
|
| - // Ensure that we don't unintentially modify scratch or debug registers.
|
| - InstructionAccurateScope scope(this);
|
| -
|
| - ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
|
| - ASSERT(size == src0.SizeInBytes());
|
| -
|
| - // When pushing multiple registers, the store order is chosen such that
|
| - // Push(a, b) is equivalent to Push(a) followed by Push(b).
|
| - switch (count) {
|
| - case 1:
|
| - ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
|
| - str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
|
| - break;
|
| - case 2:
|
| - ASSERT(src2.IsNone() && src3.IsNone());
|
| - stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
|
| - break;
|
| - case 3:
|
| - ASSERT(src3.IsNone());
|
| - stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
|
| - str(src0, MemOperand(StackPointer(), 2 * size));
|
| - break;
|
| - case 4:
|
| - // Skip over 4 * size, then fill in the gap. This allows four W registers
|
| - // to be pushed using csp, whilst maintaining 16-byte alignment for csp
|
| - // at all times.
|
| - stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
|
| - stp(src1, src0, MemOperand(StackPointer(), 2 * size));
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PopHelper(int count, int size,
|
| - const CPURegister& dst0,
|
| - const CPURegister& dst1,
|
| - const CPURegister& dst2,
|
| - const CPURegister& dst3) {
|
| - // Ensure that we don't unintentially modify scratch or debug registers.
|
| - InstructionAccurateScope scope(this);
|
| -
|
| - ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
|
| - ASSERT(size == dst0.SizeInBytes());
|
| -
|
| - // When popping multiple registers, the load order is chosen such that
|
| - // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
|
| - switch (count) {
|
| - case 1:
|
| - ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
|
| - ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
|
| - break;
|
| - case 2:
|
| - ASSERT(dst2.IsNone() && dst3.IsNone());
|
| - ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
|
| - break;
|
| - case 3:
|
| - ASSERT(dst3.IsNone());
|
| - ldr(dst2, MemOperand(StackPointer(), 2 * size));
|
| - ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
|
| - break;
|
| - case 4:
|
| - // Load the higher addresses first, then load the lower addresses and
|
| - // skip the whole block in the second instruction. This allows four W
|
| - // registers to be popped using csp, whilst maintaining 16-byte alignment
|
| - // for csp at all times.
|
| - ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
|
| - ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PrepareForPush(Operand total_size) {
|
| - // TODO(jbramley): This assertion generates too much code in some debug tests.
|
| - // AssertStackConsistency();
|
| - if (csp.Is(StackPointer())) {
|
| - // If the current stack pointer is csp, then it must be aligned to 16 bytes
|
| - // on entry and the total size of the specified registers must also be a
|
| - // multiple of 16 bytes.
|
| - if (total_size.IsImmediate()) {
|
| - ASSERT((total_size.immediate() % 16) == 0);
|
| - }
|
| -
|
| - // Don't check access size for non-immediate sizes. It's difficult to do
|
| - // well, and it will be caught by hardware (or the simulator) anyway.
|
| - } else {
|
| - // Even if the current stack pointer is not the system stack pointer (csp),
|
| - // the system stack pointer will still be modified in order to comply with
|
| - // ABI rules about accessing memory below the system stack pointer.
|
| - BumpSystemStackPointer(total_size);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PrepareForPop(Operand total_size) {
|
| - AssertStackConsistency();
|
| - if (csp.Is(StackPointer())) {
|
| - // If the current stack pointer is csp, then it must be aligned to 16 bytes
|
| - // on entry and the total size of the specified registers must also be a
|
| - // multiple of 16 bytes.
|
| - if (total_size.IsImmediate()) {
|
| - ASSERT((total_size.immediate() % 16) == 0);
|
| - }
|
| -
|
| - // Don't check access size for non-immediate sizes. It's difficult to do
|
| - // well, and it will be caught by hardware (or the simulator) anyway.
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
|
| - if (offset.IsImmediate()) {
|
| - ASSERT(offset.immediate() >= 0);
|
| - } else if (emit_debug_code()) {
|
| - Cmp(xzr, offset);
|
| - Check(le, kStackAccessBelowStackPointer);
|
| - }
|
| -
|
| - Str(src, MemOperand(StackPointer(), offset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
|
| - if (offset.IsImmediate()) {
|
| - ASSERT(offset.immediate() >= 0);
|
| - } else if (emit_debug_code()) {
|
| - Cmp(xzr, offset);
|
| - Check(le, kStackAccessBelowStackPointer);
|
| - }
|
| -
|
| - Ldr(dst, MemOperand(StackPointer(), offset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PokePair(const CPURegister& src1,
|
| - const CPURegister& src2,
|
| - int offset) {
|
| - ASSERT(AreSameSizeAndType(src1, src2));
|
| - ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
|
| - Stp(src1, src2, MemOperand(StackPointer(), offset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PeekPair(const CPURegister& dst1,
|
| - const CPURegister& dst2,
|
| - int offset) {
|
| - ASSERT(AreSameSizeAndType(dst1, dst2));
|
| - ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
|
| - Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushCalleeSavedRegisters() {
|
| - // Ensure that the macro-assembler doesn't use any scratch registers.
|
| - InstructionAccurateScope scope(this);
|
| -
|
| - // This method must not be called unless the current stack pointer is the
|
| - // system stack pointer (csp).
|
| - ASSERT(csp.Is(StackPointer()));
|
| -
|
| - MemOperand tos(csp, -2 * kXRegSize, PreIndex);
|
| -
|
| - stp(d14, d15, tos);
|
| - stp(d12, d13, tos);
|
| - stp(d10, d11, tos);
|
| - stp(d8, d9, tos);
|
| -
|
| - stp(x29, x30, tos);
|
| - stp(x27, x28, tos); // x28 = jssp
|
| - stp(x25, x26, tos);
|
| - stp(x23, x24, tos);
|
| - stp(x21, x22, tos);
|
| - stp(x19, x20, tos);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PopCalleeSavedRegisters() {
|
| - // Ensure that the macro-assembler doesn't use any scratch registers.
|
| - InstructionAccurateScope scope(this);
|
| -
|
| - // This method must not be called unless the current stack pointer is the
|
| - // system stack pointer (csp).
|
| - ASSERT(csp.Is(StackPointer()));
|
| -
|
| - MemOperand tos(csp, 2 * kXRegSize, PostIndex);
|
| -
|
| - ldp(x19, x20, tos);
|
| - ldp(x21, x22, tos);
|
| - ldp(x23, x24, tos);
|
| - ldp(x25, x26, tos);
|
| - ldp(x27, x28, tos); // x28 = jssp
|
| - ldp(x29, x30, tos);
|
| -
|
| - ldp(d8, d9, tos);
|
| - ldp(d10, d11, tos);
|
| - ldp(d12, d13, tos);
|
| - ldp(d14, d15, tos);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertStackConsistency() {
|
| - if (emit_debug_code()) {
|
| - if (csp.Is(StackPointer())) {
|
| - // We can't check the alignment of csp without using a scratch register
|
| - // (or clobbering the flags), but the processor (or simulator) will abort
|
| - // if it is not properly aligned during a load.
|
| - ldr(xzr, MemOperand(csp, 0));
|
| - } else if (FLAG_enable_slow_asserts) {
|
| - Label ok;
|
| - // Check that csp <= StackPointer(), preserving all registers and NZCV.
|
| - sub(StackPointer(), csp, StackPointer());
|
| - cbz(StackPointer(), &ok); // Ok if csp == StackPointer().
|
| - tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer().
|
| -
|
| - Abort(kTheCurrentStackPointerIsBelowCsp);
|
| -
|
| - bind(&ok);
|
| - // Restore StackPointer().
|
| - sub(StackPointer(), csp, StackPointer());
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadRoot(Register destination,
|
| - Heap::RootListIndex index) {
|
| - // TODO(jbramley): Most root values are constants, and can be synthesized
|
| - // without a load. Refer to the ARM back end for details.
|
| - Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::StoreRoot(Register source,
|
| - Heap::RootListIndex index) {
|
| - Str(source, MemOperand(root, index << kPointerSizeLog2));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadTrueFalseRoots(Register true_root,
|
| - Register false_root) {
|
| - STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
|
| - Ldp(true_root, false_root,
|
| - MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadHeapObject(Register result,
|
| - Handle<HeapObject> object) {
|
| - AllowDeferredHandleDereference using_raw_address;
|
| - if (isolate()->heap()->InNewSpace(*object)) {
|
| - Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
| - Mov(result, Operand(cell));
|
| - Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
|
| - } else {
|
| - Mov(result, Operand(object));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadInstanceDescriptors(Register map,
|
| - Register descriptors) {
|
| - Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
|
| - Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
|
| - DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
|
| - STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
|
| - Ldrsw(dst, UntagSmiFieldMemOperand(map, Map::kBitField3Offset));
|
| - And(dst, dst, Map::EnumLengthBits::kMask);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
|
| - STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
|
| - Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
|
| - And(dst, dst, Smi::FromInt(Map::EnumLengthBits::kMask));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckEnumCache(Register object,
|
| - Register null_value,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* call_runtime) {
|
| - ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
|
| - scratch3));
|
| -
|
| - Register empty_fixed_array_value = scratch0;
|
| - Register current_object = scratch1;
|
| -
|
| - LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
|
| - Label next, start;
|
| -
|
| - Mov(current_object, object);
|
| -
|
| - // Check if the enum length field is properly initialized, indicating that
|
| - // there is an enum cache.
|
| - Register map = scratch2;
|
| - Register enum_length = scratch3;
|
| - Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
|
| -
|
| - EnumLengthUntagged(enum_length, map);
|
| - Cmp(enum_length, kInvalidEnumCacheSentinel);
|
| - B(eq, call_runtime);
|
| -
|
| - B(&start);
|
| -
|
| - Bind(&next);
|
| - Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
|
| -
|
| - // For all objects but the receiver, check that the cache is empty.
|
| - EnumLengthUntagged(enum_length, map);
|
| - Cbnz(enum_length, call_runtime);
|
| -
|
| - Bind(&start);
|
| -
|
| - // Check that there are no elements. Register current_object contains the
|
| - // current JS object we've reached through the prototype chain.
|
| - Label no_elements;
|
| - Ldr(current_object, FieldMemOperand(current_object,
|
| - JSObject::kElementsOffset));
|
| - Cmp(current_object, empty_fixed_array_value);
|
| - B(eq, &no_elements);
|
| -
|
| - // Second chance, the object may be using the empty slow element dictionary.
|
| - CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
|
| - B(ne, call_runtime);
|
| -
|
| - Bind(&no_elements);
|
| - Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
|
| - Cmp(current_object, null_value);
|
| - B(ne, &next);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* no_memento_found) {
|
| - ExternalReference new_space_start =
|
| - ExternalReference::new_space_start(isolate());
|
| - ExternalReference new_space_allocation_top =
|
| - ExternalReference::new_space_allocation_top_address(isolate());
|
| -
|
| - Add(scratch1, receiver,
|
| - JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
|
| - Cmp(scratch1, new_space_start);
|
| - B(lt, no_memento_found);
|
| -
|
| - Mov(scratch2, new_space_allocation_top);
|
| - Ldr(scratch2, MemOperand(scratch2));
|
| - Cmp(scratch1, scratch2);
|
| - B(gt, no_memento_found);
|
| -
|
| - Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
|
| - Cmp(scratch1,
|
| - Operand(isolate()->factory()->allocation_memento_map()));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpToHandlerEntry(Register exception,
|
| - Register object,
|
| - Register state,
|
| - Register scratch1,
|
| - Register scratch2) {
|
| - // Handler expects argument in x0.
|
| - ASSERT(exception.Is(x0));
|
| -
|
| - // Compute the handler entry address and jump to it. The handler table is
|
| - // a fixed array of (smi-tagged) code offsets.
|
| - Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
|
| - Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
|
| - STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
|
| - Lsr(scratch2, state, StackHandler::kKindWidth);
|
| - Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
|
| - Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
|
| - Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
|
| - Br(scratch1);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InNewSpace(Register object,
|
| - Condition cond,
|
| - Label* branch) {
|
| - ASSERT(cond == eq || cond == ne);
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - And(temp, object, ExternalReference::new_space_mask(isolate()));
|
| - Cmp(temp, ExternalReference::new_space_start(isolate()));
|
| - B(cond, branch);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Throw(Register value,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4) {
|
| - // Adjust this code if not the case.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
| -
|
| - // The handler expects the exception in x0.
|
| - ASSERT(value.Is(x0));
|
| -
|
| - // Drop the stack pointer to the top of the top handler.
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
|
| - isolate())));
|
| - Ldr(jssp, MemOperand(scratch1));
|
| - // Restore the next handler.
|
| - Pop(scratch2);
|
| - Str(scratch2, MemOperand(scratch1));
|
| -
|
| - // Get the code object and state. Restore the context and frame pointer.
|
| - Register object = scratch1;
|
| - Register state = scratch2;
|
| - Pop(object, state, cp, fp);
|
| -
|
| - // If the handler is a JS frame, restore the context to the frame.
|
| - // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
|
| - // or cp.
|
| - Label not_js_frame;
|
| - Cbz(cp, ¬_js_frame);
|
| - Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| - Bind(¬_js_frame);
|
| -
|
| - JumpToHandlerEntry(value, object, state, scratch3, scratch4);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ThrowUncatchable(Register value,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4) {
|
| - // Adjust this code if not the case.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
| -
|
| - // The handler expects the exception in x0.
|
| - ASSERT(value.Is(x0));
|
| -
|
| - // Drop the stack pointer to the top of the top stack handler.
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
|
| - isolate())));
|
| - Ldr(jssp, MemOperand(scratch1));
|
| -
|
| - // Unwind the handlers until the ENTRY handler is found.
|
| - Label fetch_next, check_kind;
|
| - B(&check_kind);
|
| - Bind(&fetch_next);
|
| - Peek(jssp, StackHandlerConstants::kNextOffset);
|
| -
|
| - Bind(&check_kind);
|
| - STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
|
| - Peek(scratch2, StackHandlerConstants::kStateOffset);
|
| - TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
|
| -
|
| - // Set the top handler address to next handler past the top ENTRY handler.
|
| - Pop(scratch2);
|
| - Str(scratch2, MemOperand(scratch1));
|
| -
|
| - // Get the code object and state. Clear the context and frame pointer (0 was
|
| - // saved in the handler).
|
| - Register object = scratch1;
|
| - Register state = scratch2;
|
| - Pop(object, state, cp, fp);
|
| -
|
| - JumpToHandlerEntry(value, object, state, scratch3, scratch4);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Throw(BailoutReason reason) {
|
| - Label throw_start;
|
| - Bind(&throw_start);
|
| -#ifdef DEBUG
|
| - const char* msg = GetBailoutReason(reason);
|
| - RecordComment("Throw message: ");
|
| - RecordComment((msg != NULL) ? msg : "UNKNOWN");
|
| -#endif
|
| -
|
| - Mov(x0, Smi::FromInt(reason));
|
| - Push(x0);
|
| -
|
| - // Disable stub call restrictions to always allow calls to throw.
|
| - if (!has_frame_) {
|
| - // We don't actually want to generate a pile of code for this, so just
|
| - // claim there is a stack frame, without generating one.
|
| - FrameScope scope(this, StackFrame::NONE);
|
| - CallRuntime(Runtime::kThrowMessage, 1);
|
| - } else {
|
| - CallRuntime(Runtime::kThrowMessage, 1);
|
| - }
|
| - // ThrowMessage should not return here.
|
| - Unreachable();
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) {
|
| - Label ok;
|
| - B(InvertCondition(cc), &ok);
|
| - Throw(reason);
|
| - Bind(&ok);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ThrowIfSmi(const Register& value, BailoutReason reason) {
|
| - Label ok;
|
| - JumpIfNotSmi(value, &ok);
|
| - Throw(reason);
|
| - Bind(&ok);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::SmiAbs(const Register& smi, Label* slow) {
|
| - ASSERT(smi.Is64Bits());
|
| - Abs(smi, smi, slow);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
|
| - if (emit_debug_code()) {
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - Tst(object, kSmiTagMask);
|
| - Check(eq, reason);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
|
| - if (emit_debug_code()) {
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - Tst(object, kSmiTagMask);
|
| - Check(ne, reason);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertName(Register object) {
|
| - if (emit_debug_code()) {
|
| - AssertNotSmi(object, kOperandIsASmiAndNotAName);
|
| -
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| -
|
| - Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - CompareInstanceType(temp, temp, LAST_NAME_TYPE);
|
| - Check(ls, kOperandIsNotAName);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
|
| - Register scratch) {
|
| - if (emit_debug_code()) {
|
| - Label done_checking;
|
| - AssertNotSmi(object);
|
| - JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
|
| - Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
|
| - Assert(eq, kExpectedUndefinedOrCell);
|
| - Bind(&done_checking);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertString(Register object) {
|
| - if (emit_debug_code()) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - Tst(object, kSmiTagMask);
|
| - Check(ne, kOperandIsASmiAndNotAString);
|
| - Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
|
| - Check(lo, kOperandIsNotAString);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
|
| - ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
|
| - Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TailCallStub(CodeStub* stub) {
|
| - Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallRuntime(const Runtime::Function* f,
|
| - int num_arguments,
|
| - SaveFPRegsMode save_doubles) {
|
| - // All arguments must be on the stack before this function is called.
|
| - // x0 holds the return value after the call.
|
| -
|
| - // Check that the number of arguments matches what the function expects.
|
| - // If f->nargs is -1, the function can accept a variable number of arguments.
|
| - if (f->nargs >= 0 && f->nargs != num_arguments) {
|
| - // Illegal operation: drop the stack arguments and return undefined.
|
| - if (num_arguments > 0) {
|
| - Drop(num_arguments);
|
| - }
|
| - LoadRoot(x0, Heap::kUndefinedValueRootIndex);
|
| - return;
|
| - }
|
| -
|
| - // Place the necessary arguments.
|
| - Mov(x0, num_arguments);
|
| - Mov(x1, ExternalReference(f, isolate()));
|
| -
|
| - CEntryStub stub(1, save_doubles);
|
| - CallStub(&stub);
|
| -}
|
| -
|
| -
|
| -static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
|
| - return ref0.address() - ref1.address();
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallApiFunctionAndReturn(
|
| - Register function_address,
|
| - ExternalReference thunk_ref,
|
| - int stack_space,
|
| - int spill_offset,
|
| - MemOperand return_value_operand,
|
| - MemOperand* context_restore_operand) {
|
| - ASM_LOCATION("CallApiFunctionAndReturn");
|
| - ExternalReference next_address =
|
| - ExternalReference::handle_scope_next_address(isolate());
|
| - const int kNextOffset = 0;
|
| - const int kLimitOffset = AddressOffset(
|
| - ExternalReference::handle_scope_limit_address(isolate()),
|
| - next_address);
|
| - const int kLevelOffset = AddressOffset(
|
| - ExternalReference::handle_scope_level_address(isolate()),
|
| - next_address);
|
| -
|
| - ASSERT(function_address.is(x1) || function_address.is(x2));
|
| -
|
| - Label profiler_disabled;
|
| - Label end_profiler_check;
|
| - bool* is_profiling_flag = isolate()->cpu_profiler()->is_profiling_address();
|
| - STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
|
| - Mov(x10, reinterpret_cast<uintptr_t>(is_profiling_flag));
|
| - Ldrb(w10, MemOperand(x10));
|
| - Cbz(w10, &profiler_disabled);
|
| - Mov(x3, thunk_ref);
|
| - B(&end_profiler_check);
|
| -
|
| - Bind(&profiler_disabled);
|
| - Mov(x3, function_address);
|
| - Bind(&end_profiler_check);
|
| -
|
| - // Save the callee-save registers we are going to use.
|
| - // TODO(all): Is this necessary? ARM doesn't do it.
|
| - STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
|
| - Poke(x19, (spill_offset + 0) * kXRegSize);
|
| - Poke(x20, (spill_offset + 1) * kXRegSize);
|
| - Poke(x21, (spill_offset + 2) * kXRegSize);
|
| - Poke(x22, (spill_offset + 3) * kXRegSize);
|
| -
|
| - // Allocate HandleScope in callee-save registers.
|
| - // We will need to restore the HandleScope after the call to the API function,
|
| - // by allocating it in callee-save registers they will be preserved by C code.
|
| - Register handle_scope_base = x22;
|
| - Register next_address_reg = x19;
|
| - Register limit_reg = x20;
|
| - Register level_reg = w21;
|
| -
|
| - Mov(handle_scope_base, next_address);
|
| - Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
|
| - Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
|
| - Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
|
| - Add(level_reg, level_reg, 1);
|
| - Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
|
| -
|
| - if (FLAG_log_timer_events) {
|
| - FrameScope frame(this, StackFrame::MANUAL);
|
| - PushSafepointRegisters();
|
| - Mov(x0, ExternalReference::isolate_address(isolate()));
|
| - CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
|
| - PopSafepointRegisters();
|
| - }
|
| -
|
| - // Native call returns to the DirectCEntry stub which redirects to the
|
| - // return address pushed on stack (could have moved after GC).
|
| - // DirectCEntry stub itself is generated early and never moves.
|
| - DirectCEntryStub stub;
|
| - stub.GenerateCall(this, x3);
|
| -
|
| - if (FLAG_log_timer_events) {
|
| - FrameScope frame(this, StackFrame::MANUAL);
|
| - PushSafepointRegisters();
|
| - Mov(x0, ExternalReference::isolate_address(isolate()));
|
| - CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
|
| - PopSafepointRegisters();
|
| - }
|
| -
|
| - Label promote_scheduled_exception;
|
| - Label exception_handled;
|
| - Label delete_allocated_handles;
|
| - Label leave_exit_frame;
|
| - Label return_value_loaded;
|
| -
|
| - // Load value from ReturnValue.
|
| - Ldr(x0, return_value_operand);
|
| - Bind(&return_value_loaded);
|
| - // No more valid handles (the result handle was the last one). Restore
|
| - // previous handle scope.
|
| - Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
|
| - if (emit_debug_code()) {
|
| - Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
|
| - Cmp(w1, level_reg);
|
| - Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
|
| - }
|
| - Sub(level_reg, level_reg, 1);
|
| - Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
|
| - Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
|
| - Cmp(limit_reg, x1);
|
| - B(ne, &delete_allocated_handles);
|
| -
|
| - Bind(&leave_exit_frame);
|
| - // Restore callee-saved registers.
|
| - Peek(x19, (spill_offset + 0) * kXRegSize);
|
| - Peek(x20, (spill_offset + 1) * kXRegSize);
|
| - Peek(x21, (spill_offset + 2) * kXRegSize);
|
| - Peek(x22, (spill_offset + 3) * kXRegSize);
|
| -
|
| - // Check if the function scheduled an exception.
|
| - Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
|
| - Ldr(x5, MemOperand(x5));
|
| - JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
|
| - Bind(&exception_handled);
|
| -
|
| - bool restore_context = context_restore_operand != NULL;
|
| - if (restore_context) {
|
| - Ldr(cp, *context_restore_operand);
|
| - }
|
| -
|
| - LeaveExitFrame(false, x1, !restore_context);
|
| - Drop(stack_space);
|
| - Ret();
|
| -
|
| - Bind(&promote_scheduled_exception);
|
| - {
|
| - FrameScope frame(this, StackFrame::INTERNAL);
|
| - CallExternalReference(
|
| - ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0);
|
| - }
|
| - B(&exception_handled);
|
| -
|
| - // HandleScope limit has changed. Delete allocated extensions.
|
| - Bind(&delete_allocated_handles);
|
| - Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
|
| - // Save the return value in a callee-save register.
|
| - Register saved_result = x19;
|
| - Mov(saved_result, x0);
|
| - Mov(x0, ExternalReference::isolate_address(isolate()));
|
| - CallCFunction(
|
| - ExternalReference::delete_handle_scope_extensions(isolate()), 1);
|
| - Mov(x0, saved_result);
|
| - B(&leave_exit_frame);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallExternalReference(const ExternalReference& ext,
|
| - int num_arguments) {
|
| - Mov(x0, num_arguments);
|
| - Mov(x1, ext);
|
| -
|
| - CEntryStub stub(1);
|
| - CallStub(&stub);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
|
| - Mov(x1, builtin);
|
| - CEntryStub stub(1);
|
| - Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::GetBuiltinFunction(Register target,
|
| - Builtins::JavaScript id) {
|
| - // Load the builtins object into target register.
|
| - Ldr(target, GlobalObjectMemOperand());
|
| - Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
|
| - // Load the JavaScript builtin function from the builtins object.
|
| - Ldr(target, FieldMemOperand(target,
|
| - JSBuiltinsObject::OffsetOfFunctionWithId(id)));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::GetBuiltinEntry(Register target,
|
| - Register function,
|
| - Builtins::JavaScript id) {
|
| - ASSERT(!AreAliased(target, function));
|
| - GetBuiltinFunction(function, id);
|
| - // Load the code entry point from the builtins object.
|
| - Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper) {
|
| - ASM_LOCATION("MacroAssembler::InvokeBuiltin");
|
| - // You can't call a builtin without a valid frame.
|
| - ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| -
|
| - // Get the builtin entry in x2 and setup the function object in x1.
|
| - GetBuiltinEntry(x2, x1, id);
|
| - if (flag == CALL_FUNCTION) {
|
| - call_wrapper.BeforeCall(CallSize(x2));
|
| - Call(x2);
|
| - call_wrapper.AfterCall();
|
| - } else {
|
| - ASSERT(flag == JUMP_FUNCTION);
|
| - Jump(x2);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
|
| - int num_arguments,
|
| - int result_size) {
|
| - // TODO(1236192): Most runtime routines don't need the number of
|
| - // arguments passed in because it is constant. At some point we
|
| - // should remove this need and make the runtime routine entry code
|
| - // smarter.
|
| - Mov(x0, num_arguments);
|
| - JumpToExternalReference(ext);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
|
| - int num_arguments,
|
| - int result_size) {
|
| - TailCallExternalReference(ExternalReference(fid, isolate()),
|
| - num_arguments,
|
| - result_size);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InitializeNewString(Register string,
|
| - Register length,
|
| - Heap::RootListIndex map_index,
|
| - Register scratch1,
|
| - Register scratch2) {
|
| - ASSERT(!AreAliased(string, length, scratch1, scratch2));
|
| - LoadRoot(scratch2, map_index);
|
| - SmiTag(scratch1, length);
|
| - Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
|
| -
|
| - Mov(scratch2, String::kEmptyHashField);
|
| - Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
|
| - Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
|
| -}
|
| -
|
| -
|
| -int MacroAssembler::ActivationFrameAlignment() {
|
| -#if V8_HOST_ARCH_A64
|
| - // Running on the real platform. Use the alignment as mandated by the local
|
| - // environment.
|
| - // Note: This will break if we ever start generating snapshots on one ARM
|
| - // platform for another ARM platform with a different alignment.
|
| - return OS::ActivationFrameAlignment();
|
| -#else // V8_HOST_ARCH_A64
|
| - // If we are using the simulator then we should always align to the expected
|
| - // alignment. As the simulator is used to generate snapshots we do not know
|
| - // if the target platform will need alignment, so this is controlled from a
|
| - // flag.
|
| - return FLAG_sim_stack_alignment;
|
| -#endif // V8_HOST_ARCH_A64
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallCFunction(ExternalReference function,
|
| - int num_of_reg_args) {
|
| - CallCFunction(function, num_of_reg_args, 0);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallCFunction(ExternalReference function,
|
| - int num_of_reg_args,
|
| - int num_of_double_args) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - Mov(temp, function);
|
| - CallCFunction(temp, num_of_reg_args, num_of_double_args);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallCFunction(Register function,
|
| - int num_of_reg_args,
|
| - int num_of_double_args) {
|
| - ASSERT(has_frame());
|
| - // We can pass 8 integer arguments in registers. If we need to pass more than
|
| - // that, we'll need to implement support for passing them on the stack.
|
| - ASSERT(num_of_reg_args <= 8);
|
| -
|
| - // If we're passing doubles, we're limited to the following prototypes
|
| - // (defined by ExternalReference::Type):
|
| - // BUILTIN_COMPARE_CALL: int f(double, double)
|
| - // BUILTIN_FP_FP_CALL: double f(double, double)
|
| - // BUILTIN_FP_CALL: double f(double)
|
| - // BUILTIN_FP_INT_CALL: double f(double, int)
|
| - if (num_of_double_args > 0) {
|
| - ASSERT(num_of_reg_args <= 1);
|
| - ASSERT((num_of_double_args + num_of_reg_args) <= 2);
|
| - }
|
| -
|
| -
|
| - // If the stack pointer is not csp, we need to derive an aligned csp from the
|
| - // current stack pointer.
|
| - const Register old_stack_pointer = StackPointer();
|
| - if (!csp.Is(old_stack_pointer)) {
|
| - AssertStackConsistency();
|
| -
|
| - int sp_alignment = ActivationFrameAlignment();
|
| - // The ABI mandates at least 16-byte alignment.
|
| - ASSERT(sp_alignment >= 16);
|
| - ASSERT(IsPowerOf2(sp_alignment));
|
| -
|
| - // The current stack pointer is a callee saved register, and is preserved
|
| - // across the call.
|
| - ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
|
| -
|
| - // Align and synchronize the system stack pointer with jssp.
|
| - Bic(csp, old_stack_pointer, sp_alignment - 1);
|
| - SetStackPointer(csp);
|
| - }
|
| -
|
| - // Call directly. The function called cannot cause a GC, or allow preemption,
|
| - // so the return address in the link register stays correct.
|
| - Call(function);
|
| -
|
| - if (!csp.Is(old_stack_pointer)) {
|
| - if (emit_debug_code()) {
|
| - // Because the stack pointer must be aligned on a 16-byte boundary, the
|
| - // aligned csp can be up to 12 bytes below the jssp. This is the case
|
| - // where we only pushed one W register on top of an aligned jssp.
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - ASSERT(ActivationFrameAlignment() == 16);
|
| - Sub(temp, csp, old_stack_pointer);
|
| - // We want temp <= 0 && temp >= -12.
|
| - Cmp(temp, 0);
|
| - Ccmp(temp, -12, NFlag, le);
|
| - Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
|
| - }
|
| - SetStackPointer(old_stack_pointer);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Jump(Register target) {
|
| - Br(target);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - Mov(temp, Operand(target, rmode));
|
| - Br(temp);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
|
| - ASSERT(!RelocInfo::IsCodeTarget(rmode));
|
| - Jump(reinterpret_cast<intptr_t>(target), rmode);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
|
| - ASSERT(RelocInfo::IsCodeTarget(rmode));
|
| - AllowDeferredHandleDereference embedding_raw_address;
|
| - Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Call(Register target) {
|
| - BlockPoolsScope scope(this);
|
| -#ifdef DEBUG
|
| - Label start_call;
|
| - Bind(&start_call);
|
| -#endif
|
| -
|
| - Blr(target);
|
| -
|
| -#ifdef DEBUG
|
| - AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Call(Label* target) {
|
| - BlockPoolsScope scope(this);
|
| -#ifdef DEBUG
|
| - Label start_call;
|
| - Bind(&start_call);
|
| -#endif
|
| -
|
| - Bl(target);
|
| -
|
| -#ifdef DEBUG
|
| - AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -// MacroAssembler::CallSize is sensitive to changes in this function, as it
|
| -// requires to know how many instructions are used to branch to the target.
|
| -void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
|
| - BlockPoolsScope scope(this);
|
| -#ifdef DEBUG
|
| - Label start_call;
|
| - Bind(&start_call);
|
| -#endif
|
| - // Statement positions are expected to be recorded when the target
|
| - // address is loaded.
|
| - positions_recorder()->WriteRecordedPositions();
|
| -
|
| - // Addresses always have 64 bits, so we shouldn't encounter NONE32.
|
| - ASSERT(rmode != RelocInfo::NONE32);
|
| -
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| -
|
| - if (rmode == RelocInfo::NONE64) {
|
| - uint64_t imm = reinterpret_cast<uint64_t>(target);
|
| - movz(temp, (imm >> 0) & 0xffff, 0);
|
| - movk(temp, (imm >> 16) & 0xffff, 16);
|
| - movk(temp, (imm >> 32) & 0xffff, 32);
|
| - movk(temp, (imm >> 48) & 0xffff, 48);
|
| - } else {
|
| - LoadRelocated(temp, Operand(reinterpret_cast<intptr_t>(target), rmode));
|
| - }
|
| - Blr(temp);
|
| -#ifdef DEBUG
|
| - AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Call(Handle<Code> code,
|
| - RelocInfo::Mode rmode,
|
| - TypeFeedbackId ast_id) {
|
| -#ifdef DEBUG
|
| - Label start_call;
|
| - Bind(&start_call);
|
| -#endif
|
| -
|
| - if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
|
| - SetRecordedAstId(ast_id);
|
| - rmode = RelocInfo::CODE_TARGET_WITH_ID;
|
| - }
|
| -
|
| - AllowDeferredHandleDereference embedding_raw_address;
|
| - Call(reinterpret_cast<Address>(code.location()), rmode);
|
| -
|
| -#ifdef DEBUG
|
| - // Check the size of the code generated.
|
| - AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -int MacroAssembler::CallSize(Register target) {
|
| - USE(target);
|
| - return kInstructionSize;
|
| -}
|
| -
|
| -
|
| -int MacroAssembler::CallSize(Label* target) {
|
| - USE(target);
|
| - return kInstructionSize;
|
| -}
|
| -
|
| -
|
| -int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
|
| - USE(target);
|
| -
|
| - // Addresses always have 64 bits, so we shouldn't encounter NONE32.
|
| - ASSERT(rmode != RelocInfo::NONE32);
|
| -
|
| - if (rmode == RelocInfo::NONE64) {
|
| - return kCallSizeWithoutRelocation;
|
| - } else {
|
| - return kCallSizeWithRelocation;
|
| - }
|
| -}
|
| -
|
| -
|
| -int MacroAssembler::CallSize(Handle<Code> code,
|
| - RelocInfo::Mode rmode,
|
| - TypeFeedbackId ast_id) {
|
| - USE(code);
|
| - USE(ast_id);
|
| -
|
| - // Addresses always have 64 bits, so we shouldn't encounter NONE32.
|
| - ASSERT(rmode != RelocInfo::NONE32);
|
| -
|
| - if (rmode == RelocInfo::NONE64) {
|
| - return kCallSizeWithoutRelocation;
|
| - } else {
|
| - return kCallSizeWithRelocation;
|
| - }
|
| -}
|
| -
|
| -
|
| -
|
| -
|
| -
|
| -void MacroAssembler::JumpForHeapNumber(Register object,
|
| - Register heap_number_map,
|
| - Label* on_heap_number,
|
| - Label* on_not_heap_number) {
|
| - ASSERT(on_heap_number || on_not_heap_number);
|
| - AssertNotSmi(object);
|
| -
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| -
|
| - // Load the HeapNumber map if it is not passed.
|
| - if (heap_number_map.Is(NoReg)) {
|
| - heap_number_map = temps.AcquireX();
|
| - LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - } else {
|
| - AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - }
|
| -
|
| - ASSERT(!AreAliased(temp, heap_number_map));
|
| -
|
| - Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - Cmp(temp, heap_number_map);
|
| -
|
| - if (on_heap_number) {
|
| - B(eq, on_heap_number);
|
| - }
|
| - if (on_not_heap_number) {
|
| - B(ne, on_not_heap_number);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfHeapNumber(Register object,
|
| - Label* on_heap_number,
|
| - Register heap_number_map) {
|
| - JumpForHeapNumber(object,
|
| - heap_number_map,
|
| - on_heap_number,
|
| - NULL);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfNotHeapNumber(Register object,
|
| - Label* on_not_heap_number,
|
| - Register heap_number_map) {
|
| - JumpForHeapNumber(object,
|
| - heap_number_map,
|
| - NULL,
|
| - on_not_heap_number);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LookupNumberStringCache(Register object,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* not_found) {
|
| - ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3));
|
| -
|
| - // Use of registers. Register result is used as a temporary.
|
| - Register number_string_cache = result;
|
| - Register mask = scratch3;
|
| -
|
| - // Load the number string cache.
|
| - LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
|
| -
|
| - // Make the hash mask from the length of the number string cache. It
|
| - // contains two elements (number and string) for each cache entry.
|
| - Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
|
| - FixedArray::kLengthOffset));
|
| - Asr(mask, mask, 1); // Divide length by two.
|
| - Sub(mask, mask, 1); // Make mask.
|
| -
|
| - // Calculate the entry in the number string cache. The hash value in the
|
| - // number string cache for smis is just the smi value, and the hash for
|
| - // doubles is the xor of the upper and lower words. See
|
| - // Heap::GetNumberStringCache.
|
| - Label is_smi;
|
| - Label load_result_from_cache;
|
| -
|
| - JumpIfSmi(object, &is_smi);
|
| - CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
|
| - DONT_DO_SMI_CHECK);
|
| -
|
| - STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
|
| - Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
|
| - Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
|
| - Eor(scratch1, scratch1, scratch2);
|
| - And(scratch1, scratch1, mask);
|
| -
|
| - // Calculate address of entry in string cache: each entry consists of two
|
| - // pointer sized fields.
|
| - Add(scratch1, number_string_cache,
|
| - Operand(scratch1, LSL, kPointerSizeLog2 + 1));
|
| -
|
| - Register probe = mask;
|
| - Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
|
| - JumpIfSmi(probe, not_found);
|
| - Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
|
| - Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
|
| - Fcmp(d0, d1);
|
| - B(ne, not_found);
|
| - B(&load_result_from_cache);
|
| -
|
| - Bind(&is_smi);
|
| - Register scratch = scratch1;
|
| - And(scratch, mask, Operand::UntagSmi(object));
|
| - // Calculate address of entry in string cache: each entry consists
|
| - // of two pointer sized fields.
|
| - Add(scratch, number_string_cache,
|
| - Operand(scratch, LSL, kPointerSizeLog2 + 1));
|
| -
|
| - // Check if the entry is the smi we are looking for.
|
| - Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
| - Cmp(object, probe);
|
| - B(ne, not_found);
|
| -
|
| - // Get the result from the cache.
|
| - Bind(&load_result_from_cache);
|
| - Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
|
| - IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
|
| - scratch1, scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TryConvertDoubleToInt(Register as_int,
|
| - FPRegister value,
|
| - FPRegister scratch_d,
|
| - Label* on_successful_conversion,
|
| - Label* on_failed_conversion) {
|
| - // Convert to an int and back again, then compare with the original value.
|
| - Fcvtzs(as_int, value);
|
| - Scvtf(scratch_d, as_int);
|
| - Fcmp(value, scratch_d);
|
| -
|
| - if (on_successful_conversion) {
|
| - B(on_successful_conversion, eq);
|
| - }
|
| - if (on_failed_conversion) {
|
| - B(on_failed_conversion, ne);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TestForMinusZero(DoubleRegister input) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
|
| - // cause overflow.
|
| - Fmov(temp, input);
|
| - Cmp(temp, 1);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
|
| - Label* on_negative_zero) {
|
| - TestForMinusZero(input);
|
| - B(vs, on_negative_zero);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
|
| - // Clamp the value to [0..255].
|
| - Cmp(input.W(), Operand(input.W(), UXTB));
|
| - // If input < input & 0xff, it must be < 0, so saturate to 0.
|
| - Csel(output.W(), wzr, input.W(), lt);
|
| - // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
|
| - Csel(output.W(), output.W(), 255, le);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ClampInt32ToUint8(Register in_out) {
|
| - ClampInt32ToUint8(in_out, in_out);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ClampDoubleToUint8(Register output,
|
| - DoubleRegister input,
|
| - DoubleRegister dbl_scratch) {
|
| - // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
|
| - // - Inputs lower than 0 (including -infinity) produce 0.
|
| - // - Inputs higher than 255 (including +infinity) produce 255.
|
| - // Also, it seems that PIXEL types use round-to-nearest rather than
|
| - // round-towards-zero.
|
| -
|
| - // Squash +infinity before the conversion, since Fcvtnu will normally
|
| - // convert it to 0.
|
| - Fmov(dbl_scratch, 255);
|
| - Fmin(dbl_scratch, dbl_scratch, input);
|
| -
|
| - // Convert double to unsigned integer. Values less than zero become zero.
|
| - // Values greater than 255 have already been clamped to 255.
|
| - Fcvtnu(output, dbl_scratch);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
|
| - Register src,
|
| - unsigned count,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4,
|
| - Register scratch5) {
|
| - // Untag src and dst into scratch registers.
|
| - // Copy src->dst in a tight loop.
|
| - ASSERT(!AreAliased(dst, src,
|
| - scratch1, scratch2, scratch3, scratch4, scratch5));
|
| - ASSERT(count >= 2);
|
| -
|
| - const Register& remaining = scratch3;
|
| - Mov(remaining, count / 2);
|
| -
|
| - const Register& dst_untagged = scratch1;
|
| - const Register& src_untagged = scratch2;
|
| - Sub(dst_untagged, dst, kHeapObjectTag);
|
| - Sub(src_untagged, src, kHeapObjectTag);
|
| -
|
| - // Copy fields in pairs.
|
| - Label loop;
|
| - Bind(&loop);
|
| - Ldp(scratch4, scratch5,
|
| - MemOperand(src_untagged, kXRegSize* 2, PostIndex));
|
| - Stp(scratch4, scratch5,
|
| - MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
|
| - Sub(remaining, remaining, 1);
|
| - Cbnz(remaining, &loop);
|
| -
|
| - // Handle the leftovers.
|
| - if (count & 1) {
|
| - Ldr(scratch4, MemOperand(src_untagged));
|
| - Str(scratch4, MemOperand(dst_untagged));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
|
| - Register src,
|
| - unsigned count,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Register scratch4) {
|
| - // Untag src and dst into scratch registers.
|
| - // Copy src->dst in an unrolled loop.
|
| - ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
|
| -
|
| - const Register& dst_untagged = scratch1;
|
| - const Register& src_untagged = scratch2;
|
| - sub(dst_untagged, dst, kHeapObjectTag);
|
| - sub(src_untagged, src, kHeapObjectTag);
|
| -
|
| - // Copy fields in pairs.
|
| - for (unsigned i = 0; i < count / 2; i++) {
|
| - Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
|
| - Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
|
| - }
|
| -
|
| - // Handle the leftovers.
|
| - if (count & 1) {
|
| - Ldr(scratch3, MemOperand(src_untagged));
|
| - Str(scratch3, MemOperand(dst_untagged));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
|
| - Register src,
|
| - unsigned count,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3) {
|
| - // Untag src and dst into scratch registers.
|
| - // Copy src->dst in an unrolled loop.
|
| - ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3));
|
| -
|
| - const Register& dst_untagged = scratch1;
|
| - const Register& src_untagged = scratch2;
|
| - Sub(dst_untagged, dst, kHeapObjectTag);
|
| - Sub(src_untagged, src, kHeapObjectTag);
|
| -
|
| - // Copy fields one by one.
|
| - for (unsigned i = 0; i < count; i++) {
|
| - Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
|
| - Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
|
| - unsigned count) {
|
| - // One of two methods is used:
|
| - //
|
| - // For high 'count' values where many scratch registers are available:
|
| - // Untag src and dst into scratch registers.
|
| - // Copy src->dst in a tight loop.
|
| - //
|
| - // For low 'count' values or where few scratch registers are available:
|
| - // Untag src and dst into scratch registers.
|
| - // Copy src->dst in an unrolled loop.
|
| - //
|
| - // In both cases, fields are copied in pairs if possible, and left-overs are
|
| - // handled separately.
|
| - ASSERT(!AreAliased(dst, src));
|
| - ASSERT(!temps.IncludesAliasOf(dst));
|
| - ASSERT(!temps.IncludesAliasOf(src));
|
| - ASSERT(!temps.IncludesAliasOf(xzr));
|
| -
|
| - if (emit_debug_code()) {
|
| - Cmp(dst, src);
|
| - Check(ne, kTheSourceAndDestinationAreTheSame);
|
| - }
|
| -
|
| - // The value of 'count' at which a loop will be generated (if there are
|
| - // enough scratch registers).
|
| - static const unsigned kLoopThreshold = 8;
|
| -
|
| - UseScratchRegisterScope masm_temps(this);
|
| - if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
|
| - CopyFieldsLoopPairsHelper(dst, src, count,
|
| - Register(temps.PopLowestIndex()),
|
| - Register(temps.PopLowestIndex()),
|
| - Register(temps.PopLowestIndex()),
|
| - masm_temps.AcquireX(),
|
| - masm_temps.AcquireX());
|
| - } else if (temps.Count() >= 2) {
|
| - CopyFieldsUnrolledPairsHelper(dst, src, count,
|
| - Register(temps.PopLowestIndex()),
|
| - Register(temps.PopLowestIndex()),
|
| - masm_temps.AcquireX(),
|
| - masm_temps.AcquireX());
|
| - } else if (temps.Count() == 1) {
|
| - CopyFieldsUnrolledHelper(dst, src, count,
|
| - Register(temps.PopLowestIndex()),
|
| - masm_temps.AcquireX(),
|
| - masm_temps.AcquireX());
|
| - } else {
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CopyBytes(Register dst,
|
| - Register src,
|
| - Register length,
|
| - Register scratch,
|
| - CopyHint hint) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register tmp1 = temps.AcquireX();
|
| - Register tmp2 = temps.AcquireX();
|
| - ASSERT(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
|
| - ASSERT(!AreAliased(src, dst, csp));
|
| -
|
| - if (emit_debug_code()) {
|
| - // Check copy length.
|
| - Cmp(length, 0);
|
| - Assert(ge, kUnexpectedNegativeValue);
|
| -
|
| - // Check src and dst buffers don't overlap.
|
| - Add(scratch, src, length); // Calculate end of src buffer.
|
| - Cmp(scratch, dst);
|
| - Add(scratch, dst, length); // Calculate end of dst buffer.
|
| - Ccmp(scratch, src, ZFlag, gt);
|
| - Assert(le, kCopyBuffersOverlap);
|
| - }
|
| -
|
| - Label short_copy, short_loop, bulk_loop, done;
|
| -
|
| - if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
|
| - Register bulk_length = scratch;
|
| - int pair_size = 2 * kXRegSize;
|
| - int pair_mask = pair_size - 1;
|
| -
|
| - Bic(bulk_length, length, pair_mask);
|
| - Cbz(bulk_length, &short_copy);
|
| - Bind(&bulk_loop);
|
| - Sub(bulk_length, bulk_length, pair_size);
|
| - Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
|
| - Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
|
| - Cbnz(bulk_length, &bulk_loop);
|
| -
|
| - And(length, length, pair_mask);
|
| - }
|
| -
|
| - Bind(&short_copy);
|
| - Cbz(length, &done);
|
| - Bind(&short_loop);
|
| - Sub(length, length, 1);
|
| - Ldrb(tmp1, MemOperand(src, 1, PostIndex));
|
| - Strb(tmp1, MemOperand(dst, 1, PostIndex));
|
| - Cbnz(length, &short_loop);
|
| -
|
| -
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::FillFields(Register dst,
|
| - Register field_count,
|
| - Register filler) {
|
| - ASSERT(!dst.Is(csp));
|
| - UseScratchRegisterScope temps(this);
|
| - Register field_ptr = temps.AcquireX();
|
| - Register counter = temps.AcquireX();
|
| - Label done;
|
| -
|
| - // Decrement count. If the result < zero, count was zero, and there's nothing
|
| - // to do. If count was one, flags are set to fail the gt condition at the end
|
| - // of the pairs loop.
|
| - Subs(counter, field_count, 1);
|
| - B(lt, &done);
|
| -
|
| - // There's at least one field to fill, so do this unconditionally.
|
| - Str(filler, MemOperand(dst, kPointerSize, PostIndex));
|
| -
|
| - // If the bottom bit of counter is set, there are an even number of fields to
|
| - // fill, so pull the start pointer back by one field, allowing the pairs loop
|
| - // to overwrite the field that was stored above.
|
| - And(field_ptr, counter, 1);
|
| - Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
|
| -
|
| - // Store filler to memory in pairs.
|
| - Label entry, loop;
|
| - B(&entry);
|
| - Bind(&loop);
|
| - Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
|
| - Subs(counter, counter, 2);
|
| - Bind(&entry);
|
| - B(gt, &loop);
|
| -
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings(
|
| - Register first,
|
| - Register second,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* failure,
|
| - SmiCheckType smi_check) {
|
| -
|
| - if (smi_check == DO_SMI_CHECK) {
|
| - JumpIfEitherSmi(first, second, failure);
|
| - } else if (emit_debug_code()) {
|
| - ASSERT(smi_check == DONT_DO_SMI_CHECK);
|
| - Label not_smi;
|
| - JumpIfEitherSmi(first, second, NULL, ¬_smi);
|
| -
|
| - // At least one input is a smi, but the flags indicated a smi check wasn't
|
| - // needed.
|
| - Abort(kUnexpectedSmi);
|
| -
|
| - Bind(¬_smi);
|
| - }
|
| -
|
| - // Test that both first and second are sequential ASCII strings.
|
| - Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
|
| - Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
|
| - Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
|
| - Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
|
| -
|
| - JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1,
|
| - scratch2,
|
| - scratch1,
|
| - scratch2,
|
| - failure);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii(
|
| - Register first,
|
| - Register second,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* failure) {
|
| - ASSERT(!AreAliased(scratch1, second));
|
| - ASSERT(!AreAliased(scratch1, scratch2));
|
| - static const int kFlatAsciiStringMask =
|
| - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
|
| - static const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
|
| - And(scratch1, first, kFlatAsciiStringMask);
|
| - And(scratch2, second, kFlatAsciiStringMask);
|
| - Cmp(scratch1, kFlatAsciiStringTag);
|
| - Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
|
| - B(ne, failure);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
|
| - Register scratch,
|
| - Label* failure) {
|
| - const int kFlatAsciiStringMask =
|
| - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
|
| - const int kFlatAsciiStringTag =
|
| - kStringTag | kOneByteStringTag | kSeqStringTag;
|
| - And(scratch, type, kFlatAsciiStringMask);
|
| - Cmp(scratch, kFlatAsciiStringTag);
|
| - B(ne, failure);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
|
| - Register first,
|
| - Register second,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* failure) {
|
| - ASSERT(!AreAliased(first, second, scratch1, scratch2));
|
| - const int kFlatAsciiStringMask =
|
| - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
|
| - const int kFlatAsciiStringTag =
|
| - kStringTag | kOneByteStringTag | kSeqStringTag;
|
| - And(scratch1, first, kFlatAsciiStringMask);
|
| - And(scratch2, second, kFlatAsciiStringMask);
|
| - Cmp(scratch1, kFlatAsciiStringTag);
|
| - Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
|
| - B(ne, failure);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfNotUniqueName(Register type,
|
| - Label* not_unique_name) {
|
| - STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
|
| - // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
|
| - // continue
|
| - // } else {
|
| - // goto not_unique_name
|
| - // }
|
| - Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
|
| - Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
|
| - B(ne, not_unique_name);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InvokePrologue(const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - Handle<Code> code_constant,
|
| - Register code_reg,
|
| - Label* done,
|
| - InvokeFlag flag,
|
| - bool* definitely_mismatches,
|
| - const CallWrapper& call_wrapper) {
|
| - bool definitely_matches = false;
|
| - *definitely_mismatches = false;
|
| - Label regular_invoke;
|
| -
|
| - // Check whether the expected and actual arguments count match. If not,
|
| - // setup registers according to contract with ArgumentsAdaptorTrampoline:
|
| - // x0: actual arguments count.
|
| - // x1: function (passed through to callee).
|
| - // x2: expected arguments count.
|
| -
|
| - // The code below is made a lot easier because the calling code already sets
|
| - // up actual and expected registers according to the contract if values are
|
| - // passed in registers.
|
| - ASSERT(actual.is_immediate() || actual.reg().is(x0));
|
| - ASSERT(expected.is_immediate() || expected.reg().is(x2));
|
| - ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
|
| -
|
| - if (expected.is_immediate()) {
|
| - ASSERT(actual.is_immediate());
|
| - if (expected.immediate() == actual.immediate()) {
|
| - definitely_matches = true;
|
| -
|
| - } else {
|
| - Mov(x0, actual.immediate());
|
| - if (expected.immediate() ==
|
| - SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
|
| - // Don't worry about adapting arguments for builtins that
|
| - // don't want that done. Skip adaption code by making it look
|
| - // like we have a match between expected and actual number of
|
| - // arguments.
|
| - definitely_matches = true;
|
| - } else {
|
| - *definitely_mismatches = true;
|
| - // Set up x2 for the argument adaptor.
|
| - Mov(x2, expected.immediate());
|
| - }
|
| - }
|
| -
|
| - } else { // expected is a register.
|
| - Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
|
| - : Operand(actual.reg());
|
| - // If actual == expected perform a regular invocation.
|
| - Cmp(expected.reg(), actual_op);
|
| - B(eq, ®ular_invoke);
|
| - // Otherwise set up x0 for the argument adaptor.
|
| - Mov(x0, actual_op);
|
| - }
|
| -
|
| - // If the argument counts may mismatch, generate a call to the argument
|
| - // adaptor.
|
| - if (!definitely_matches) {
|
| - if (!code_constant.is_null()) {
|
| - Mov(x3, Operand(code_constant));
|
| - Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
|
| - }
|
| -
|
| - Handle<Code> adaptor =
|
| - isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
| - if (flag == CALL_FUNCTION) {
|
| - call_wrapper.BeforeCall(CallSize(adaptor));
|
| - Call(adaptor);
|
| - call_wrapper.AfterCall();
|
| - if (!*definitely_mismatches) {
|
| - // If the arg counts don't match, no extra code is emitted by
|
| - // MAsm::InvokeCode and we can just fall through.
|
| - B(done);
|
| - }
|
| - } else {
|
| - Jump(adaptor, RelocInfo::CODE_TARGET);
|
| - }
|
| - }
|
| - Bind(®ular_invoke);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InvokeCode(Register code,
|
| - const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper) {
|
| - // You can't call a function without a valid frame.
|
| - ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| -
|
| - Label done;
|
| -
|
| - bool definitely_mismatches = false;
|
| - InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
|
| - &definitely_mismatches, call_wrapper);
|
| -
|
| - // If we are certain that actual != expected, then we know InvokePrologue will
|
| - // have handled the call through the argument adaptor mechanism.
|
| - // The called function expects the call kind in x5.
|
| - if (!definitely_mismatches) {
|
| - if (flag == CALL_FUNCTION) {
|
| - call_wrapper.BeforeCall(CallSize(code));
|
| - Call(code);
|
| - call_wrapper.AfterCall();
|
| - } else {
|
| - ASSERT(flag == JUMP_FUNCTION);
|
| - Jump(code);
|
| - }
|
| - }
|
| -
|
| - // Continue here if InvokePrologue does handle the invocation due to
|
| - // mismatched parameter counts.
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InvokeFunction(Register function,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper) {
|
| - // You can't call a function without a valid frame.
|
| - ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| -
|
| - // Contract with called JS functions requires that function is passed in x1.
|
| - // (See FullCodeGenerator::Generate().)
|
| - ASSERT(function.is(x1));
|
| -
|
| - Register expected_reg = x2;
|
| - Register code_reg = x3;
|
| -
|
| - Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
|
| - // The number of arguments is stored as an int32_t, and -1 is a marker
|
| - // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
|
| - // extension to correctly handle it.
|
| - Ldr(expected_reg, FieldMemOperand(function,
|
| - JSFunction::kSharedFunctionInfoOffset));
|
| - Ldrsw(expected_reg,
|
| - FieldMemOperand(expected_reg,
|
| - SharedFunctionInfo::kFormalParameterCountOffset));
|
| - Ldr(code_reg,
|
| - FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
| -
|
| - ParameterCount expected(expected_reg);
|
| - InvokeCode(code_reg, expected, actual, flag, call_wrapper);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InvokeFunction(Register function,
|
| - const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper) {
|
| - // You can't call a function without a valid frame.
|
| - ASSERT(flag == JUMP_FUNCTION || has_frame());
|
| -
|
| - // Contract with called JS functions requires that function is passed in x1.
|
| - // (See FullCodeGenerator::Generate().)
|
| - ASSERT(function.Is(x1));
|
| -
|
| - Register code_reg = x3;
|
| -
|
| - // Set up the context.
|
| - Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
|
| -
|
| - // We call indirectly through the code field in the function to
|
| - // allow recompilation to take effect without changing any of the
|
| - // call sites.
|
| - Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
|
| - InvokeCode(code_reg, expected, actual, flag, call_wrapper);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
|
| - const ParameterCount& expected,
|
| - const ParameterCount& actual,
|
| - InvokeFlag flag,
|
| - const CallWrapper& call_wrapper) {
|
| - // Contract with called JS functions requires that function is passed in x1.
|
| - // (See FullCodeGenerator::Generate().)
|
| - __ LoadObject(x1, function);
|
| - InvokeFunction(x1, expected, actual, flag, call_wrapper);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TryConvertDoubleToInt64(Register result,
|
| - DoubleRegister double_input,
|
| - Label* done) {
|
| - // Try to convert with an FPU convert instruction. It's trivial to compute
|
| - // the modulo operation on an integer register so we convert to a 64-bit
|
| - // integer.
|
| - //
|
| - // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
|
| - // when the double is out of range. NaNs and infinities will be converted to 0
|
| - // (as ECMA-262 requires).
|
| - Fcvtzs(result.X(), double_input);
|
| -
|
| - // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
|
| - // representable using a double, so if the result is one of those then we know
|
| - // that saturation occured, and we need to manually handle the conversion.
|
| - //
|
| - // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
|
| - // 1 will cause signed overflow.
|
| - Cmp(result.X(), 1);
|
| - Ccmp(result.X(), -1, VFlag, vc);
|
| -
|
| - B(vc, done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TruncateDoubleToI(Register result,
|
| - DoubleRegister double_input) {
|
| - Label done;
|
| - ASSERT(jssp.Is(StackPointer()));
|
| -
|
| - // Try to convert the double to an int64. If successful, the bottom 32 bits
|
| - // contain our truncated int32 result.
|
| - TryConvertDoubleToInt64(result, double_input, &done);
|
| -
|
| - // If we fell through then inline version didn't succeed - call stub instead.
|
| - Push(lr);
|
| - Push(double_input); // Put input on stack.
|
| -
|
| - DoubleToIStub stub(jssp,
|
| - result,
|
| - 0,
|
| - true, // is_truncating
|
| - true); // skip_fastpath
|
| - CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
|
| -
|
| - Drop(1, kDoubleSize); // Drop the double input on the stack.
|
| - Pop(lr);
|
| -
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TruncateHeapNumberToI(Register result,
|
| - Register object) {
|
| - Label done;
|
| - ASSERT(!result.is(object));
|
| - ASSERT(jssp.Is(StackPointer()));
|
| -
|
| - Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
|
| -
|
| - // Try to convert the double to an int64. If successful, the bottom 32 bits
|
| - // contain our truncated int32 result.
|
| - TryConvertDoubleToInt64(result, fp_scratch, &done);
|
| -
|
| - // If we fell through then inline version didn't succeed - call stub instead.
|
| - Push(lr);
|
| - DoubleToIStub stub(object,
|
| - result,
|
| - HeapNumber::kValueOffset - kHeapObjectTag,
|
| - true, // is_truncating
|
| - true); // skip_fastpath
|
| - CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
|
| - Pop(lr);
|
| -
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Prologue(PrologueFrameMode frame_mode) {
|
| - if (frame_mode == BUILD_STUB_FRAME) {
|
| - ASSERT(StackPointer().Is(jssp));
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - __ Mov(temp, Smi::FromInt(StackFrame::STUB));
|
| - // Compiled stubs don't age, and so they don't need the predictable code
|
| - // ageing sequence.
|
| - __ Push(lr, fp, cp, temp);
|
| - __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
|
| - } else {
|
| - if (isolate()->IsCodePreAgingActive()) {
|
| - Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
|
| - __ EmitCodeAgeSequence(stub);
|
| - } else {
|
| - __ EmitFrameSetupForCodeAgePatching();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EnterFrame(StackFrame::Type type) {
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - UseScratchRegisterScope temps(this);
|
| - Register type_reg = temps.AcquireX();
|
| - Register code_reg = temps.AcquireX();
|
| -
|
| - Push(lr, fp, cp);
|
| - Mov(type_reg, Smi::FromInt(type));
|
| - Mov(code_reg, Operand(CodeObject()));
|
| - Push(type_reg, code_reg);
|
| - // jssp[4] : lr
|
| - // jssp[3] : fp
|
| - // jssp[2] : cp
|
| - // jssp[1] : type
|
| - // jssp[0] : code object
|
| -
|
| - // Adjust FP to point to saved FP.
|
| - Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LeaveFrame(StackFrame::Type type) {
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - // Drop the execution stack down to the frame pointer and restore
|
| - // the caller frame pointer and return address.
|
| - Mov(jssp, fp);
|
| - AssertStackConsistency();
|
| - Pop(fp, lr);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ExitFramePreserveFPRegs() {
|
| - PushCPURegList(kCallerSavedFP);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::ExitFrameRestoreFPRegs() {
|
| - // Read the registers from the stack without popping them. The stack pointer
|
| - // will be reset as part of the unwinding process.
|
| - CPURegList saved_fp_regs = kCallerSavedFP;
|
| - ASSERT(saved_fp_regs.Count() % 2 == 0);
|
| -
|
| - int offset = ExitFrameConstants::kLastExitFrameField;
|
| - while (!saved_fp_regs.IsEmpty()) {
|
| - const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
|
| - const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
|
| - offset -= 2 * kDRegSize;
|
| - Ldp(dst1, dst0, MemOperand(fp, offset));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EnterExitFrame(bool save_doubles,
|
| - const Register& scratch,
|
| - int extra_space) {
|
| - ASSERT(jssp.Is(StackPointer()));
|
| -
|
| - // Set up the new stack frame.
|
| - Mov(scratch, Operand(CodeObject()));
|
| - Push(lr, fp);
|
| - Mov(fp, StackPointer());
|
| - Push(xzr, scratch);
|
| - // fp[8]: CallerPC (lr)
|
| - // fp -> fp[0]: CallerFP (old fp)
|
| - // fp[-8]: Space reserved for SPOffset.
|
| - // jssp -> fp[-16]: CodeObject()
|
| - STATIC_ASSERT((2 * kPointerSize) ==
|
| - ExitFrameConstants::kCallerSPDisplacement);
|
| - STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
|
| - STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
|
| - STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
|
| - STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
|
| -
|
| - // Save the frame pointer and context pointer in the top frame.
|
| - Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
|
| - isolate())));
|
| - Str(fp, MemOperand(scratch));
|
| - Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
|
| - isolate())));
|
| - Str(cp, MemOperand(scratch));
|
| -
|
| - STATIC_ASSERT((-2 * kPointerSize) ==
|
| - ExitFrameConstants::kLastExitFrameField);
|
| - if (save_doubles) {
|
| - ExitFramePreserveFPRegs();
|
| - }
|
| -
|
| - // Reserve space for the return address and for user requested memory.
|
| - // We do this before aligning to make sure that we end up correctly
|
| - // aligned with the minimum of wasted space.
|
| - Claim(extra_space + 1, kXRegSize);
|
| - // fp[8]: CallerPC (lr)
|
| - // fp -> fp[0]: CallerFP (old fp)
|
| - // fp[-8]: Space reserved for SPOffset.
|
| - // fp[-16]: CodeObject()
|
| - // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
|
| - // jssp[8]: Extra space reserved for caller (if extra_space != 0).
|
| - // jssp -> jssp[0]: Space reserved for the return address.
|
| -
|
| - // Align and synchronize the system stack pointer with jssp.
|
| - AlignAndSetCSPForFrame();
|
| - ASSERT(csp.Is(StackPointer()));
|
| -
|
| - // fp[8]: CallerPC (lr)
|
| - // fp -> fp[0]: CallerFP (old fp)
|
| - // fp[-8]: Space reserved for SPOffset.
|
| - // fp[-16]: CodeObject()
|
| - // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
|
| - // csp[8]: Memory reserved for the caller if extra_space != 0.
|
| - // Alignment padding, if necessary.
|
| - // csp -> csp[0]: Space reserved for the return address.
|
| -
|
| - // ExitFrame::GetStateForFramePointer expects to find the return address at
|
| - // the memory address immediately below the pointer stored in SPOffset.
|
| - // It is not safe to derive much else from SPOffset, because the size of the
|
| - // padding can vary.
|
| - Add(scratch, csp, kXRegSize);
|
| - Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
|
| -}
|
| -
|
| -
|
| -// Leave the current exit frame.
|
| -void MacroAssembler::LeaveExitFrame(bool restore_doubles,
|
| - const Register& scratch,
|
| - bool restore_context) {
|
| - ASSERT(csp.Is(StackPointer()));
|
| -
|
| - if (restore_doubles) {
|
| - ExitFrameRestoreFPRegs();
|
| - }
|
| -
|
| - // Restore the context pointer from the top frame.
|
| - if (restore_context) {
|
| - Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
|
| - isolate())));
|
| - Ldr(cp, MemOperand(scratch));
|
| - }
|
| -
|
| - if (emit_debug_code()) {
|
| - // Also emit debug code to clear the cp in the top frame.
|
| - Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
|
| - isolate())));
|
| - Str(xzr, MemOperand(scratch));
|
| - }
|
| - // Clear the frame pointer from the top frame.
|
| - Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
|
| - isolate())));
|
| - Str(xzr, MemOperand(scratch));
|
| -
|
| - // Pop the exit frame.
|
| - // fp[8]: CallerPC (lr)
|
| - // fp -> fp[0]: CallerFP (old fp)
|
| - // fp[...]: The rest of the frame.
|
| - Mov(jssp, fp);
|
| - SetStackPointer(jssp);
|
| - AssertStackConsistency();
|
| - Pop(fp, lr);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::SetCounter(StatsCounter* counter, int value,
|
| - Register scratch1, Register scratch2) {
|
| - if (FLAG_native_code_counters && counter->Enabled()) {
|
| - Mov(scratch1, value);
|
| - Mov(scratch2, ExternalReference(counter));
|
| - Str(scratch1, MemOperand(scratch2));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
|
| - Register scratch1, Register scratch2) {
|
| - ASSERT(value != 0);
|
| - if (FLAG_native_code_counters && counter->Enabled()) {
|
| - Mov(scratch2, ExternalReference(counter));
|
| - Ldr(scratch1, MemOperand(scratch2));
|
| - Add(scratch1, scratch1, value);
|
| - Str(scratch1, MemOperand(scratch2));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
|
| - Register scratch1, Register scratch2) {
|
| - IncrementCounter(counter, -value, scratch1, scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
|
| - if (context_chain_length > 0) {
|
| - // Move up the chain of contexts to the context containing the slot.
|
| - Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
| - for (int i = 1; i < context_chain_length; i++) {
|
| - Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
| - }
|
| - } else {
|
| - // Slot is in the current function context. Move it into the
|
| - // destination register in case we store into it (the write barrier
|
| - // cannot be allowed to destroy the context in cp).
|
| - Mov(dst, cp);
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| -void MacroAssembler::DebugBreak() {
|
| - Mov(x0, 0);
|
| - Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
|
| - CEntryStub ces(1);
|
| - ASSERT(AllowThisStubCall(&ces));
|
| - Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
|
| - int handler_index) {
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - // Adjust this code if the asserts don't hold.
|
| - STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
| - STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
| -
|
| - // For the JSEntry handler, we must preserve the live registers x0-x4.
|
| - // (See JSEntryStub::GenerateBody().)
|
| -
|
| - unsigned state =
|
| - StackHandler::IndexField::encode(handler_index) |
|
| - StackHandler::KindField::encode(kind);
|
| -
|
| - // Set up the code object and the state for pushing.
|
| - Mov(x10, Operand(CodeObject()));
|
| - Mov(x11, state);
|
| -
|
| - // Push the frame pointer, context, state, and code object.
|
| - if (kind == StackHandler::JS_ENTRY) {
|
| - ASSERT(Smi::FromInt(0) == 0);
|
| - Push(xzr, xzr, x11, x10);
|
| - } else {
|
| - Push(fp, cp, x11, x10);
|
| - }
|
| -
|
| - // Link the current handler as the next handler.
|
| - Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
|
| - Ldr(x10, MemOperand(x11));
|
| - Push(x10);
|
| - // Set this new handler as the current one.
|
| - Str(jssp, MemOperand(x11));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PopTryHandler() {
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - Pop(x10);
|
| - Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
|
| - Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
|
| - Str(x10, MemOperand(x11));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Allocate(int object_size,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required,
|
| - AllocationFlags flags) {
|
| - ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
|
| - if (!FLAG_inline_new) {
|
| - if (emit_debug_code()) {
|
| - // Trash the registers to simulate an allocation failure.
|
| - // We apply salt to the original zap value to easily spot the values.
|
| - Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
|
| - Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
|
| - Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
|
| - }
|
| - B(gc_required);
|
| - return;
|
| - }
|
| -
|
| - UseScratchRegisterScope temps(this);
|
| - Register scratch3 = temps.AcquireX();
|
| -
|
| - ASSERT(!AreAliased(result, scratch1, scratch2, scratch3));
|
| - ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
|
| -
|
| - // Make object size into bytes.
|
| - if ((flags & SIZE_IN_WORDS) != 0) {
|
| - object_size *= kPointerSize;
|
| - }
|
| - ASSERT(0 == (object_size & kObjectAlignmentMask));
|
| -
|
| - // Check relative positions of allocation top and limit addresses.
|
| - // The values must be adjacent in memory to allow the use of LDP.
|
| - ExternalReference heap_allocation_top =
|
| - AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
| - ExternalReference heap_allocation_limit =
|
| - AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
| - intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
|
| - intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
|
| - ASSERT((limit - top) == kPointerSize);
|
| -
|
| - // Set up allocation top address and object size registers.
|
| - Register top_address = scratch1;
|
| - Register allocation_limit = scratch2;
|
| - Mov(top_address, Operand(heap_allocation_top));
|
| -
|
| - if ((flags & RESULT_CONTAINS_TOP) == 0) {
|
| - // Load allocation top into result and the allocation limit.
|
| - Ldp(result, allocation_limit, MemOperand(top_address));
|
| - } else {
|
| - if (emit_debug_code()) {
|
| - // Assert that result actually contains top on entry.
|
| - Ldr(scratch3, MemOperand(top_address));
|
| - Cmp(result, scratch3);
|
| - Check(eq, kUnexpectedAllocationTop);
|
| - }
|
| - // Load the allocation limit. 'result' already contains the allocation top.
|
| - Ldr(allocation_limit, MemOperand(top_address, limit - top));
|
| - }
|
| -
|
| - // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
|
| - // the same alignment on A64.
|
| - STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
|
| -
|
| - // Calculate new top and bail out if new space is exhausted.
|
| - Adds(scratch3, result, object_size);
|
| - B(vs, gc_required);
|
| - Cmp(scratch3, allocation_limit);
|
| - B(hi, gc_required);
|
| - Str(scratch3, MemOperand(top_address));
|
| -
|
| - // Tag the object if requested.
|
| - if ((flags & TAG_OBJECT) != 0) {
|
| - Orr(result, result, kHeapObjectTag);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Allocate(Register object_size,
|
| - Register result,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required,
|
| - AllocationFlags flags) {
|
| - if (!FLAG_inline_new) {
|
| - if (emit_debug_code()) {
|
| - // Trash the registers to simulate an allocation failure.
|
| - // We apply salt to the original zap value to easily spot the values.
|
| - Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
|
| - Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
|
| - Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
|
| - }
|
| - B(gc_required);
|
| - return;
|
| - }
|
| -
|
| - UseScratchRegisterScope temps(this);
|
| - Register scratch3 = temps.AcquireX();
|
| -
|
| - ASSERT(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
|
| - ASSERT(object_size.Is64Bits() && result.Is64Bits() &&
|
| - scratch1.Is64Bits() && scratch2.Is64Bits());
|
| -
|
| - // Check relative positions of allocation top and limit addresses.
|
| - // The values must be adjacent in memory to allow the use of LDP.
|
| - ExternalReference heap_allocation_top =
|
| - AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
| - ExternalReference heap_allocation_limit =
|
| - AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
| - intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
|
| - intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
|
| - ASSERT((limit - top) == kPointerSize);
|
| -
|
| - // Set up allocation top address and object size registers.
|
| - Register top_address = scratch1;
|
| - Register allocation_limit = scratch2;
|
| - Mov(top_address, heap_allocation_top);
|
| -
|
| - if ((flags & RESULT_CONTAINS_TOP) == 0) {
|
| - // Load allocation top into result and the allocation limit.
|
| - Ldp(result, allocation_limit, MemOperand(top_address));
|
| - } else {
|
| - if (emit_debug_code()) {
|
| - // Assert that result actually contains top on entry.
|
| - Ldr(scratch3, MemOperand(top_address));
|
| - Cmp(result, scratch3);
|
| - Check(eq, kUnexpectedAllocationTop);
|
| - }
|
| - // Load the allocation limit. 'result' already contains the allocation top.
|
| - Ldr(allocation_limit, MemOperand(top_address, limit - top));
|
| - }
|
| -
|
| - // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
|
| - // the same alignment on A64.
|
| - STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
|
| -
|
| - // Calculate new top and bail out if new space is exhausted
|
| - if ((flags & SIZE_IN_WORDS) != 0) {
|
| - Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
|
| - } else {
|
| - Adds(scratch3, result, object_size);
|
| - }
|
| -
|
| - if (emit_debug_code()) {
|
| - Tst(scratch3, kObjectAlignmentMask);
|
| - Check(eq, kUnalignedAllocationInNewSpace);
|
| - }
|
| -
|
| - B(vs, gc_required);
|
| - Cmp(scratch3, allocation_limit);
|
| - B(hi, gc_required);
|
| - Str(scratch3, MemOperand(top_address));
|
| -
|
| - // Tag the object if requested.
|
| - if ((flags & TAG_OBJECT) != 0) {
|
| - Orr(result, result, kHeapObjectTag);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::UndoAllocationInNewSpace(Register object,
|
| - Register scratch) {
|
| - ExternalReference new_space_allocation_top =
|
| - ExternalReference::new_space_allocation_top_address(isolate());
|
| -
|
| - // Make sure the object has no tag before resetting top.
|
| - Bic(object, object, kHeapObjectTagMask);
|
| -#ifdef DEBUG
|
| - // Check that the object un-allocated is below the current top.
|
| - Mov(scratch, new_space_allocation_top);
|
| - Ldr(scratch, MemOperand(scratch));
|
| - Cmp(object, scratch);
|
| - Check(lt, kUndoAllocationOfNonAllocatedMemory);
|
| -#endif
|
| - // Write the address of the object to un-allocate as the current top.
|
| - Mov(scratch, new_space_allocation_top);
|
| - Str(object, MemOperand(scratch));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateTwoByteString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* gc_required) {
|
| - ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
|
| - // Calculate the number of bytes needed for the characters in the string while
|
| - // observing object alignment.
|
| - STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| - Add(scratch1, length, length); // Length in bytes, not chars.
|
| - Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
|
| - Bic(scratch1, scratch1, kObjectAlignmentMask);
|
| -
|
| - // Allocate two-byte string in new space.
|
| - Allocate(scratch1,
|
| - result,
|
| - scratch2,
|
| - scratch3,
|
| - gc_required,
|
| - TAG_OBJECT);
|
| -
|
| - // Set the map, length and hash field.
|
| - InitializeNewString(result,
|
| - length,
|
| - Heap::kStringMapRootIndex,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateAsciiString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3,
|
| - Label* gc_required) {
|
| - ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
|
| - // Calculate the number of bytes needed for the characters in the string while
|
| - // observing object alignment.
|
| - STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
| - STATIC_ASSERT(kCharSize == 1);
|
| - Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
|
| - Bic(scratch1, scratch1, kObjectAlignmentMask);
|
| -
|
| - // Allocate ASCII string in new space.
|
| - Allocate(scratch1,
|
| - result,
|
| - scratch2,
|
| - scratch3,
|
| - gc_required,
|
| - TAG_OBJECT);
|
| -
|
| - // Set the map, length and hash field.
|
| - InitializeNewString(result,
|
| - length,
|
| - Heap::kAsciiStringMapRootIndex,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateTwoByteConsString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required) {
|
| - Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
|
| - TAG_OBJECT);
|
| -
|
| - InitializeNewString(result,
|
| - length,
|
| - Heap::kConsStringMapRootIndex,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateAsciiConsString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required) {
|
| - Label allocate_new_space, install_map;
|
| - AllocationFlags flags = TAG_OBJECT;
|
| -
|
| - ExternalReference high_promotion_mode = ExternalReference::
|
| - new_space_high_promotion_mode_active_address(isolate());
|
| - Mov(scratch1, high_promotion_mode);
|
| - Ldr(scratch1, MemOperand(scratch1));
|
| - Cbz(scratch1, &allocate_new_space);
|
| -
|
| - Allocate(ConsString::kSize,
|
| - result,
|
| - scratch1,
|
| - scratch2,
|
| - gc_required,
|
| - static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
|
| -
|
| - B(&install_map);
|
| -
|
| - Bind(&allocate_new_space);
|
| - Allocate(ConsString::kSize,
|
| - result,
|
| - scratch1,
|
| - scratch2,
|
| - gc_required,
|
| - flags);
|
| -
|
| - Bind(&install_map);
|
| -
|
| - InitializeNewString(result,
|
| - length,
|
| - Heap::kConsAsciiStringMapRootIndex,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateTwoByteSlicedString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required) {
|
| - ASSERT(!AreAliased(result, length, scratch1, scratch2));
|
| - Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
| - TAG_OBJECT);
|
| -
|
| - InitializeNewString(result,
|
| - length,
|
| - Heap::kSlicedStringMapRootIndex,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateAsciiSlicedString(Register result,
|
| - Register length,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* gc_required) {
|
| - ASSERT(!AreAliased(result, length, scratch1, scratch2));
|
| - Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
| - TAG_OBJECT);
|
| -
|
| - InitializeNewString(result,
|
| - length,
|
| - Heap::kSlicedAsciiStringMapRootIndex,
|
| - scratch1,
|
| - scratch2);
|
| -}
|
| -
|
| -
|
| -// Allocates a heap number or jumps to the need_gc label if the young space
|
| -// is full and a scavenge is needed.
|
| -void MacroAssembler::AllocateHeapNumber(Register result,
|
| - Label* gc_required,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register heap_number_map) {
|
| - // Allocate an object in the heap for the heap number and tag it as a heap
|
| - // object.
|
| - Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
|
| - TAG_OBJECT);
|
| -
|
| - // Store heap number map in the allocated object.
|
| - if (heap_number_map.Is(NoReg)) {
|
| - heap_number_map = scratch1;
|
| - LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - }
|
| - AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| - Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AllocateHeapNumberWithValue(Register result,
|
| - DoubleRegister value,
|
| - Label* gc_required,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register heap_number_map) {
|
| - // TODO(all): Check if it would be more efficient to use STP to store both
|
| - // the map and the value.
|
| - AllocateHeapNumber(result, gc_required, scratch1, scratch2, heap_number_map);
|
| - Str(value, FieldMemOperand(result, HeapNumber::kValueOffset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfObjectType(Register object,
|
| - Register map,
|
| - Register type_reg,
|
| - InstanceType type,
|
| - Label* if_cond_pass,
|
| - Condition cond) {
|
| - CompareObjectType(object, map, type_reg, type);
|
| - B(cond, if_cond_pass);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfNotObjectType(Register object,
|
| - Register map,
|
| - Register type_reg,
|
| - InstanceType type,
|
| - Label* if_not_object) {
|
| - JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
|
| -}
|
| -
|
| -
|
| -// Sets condition flags based on comparison, and returns type in type_reg.
|
| -void MacroAssembler::CompareObjectType(Register object,
|
| - Register map,
|
| - Register type_reg,
|
| - InstanceType type) {
|
| - Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - CompareInstanceType(map, type_reg, type);
|
| -}
|
| -
|
| -
|
| -// Sets condition flags based on comparison, and returns type in type_reg.
|
| -void MacroAssembler::CompareInstanceType(Register map,
|
| - Register type_reg,
|
| - InstanceType type) {
|
| - Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
| - Cmp(type_reg, type);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CompareMap(Register obj,
|
| - Register scratch,
|
| - Handle<Map> map) {
|
| - Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
|
| - CompareMap(scratch, map);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CompareMap(Register obj_map,
|
| - Handle<Map> map) {
|
| - Cmp(obj_map, Operand(map));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckMap(Register obj,
|
| - Register scratch,
|
| - Handle<Map> map,
|
| - Label* fail,
|
| - SmiCheckType smi_check_type) {
|
| - if (smi_check_type == DO_SMI_CHECK) {
|
| - JumpIfSmi(obj, fail);
|
| - }
|
| -
|
| - CompareMap(obj, scratch, map);
|
| - B(ne, fail);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckMap(Register obj,
|
| - Register scratch,
|
| - Heap::RootListIndex index,
|
| - Label* fail,
|
| - SmiCheckType smi_check_type) {
|
| - if (smi_check_type == DO_SMI_CHECK) {
|
| - JumpIfSmi(obj, fail);
|
| - }
|
| - Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
|
| - JumpIfNotRoot(scratch, index, fail);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckMap(Register obj_map,
|
| - Handle<Map> map,
|
| - Label* fail,
|
| - SmiCheckType smi_check_type) {
|
| - if (smi_check_type == DO_SMI_CHECK) {
|
| - JumpIfSmi(obj_map, fail);
|
| - }
|
| -
|
| - CompareMap(obj_map, map);
|
| - B(ne, fail);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::DispatchMap(Register obj,
|
| - Register scratch,
|
| - Handle<Map> map,
|
| - Handle<Code> success,
|
| - SmiCheckType smi_check_type) {
|
| - Label fail;
|
| - if (smi_check_type == DO_SMI_CHECK) {
|
| - JumpIfSmi(obj, &fail);
|
| - }
|
| - Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
|
| - Cmp(scratch, Operand(map));
|
| - B(ne, &fail);
|
| - Jump(success, RelocInfo::CODE_TARGET);
|
| - Bind(&fail);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
|
| - Tst(temp, mask);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
|
| - // Load the map's "bit field 2".
|
| - __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
|
| - // Retrieve elements_kind from bit field 2.
|
| - __ Ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TryGetFunctionPrototype(Register function,
|
| - Register result,
|
| - Register scratch,
|
| - Label* miss,
|
| - BoundFunctionAction action) {
|
| - ASSERT(!AreAliased(function, result, scratch));
|
| -
|
| - // Check that the receiver isn't a smi.
|
| - JumpIfSmi(function, miss);
|
| -
|
| - // Check that the function really is a function. Load map into result reg.
|
| - JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
|
| -
|
| - if (action == kMissOnBoundFunction) {
|
| - Register scratch_w = scratch.W();
|
| - Ldr(scratch,
|
| - FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
| - // On 64-bit platforms, compiler hints field is not a smi. See definition of
|
| - // kCompilerHintsOffset in src/objects.h.
|
| - Ldr(scratch_w,
|
| - FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
|
| - Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
|
| - }
|
| -
|
| - // Make sure that the function has an instance prototype.
|
| - Label non_instance;
|
| - Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
|
| - Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
|
| -
|
| - // Get the prototype or initial map from the function.
|
| - Ldr(result,
|
| - FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
| -
|
| - // If the prototype or initial map is the hole, don't return it and simply
|
| - // miss the cache instead. This will allow us to allocate a prototype object
|
| - // on-demand in the runtime system.
|
| - JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
|
| -
|
| - // If the function does not have an initial map, we're done.
|
| - Label done;
|
| - JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
|
| -
|
| - // Get the prototype from the initial map.
|
| - Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
|
| - B(&done);
|
| -
|
| - // Non-instance prototype: fetch prototype from constructor field in initial
|
| - // map.
|
| - Bind(&non_instance);
|
| - Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
|
| -
|
| - // All done.
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CompareRoot(const Register& obj,
|
| - Heap::RootListIndex index) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - ASSERT(!AreAliased(obj, temp));
|
| - LoadRoot(temp, index);
|
| - Cmp(obj, temp);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfRoot(const Register& obj,
|
| - Heap::RootListIndex index,
|
| - Label* if_equal) {
|
| - CompareRoot(obj, index);
|
| - B(eq, if_equal);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfNotRoot(const Register& obj,
|
| - Heap::RootListIndex index,
|
| - Label* if_not_equal) {
|
| - CompareRoot(obj, index);
|
| - B(ne, if_not_equal);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CompareAndSplit(const Register& lhs,
|
| - const Operand& rhs,
|
| - Condition cond,
|
| - Label* if_true,
|
| - Label* if_false,
|
| - Label* fall_through) {
|
| - if ((if_true == if_false) && (if_false == fall_through)) {
|
| - // Fall through.
|
| - } else if (if_true == if_false) {
|
| - B(if_true);
|
| - } else if (if_false == fall_through) {
|
| - CompareAndBranch(lhs, rhs, cond, if_true);
|
| - } else if (if_true == fall_through) {
|
| - CompareAndBranch(lhs, rhs, InvertCondition(cond), if_false);
|
| - } else {
|
| - CompareAndBranch(lhs, rhs, cond, if_true);
|
| - B(if_false);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::TestAndSplit(const Register& reg,
|
| - uint64_t bit_pattern,
|
| - Label* if_all_clear,
|
| - Label* if_any_set,
|
| - Label* fall_through) {
|
| - if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
|
| - // Fall through.
|
| - } else if (if_all_clear == if_any_set) {
|
| - B(if_all_clear);
|
| - } else if (if_all_clear == fall_through) {
|
| - TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
|
| - } else if (if_any_set == fall_through) {
|
| - TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
|
| - } else {
|
| - TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
|
| - B(if_all_clear);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckFastElements(Register map,
|
| - Register scratch,
|
| - Label* fail) {
|
| - STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
| - STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
| - STATIC_ASSERT(FAST_ELEMENTS == 2);
|
| - STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
| - Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
|
| - Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
|
| - B(hi, fail);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckFastObjectElements(Register map,
|
| - Register scratch,
|
| - Label* fail) {
|
| - STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
| - STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
| - STATIC_ASSERT(FAST_ELEMENTS == 2);
|
| - STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
| - Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
|
| - Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
|
| - // If cond==ls, set cond=hi, otherwise compare.
|
| - Ccmp(scratch,
|
| - Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
|
| - B(hi, fail);
|
| -}
|
| -
|
| -
|
| -// Note: The ARM version of this clobbers elements_reg, but this version does
|
| -// not. Some uses of this in A64 assume that elements_reg will be preserved.
|
| -void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
|
| - Register key_reg,
|
| - Register elements_reg,
|
| - Register scratch1,
|
| - FPRegister fpscratch1,
|
| - FPRegister fpscratch2,
|
| - Label* fail,
|
| - int elements_offset) {
|
| - ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
|
| - Label store_num;
|
| -
|
| - // Speculatively convert the smi to a double - all smis can be exactly
|
| - // represented as a double.
|
| - SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
|
| -
|
| - // If value_reg is a smi, we're done.
|
| - JumpIfSmi(value_reg, &store_num);
|
| -
|
| - // Ensure that the object is a heap number.
|
| - CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(),
|
| - fail, DONT_DO_SMI_CHECK);
|
| -
|
| - Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
|
| - Fmov(fpscratch2, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
|
| -
|
| - // Check for NaN by comparing the number to itself: NaN comparison will
|
| - // report unordered, indicated by the overflow flag being set.
|
| - Fcmp(fpscratch1, fpscratch1);
|
| - Fcsel(fpscratch1, fpscratch2, fpscratch1, vs);
|
| -
|
| - // Store the result.
|
| - Bind(&store_num);
|
| - Add(scratch1, elements_reg,
|
| - Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
|
| - Str(fpscratch1,
|
| - FieldMemOperand(scratch1,
|
| - FixedDoubleArray::kHeaderSize - elements_offset));
|
| -}
|
| -
|
| -
|
| -bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
|
| - return has_frame_ || !stub->SometimesSetsUpAFrame();
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::IndexFromHash(Register hash, Register index) {
|
| - // If the hash field contains an array index pick it out. The assert checks
|
| - // that the constants for the maximum number of digits for an array index
|
| - // cached in the hash field and the number of bits reserved for it does not
|
| - // conflict.
|
| - ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
|
| - (1 << String::kArrayIndexValueBits));
|
| - // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
|
| - // the low kHashShift bits.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
|
| - SmiTag(index, hash);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EmitSeqStringSetCharCheck(
|
| - Register string,
|
| - Register index,
|
| - SeqStringSetCharCheckIndexType index_type,
|
| - Register scratch,
|
| - uint32_t encoding_mask) {
|
| - ASSERT(!AreAliased(string, index, scratch));
|
| -
|
| - if (index_type == kIndexIsSmi) {
|
| - AssertSmi(index);
|
| - }
|
| -
|
| - // Check that string is an object.
|
| - AssertNotSmi(string, kNonObject);
|
| -
|
| - // Check that string has an appropriate map.
|
| - Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
|
| - Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
|
| -
|
| - And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
|
| - Cmp(scratch, encoding_mask);
|
| - Check(eq, kUnexpectedStringType);
|
| -
|
| - Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
|
| - Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
|
| - Check(lt, kIndexIsTooLarge);
|
| -
|
| - ASSERT_EQ(0, Smi::FromInt(0));
|
| - Cmp(index, 0);
|
| - Check(ge, kIndexIsNegative);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* miss) {
|
| - ASSERT(!AreAliased(holder_reg, scratch1, scratch2));
|
| - Label same_contexts;
|
| -
|
| - // Load current lexical context from the stack frame.
|
| - Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| - // In debug mode, make sure the lexical context is set.
|
| -#ifdef DEBUG
|
| - Cmp(scratch1, 0);
|
| - Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
|
| -#endif
|
| -
|
| - // Load the native context of the current context.
|
| - int offset =
|
| - Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
|
| - Ldr(scratch1, FieldMemOperand(scratch1, offset));
|
| - Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
|
| -
|
| - // Check the context is a native context.
|
| - if (emit_debug_code()) {
|
| - // Read the first word and compare to the global_context_map.
|
| - Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
|
| - CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
|
| - Check(eq, kExpectedNativeContext);
|
| - }
|
| -
|
| - // Check if both contexts are the same.
|
| - Ldr(scratch2, FieldMemOperand(holder_reg,
|
| - JSGlobalProxy::kNativeContextOffset));
|
| - Cmp(scratch1, scratch2);
|
| - B(&same_contexts, eq);
|
| -
|
| - // Check the context is a native context.
|
| - if (emit_debug_code()) {
|
| - // We're short on scratch registers here, so use holder_reg as a scratch.
|
| - Push(holder_reg);
|
| - Register scratch3 = holder_reg;
|
| -
|
| - CompareRoot(scratch2, Heap::kNullValueRootIndex);
|
| - Check(ne, kExpectedNonNullContext);
|
| -
|
| - Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
|
| - CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
|
| - Check(eq, kExpectedNativeContext);
|
| - Pop(holder_reg);
|
| - }
|
| -
|
| - // Check that the security token in the calling global object is
|
| - // compatible with the security token in the receiving global
|
| - // object.
|
| - int token_offset = Context::kHeaderSize +
|
| - Context::SECURITY_TOKEN_INDEX * kPointerSize;
|
| -
|
| - Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
|
| - Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
|
| - Cmp(scratch1, scratch2);
|
| - B(miss, ne);
|
| -
|
| - Bind(&same_contexts);
|
| -}
|
| -
|
| -
|
| -// Compute the hash code from the untagged key. This must be kept in sync with
|
| -// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
|
| -// code-stub-hydrogen.cc
|
| -void MacroAssembler::GetNumberHash(Register key, Register scratch) {
|
| - ASSERT(!AreAliased(key, scratch));
|
| -
|
| - // Xor original key with a seed.
|
| - LoadRoot(scratch, Heap::kHashSeedRootIndex);
|
| - Eor(key, key, Operand::UntagSmi(scratch));
|
| -
|
| - // The algorithm uses 32-bit integer values.
|
| - key = key.W();
|
| - scratch = scratch.W();
|
| -
|
| - // Compute the hash code from the untagged key. This must be kept in sync
|
| - // with ComputeIntegerHash in utils.h.
|
| - //
|
| - // hash = ~hash + (hash <<1 15);
|
| - Mvn(scratch, key);
|
| - Add(key, scratch, Operand(key, LSL, 15));
|
| - // hash = hash ^ (hash >> 12);
|
| - Eor(key, key, Operand(key, LSR, 12));
|
| - // hash = hash + (hash << 2);
|
| - Add(key, key, Operand(key, LSL, 2));
|
| - // hash = hash ^ (hash >> 4);
|
| - Eor(key, key, Operand(key, LSR, 4));
|
| - // hash = hash * 2057;
|
| - Mov(scratch, Operand(key, LSL, 11));
|
| - Add(key, key, Operand(key, LSL, 3));
|
| - Add(key, key, scratch);
|
| - // hash = hash ^ (hash >> 16);
|
| - Eor(key, key, Operand(key, LSR, 16));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadFromNumberDictionary(Label* miss,
|
| - Register elements,
|
| - Register key,
|
| - Register result,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register scratch3) {
|
| - ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
|
| -
|
| - Label done;
|
| -
|
| - SmiUntag(scratch0, key);
|
| - GetNumberHash(scratch0, scratch1);
|
| -
|
| - // Compute the capacity mask.
|
| - Ldrsw(scratch1,
|
| - UntagSmiFieldMemOperand(elements,
|
| - SeededNumberDictionary::kCapacityOffset));
|
| - Sub(scratch1, scratch1, 1);
|
| -
|
| - // Generate an unrolled loop that performs a few probes before giving up.
|
| - for (int i = 0; i < kNumberDictionaryProbes; i++) {
|
| - // Compute the masked index: (hash + i + i * i) & mask.
|
| - if (i > 0) {
|
| - Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
|
| - } else {
|
| - Mov(scratch2, scratch0);
|
| - }
|
| - And(scratch2, scratch2, scratch1);
|
| -
|
| - // Scale the index by multiplying by the element size.
|
| - ASSERT(SeededNumberDictionary::kEntrySize == 3);
|
| - Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
|
| -
|
| - // Check if the key is identical to the name.
|
| - Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
|
| - Ldr(scratch3,
|
| - FieldMemOperand(scratch2,
|
| - SeededNumberDictionary::kElementsStartOffset));
|
| - Cmp(key, scratch3);
|
| - if (i != (kNumberDictionaryProbes - 1)) {
|
| - B(eq, &done);
|
| - } else {
|
| - B(ne, miss);
|
| - }
|
| - }
|
| -
|
| - Bind(&done);
|
| - // Check that the value is a normal property.
|
| - const int kDetailsOffset =
|
| - SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
|
| - Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
|
| - TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
|
| -
|
| - // Get the value at the masked, scaled index and return.
|
| - const int kValueOffset =
|
| - SeededNumberDictionary::kElementsStartOffset + kPointerSize;
|
| - Ldr(result, FieldMemOperand(scratch2, kValueOffset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
|
| - Register address,
|
| - Register scratch1,
|
| - SaveFPRegsMode fp_mode,
|
| - RememberedSetFinalAction and_then) {
|
| - ASSERT(!AreAliased(object, address, scratch1));
|
| - Label done, store_buffer_overflow;
|
| - if (emit_debug_code()) {
|
| - Label ok;
|
| - JumpIfNotInNewSpace(object, &ok);
|
| - Abort(kRememberedSetPointerInNewSpace);
|
| - bind(&ok);
|
| - }
|
| - UseScratchRegisterScope temps(this);
|
| - Register scratch2 = temps.AcquireX();
|
| -
|
| - // Load store buffer top.
|
| - Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
|
| - Ldr(scratch1, MemOperand(scratch2));
|
| - // Store pointer to buffer and increment buffer top.
|
| - Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
|
| - // Write back new top of buffer.
|
| - Str(scratch1, MemOperand(scratch2));
|
| - // Call stub on end of buffer.
|
| - // Check for end of buffer.
|
| - ASSERT(StoreBuffer::kStoreBufferOverflowBit ==
|
| - (1 << (14 + kPointerSizeLog2)));
|
| - if (and_then == kFallThroughAtEnd) {
|
| - Tbz(scratch1, (14 + kPointerSizeLog2), &done);
|
| - } else {
|
| - ASSERT(and_then == kReturnAtEnd);
|
| - Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
|
| - Ret();
|
| - }
|
| -
|
| - Bind(&store_buffer_overflow);
|
| - Push(lr);
|
| - StoreBufferOverflowStub store_buffer_overflow_stub =
|
| - StoreBufferOverflowStub(fp_mode);
|
| - CallStub(&store_buffer_overflow_stub);
|
| - Pop(lr);
|
| -
|
| - Bind(&done);
|
| - if (and_then == kReturnAtEnd) {
|
| - Ret();
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PopSafepointRegisters() {
|
| - const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
|
| - PopXRegList(kSafepointSavedRegisters);
|
| - Drop(num_unsaved);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushSafepointRegisters() {
|
| - // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
|
| - // adjust the stack for unsaved registers.
|
| - const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
|
| - ASSERT(num_unsaved >= 0);
|
| - Claim(num_unsaved);
|
| - PushXRegList(kSafepointSavedRegisters);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PushSafepointFPRegisters() {
|
| - PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
|
| - FPRegister::kAllocatableFPRegisters));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::PopSafepointFPRegisters() {
|
| - PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
|
| - FPRegister::kAllocatableFPRegisters));
|
| -}
|
| -
|
| -
|
| -int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
|
| - // Make sure the safepoint registers list is what we expect.
|
| - ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
|
| -
|
| - // Safepoint registers are stored contiguously on the stack, but not all the
|
| - // registers are saved. The following registers are excluded:
|
| - // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
|
| - // the macro assembler.
|
| - // - x28 (jssp) because JS stack pointer doesn't need to be included in
|
| - // safepoint registers.
|
| - // - x31 (csp) because the system stack pointer doesn't need to be included
|
| - // in safepoint registers.
|
| - //
|
| - // This function implements the mapping of register code to index into the
|
| - // safepoint register slots.
|
| - if ((reg_code >= 0) && (reg_code <= 15)) {
|
| - return reg_code;
|
| - } else if ((reg_code >= 18) && (reg_code <= 27)) {
|
| - // Skip ip0 and ip1.
|
| - return reg_code - 2;
|
| - } else if ((reg_code == 29) || (reg_code == 30)) {
|
| - // Also skip jssp.
|
| - return reg_code - 3;
|
| - } else {
|
| - // This register has no safepoint register slot.
|
| - UNREACHABLE();
|
| - return -1;
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckPageFlagSet(const Register& object,
|
| - const Register& scratch,
|
| - int mask,
|
| - Label* if_any_set) {
|
| - And(scratch, object, ~Page::kPageAlignmentMask);
|
| - Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
|
| - TestAndBranchIfAnySet(scratch, mask, if_any_set);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckPageFlagClear(const Register& object,
|
| - const Register& scratch,
|
| - int mask,
|
| - Label* if_all_clear) {
|
| - And(scratch, object, ~Page::kPageAlignmentMask);
|
| - Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
|
| - TestAndBranchIfAllClear(scratch, mask, if_all_clear);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::RecordWriteField(
|
| - Register object,
|
| - int offset,
|
| - Register value,
|
| - Register scratch,
|
| - LinkRegisterStatus lr_status,
|
| - SaveFPRegsMode save_fp,
|
| - RememberedSetAction remembered_set_action,
|
| - SmiCheck smi_check) {
|
| - // First, check if a write barrier is even needed. The tests below
|
| - // catch stores of Smis.
|
| - Label done;
|
| -
|
| - // Skip the barrier if writing a smi.
|
| - if (smi_check == INLINE_SMI_CHECK) {
|
| - JumpIfSmi(value, &done);
|
| - }
|
| -
|
| - // Although the object register is tagged, the offset is relative to the start
|
| - // of the object, so offset must be a multiple of kPointerSize.
|
| - ASSERT(IsAligned(offset, kPointerSize));
|
| -
|
| - Add(scratch, object, offset - kHeapObjectTag);
|
| - if (emit_debug_code()) {
|
| - Label ok;
|
| - Tst(scratch, (1 << kPointerSizeLog2) - 1);
|
| - B(eq, &ok);
|
| - Abort(kUnalignedCellInWriteBarrier);
|
| - Bind(&ok);
|
| - }
|
| -
|
| - RecordWrite(object,
|
| - scratch,
|
| - value,
|
| - lr_status,
|
| - save_fp,
|
| - remembered_set_action,
|
| - OMIT_SMI_CHECK);
|
| -
|
| - Bind(&done);
|
| -
|
| - // Clobber clobbered input registers when running with the debug-code flag
|
| - // turned on to provoke errors.
|
| - if (emit_debug_code()) {
|
| - Mov(value, Operand(BitCast<int64_t>(kZapValue + 4)));
|
| - Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8)));
|
| - }
|
| -}
|
| -
|
| -
|
| -// Will clobber: object, address, value.
|
| -// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
|
| -//
|
| -// The register 'object' contains a heap object pointer. The heap object tag is
|
| -// shifted away.
|
| -void MacroAssembler::RecordWrite(Register object,
|
| - Register address,
|
| - Register value,
|
| - LinkRegisterStatus lr_status,
|
| - SaveFPRegsMode fp_mode,
|
| - RememberedSetAction remembered_set_action,
|
| - SmiCheck smi_check) {
|
| - ASM_LOCATION("MacroAssembler::RecordWrite");
|
| - ASSERT(!AreAliased(object, value));
|
| -
|
| - if (emit_debug_code()) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| -
|
| - Ldr(temp, MemOperand(address));
|
| - Cmp(temp, value);
|
| - Check(eq, kWrongAddressOrValuePassedToRecordWrite);
|
| - }
|
| -
|
| - // Count number of write barriers in generated code.
|
| - isolate()->counters()->write_barriers_static()->Increment();
|
| - // TODO(mstarzinger): Dynamic counter missing.
|
| -
|
| - // First, check if a write barrier is even needed. The tests below
|
| - // catch stores of smis and stores into the young generation.
|
| - Label done;
|
| -
|
| - if (smi_check == INLINE_SMI_CHECK) {
|
| - ASSERT_EQ(0, kSmiTag);
|
| - JumpIfSmi(value, &done);
|
| - }
|
| -
|
| - CheckPageFlagClear(value,
|
| - value, // Used as scratch.
|
| - MemoryChunk::kPointersToHereAreInterestingMask,
|
| - &done);
|
| - CheckPageFlagClear(object,
|
| - value, // Used as scratch.
|
| - MemoryChunk::kPointersFromHereAreInterestingMask,
|
| - &done);
|
| -
|
| - // Record the actual write.
|
| - if (lr_status == kLRHasNotBeenSaved) {
|
| - Push(lr);
|
| - }
|
| - RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
|
| - CallStub(&stub);
|
| - if (lr_status == kLRHasNotBeenSaved) {
|
| - Pop(lr);
|
| - }
|
| -
|
| - Bind(&done);
|
| -
|
| - // Clobber clobbered registers when running with the debug-code flag
|
| - // turned on to provoke errors.
|
| - if (emit_debug_code()) {
|
| - Mov(address, Operand(BitCast<int64_t>(kZapValue + 12)));
|
| - Mov(value, Operand(BitCast<int64_t>(kZapValue + 16)));
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertHasValidColor(const Register& reg) {
|
| - if (emit_debug_code()) {
|
| - // The bit sequence is backward. The first character in the string
|
| - // represents the least significant bit.
|
| - ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
|
| -
|
| - Label color_is_valid;
|
| - Tbnz(reg, 0, &color_is_valid);
|
| - Tbz(reg, 1, &color_is_valid);
|
| - Abort(kUnexpectedColorFound);
|
| - Bind(&color_is_valid);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::GetMarkBits(Register addr_reg,
|
| - Register bitmap_reg,
|
| - Register shift_reg) {
|
| - ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg));
|
| - ASSERT(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
|
| - // addr_reg is divided into fields:
|
| - // |63 page base 20|19 high 8|7 shift 3|2 0|
|
| - // 'high' gives the index of the cell holding color bits for the object.
|
| - // 'shift' gives the offset in the cell for this object's color.
|
| - const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
|
| - Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
|
| - Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
|
| - // bitmap_reg:
|
| - // |63 page base 20|19 zeros 15|14 high 3|2 0|
|
| - Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::HasColor(Register object,
|
| - Register bitmap_scratch,
|
| - Register shift_scratch,
|
| - Label* has_color,
|
| - int first_bit,
|
| - int second_bit) {
|
| - // See mark-compact.h for color definitions.
|
| - ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch));
|
| -
|
| - GetMarkBits(object, bitmap_scratch, shift_scratch);
|
| - Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| - // Shift the bitmap down to get the color of the object in bits [1:0].
|
| - Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
|
| -
|
| - AssertHasValidColor(bitmap_scratch);
|
| -
|
| - // These bit sequences are backwards. The first character in the string
|
| - // represents the least significant bit.
|
| - ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
|
| - ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
| - ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
|
| -
|
| - // Check for the color.
|
| - if (first_bit == 0) {
|
| - // Checking for white.
|
| - ASSERT(second_bit == 0);
|
| - // We only need to test the first bit.
|
| - Tbz(bitmap_scratch, 0, has_color);
|
| - } else {
|
| - Label other_color;
|
| - // Checking for grey or black.
|
| - Tbz(bitmap_scratch, 0, &other_color);
|
| - if (second_bit == 0) {
|
| - Tbz(bitmap_scratch, 1, has_color);
|
| - } else {
|
| - Tbnz(bitmap_scratch, 1, has_color);
|
| - }
|
| - Bind(&other_color);
|
| - }
|
| -
|
| - // Fall through if it does not have the right color.
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
|
| - Register scratch,
|
| - Label* if_deprecated) {
|
| - if (map->CanBeDeprecated()) {
|
| - Mov(scratch, Operand(map));
|
| - Ldrsw(scratch, UntagSmiFieldMemOperand(scratch, Map::kBitField3Offset));
|
| - TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfBlack(Register object,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Label* on_black) {
|
| - ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
| - HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::JumpIfDictionaryInPrototypeChain(
|
| - Register object,
|
| - Register scratch0,
|
| - Register scratch1,
|
| - Label* found) {
|
| - ASSERT(!AreAliased(object, scratch0, scratch1));
|
| - Factory* factory = isolate()->factory();
|
| - Register current = scratch0;
|
| - Label loop_again;
|
| -
|
| - // Scratch contains elements pointer.
|
| - Mov(current, object);
|
| -
|
| - // Loop based on the map going up the prototype chain.
|
| - Bind(&loop_again);
|
| - Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
|
| - Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
|
| - Ubfx(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
| - CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
|
| - Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
|
| - CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
|
| - Register result) {
|
| - ASSERT(!result.Is(ldr_location));
|
| - const uint32_t kLdrLitOffset_lsb = 5;
|
| - const uint32_t kLdrLitOffset_width = 19;
|
| - Ldr(result, MemOperand(ldr_location));
|
| - if (emit_debug_code()) {
|
| - And(result, result, LoadLiteralFMask);
|
| - Cmp(result, LoadLiteralFixed);
|
| - Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
|
| - // The instruction was clobbered. Reload it.
|
| - Ldr(result, MemOperand(ldr_location));
|
| - }
|
| - Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
|
| - Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EnsureNotWhite(
|
| - Register value,
|
| - Register bitmap_scratch,
|
| - Register shift_scratch,
|
| - Register load_scratch,
|
| - Register length_scratch,
|
| - Label* value_is_white_and_not_data) {
|
| - ASSERT(!AreAliased(
|
| - value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
|
| -
|
| - // These bit sequences are backwards. The first character in the string
|
| - // represents the least significant bit.
|
| - ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
|
| - ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
| - ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
|
| -
|
| - GetMarkBits(value, bitmap_scratch, shift_scratch);
|
| - Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| - Lsr(load_scratch, load_scratch, shift_scratch);
|
| -
|
| - AssertHasValidColor(load_scratch);
|
| -
|
| - // If the value is black or grey we don't need to do anything.
|
| - // Since both black and grey have a 1 in the first position and white does
|
| - // not have a 1 there we only need to check one bit.
|
| - Label done;
|
| - Tbnz(load_scratch, 0, &done);
|
| -
|
| - // Value is white. We check whether it is data that doesn't need scanning.
|
| - Register map = load_scratch; // Holds map while checking type.
|
| - Label is_data_object;
|
| -
|
| - // Check for heap-number.
|
| - Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
|
| - Mov(length_scratch, HeapNumber::kSize);
|
| - JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
|
| -
|
| - // Check for strings.
|
| - ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
|
| - ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
|
| - // If it's a string and it's not a cons string then it's an object containing
|
| - // no GC pointers.
|
| - Register instance_type = load_scratch;
|
| - Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
| - TestAndBranchIfAnySet(instance_type,
|
| - kIsIndirectStringMask | kIsNotStringMask,
|
| - value_is_white_and_not_data);
|
| -
|
| - // It's a non-indirect (non-cons and non-slice) string.
|
| - // If it's external, the length is just ExternalString::kSize.
|
| - // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
|
| - // External strings are the only ones with the kExternalStringTag bit
|
| - // set.
|
| - ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
|
| - ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
|
| - Mov(length_scratch, ExternalString::kSize);
|
| - TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
|
| -
|
| - // Sequential string, either ASCII or UC16.
|
| - // For ASCII (char-size of 1) we shift the smi tag away to get the length.
|
| - // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
|
| - // getting the length multiplied by 2.
|
| - ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
|
| - Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
|
| - String::kLengthOffset));
|
| - Tst(instance_type, kStringEncodingMask);
|
| - Cset(load_scratch, eq);
|
| - Lsl(length_scratch, length_scratch, load_scratch);
|
| - Add(length_scratch,
|
| - length_scratch,
|
| - SeqString::kHeaderSize + kObjectAlignmentMask);
|
| - Bic(length_scratch, length_scratch, kObjectAlignmentMask);
|
| -
|
| - Bind(&is_data_object);
|
| - // Value is a data object, and it is white. Mark it black. Since we know
|
| - // that the object is white we can make it black by flipping one bit.
|
| - Register mask = shift_scratch;
|
| - Mov(load_scratch, 1);
|
| - Lsl(mask, load_scratch, shift_scratch);
|
| -
|
| - Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| - Orr(load_scratch, load_scratch, mask);
|
| - Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
| -
|
| - Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
|
| - Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
|
| - Add(load_scratch, load_scratch, length_scratch);
|
| - Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
|
| -
|
| - Bind(&done);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
|
| - if (emit_debug_code()) {
|
| - Check(cond, reason);
|
| - }
|
| -}
|
| -
|
| -
|
| -
|
| -void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
|
| - if (emit_debug_code()) {
|
| - CheckRegisterIsClear(reg, reason);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertRegisterIsRoot(Register reg,
|
| - Heap::RootListIndex index,
|
| - BailoutReason reason) {
|
| - if (emit_debug_code()) {
|
| - CompareRoot(reg, index);
|
| - Check(eq, reason);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertFastElements(Register elements) {
|
| - if (emit_debug_code()) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - Label ok;
|
| - Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
|
| - JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
|
| - JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
|
| - JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
|
| - Abort(kJSObjectWithFastElementsMapHasSlowElements);
|
| - Bind(&ok);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::AssertIsString(const Register& object) {
|
| - if (emit_debug_code()) {
|
| - UseScratchRegisterScope temps(this);
|
| - Register temp = temps.AcquireX();
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - Tst(object, kSmiTagMask);
|
| - Check(ne, kOperandIsNotAString);
|
| - Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
|
| - CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
|
| - Check(lo, kOperandIsNotAString);
|
| - }
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Check(Condition cond, BailoutReason reason) {
|
| - Label ok;
|
| - B(cond, &ok);
|
| - Abort(reason);
|
| - // Will not return here.
|
| - Bind(&ok);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
|
| - Label ok;
|
| - Cbz(reg, &ok);
|
| - Abort(reason);
|
| - // Will not return here.
|
| - Bind(&ok);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Abort(BailoutReason reason) {
|
| -#ifdef DEBUG
|
| - RecordComment("Abort message: ");
|
| - RecordComment(GetBailoutReason(reason));
|
| -
|
| - if (FLAG_trap_on_abort) {
|
| - Brk(0);
|
| - return;
|
| - }
|
| -#endif
|
| -
|
| - // Abort is used in some contexts where csp is the stack pointer. In order to
|
| - // simplify the CallRuntime code, make sure that jssp is the stack pointer.
|
| - // There is no risk of register corruption here because Abort doesn't return.
|
| - Register old_stack_pointer = StackPointer();
|
| - SetStackPointer(jssp);
|
| - Mov(jssp, old_stack_pointer);
|
| -
|
| - // We need some scratch registers for the MacroAssembler, so make sure we have
|
| - // some. This is safe here because Abort never returns.
|
| - RegList old_tmp_list = TmpList()->list();
|
| - TmpList()->Combine(ip0);
|
| - TmpList()->Combine(ip1);
|
| -
|
| - if (use_real_aborts()) {
|
| - // Avoid infinite recursion; Push contains some assertions that use Abort.
|
| - NoUseRealAbortsScope no_real_aborts(this);
|
| -
|
| - Mov(x0, Smi::FromInt(reason));
|
| - Push(x0);
|
| -
|
| - if (!has_frame_) {
|
| - // We don't actually want to generate a pile of code for this, so just
|
| - // claim there is a stack frame, without generating one.
|
| - FrameScope scope(this, StackFrame::NONE);
|
| - CallRuntime(Runtime::kAbort, 1);
|
| - } else {
|
| - CallRuntime(Runtime::kAbort, 1);
|
| - }
|
| - } else {
|
| - // Load the string to pass to Printf.
|
| - Label msg_address;
|
| - Adr(x0, &msg_address);
|
| -
|
| - // Call Printf directly to report the error.
|
| - CallPrintf();
|
| -
|
| - // We need a way to stop execution on both the simulator and real hardware,
|
| - // and Unreachable() is the best option.
|
| - Unreachable();
|
| -
|
| - // Emit the message string directly in the instruction stream.
|
| - {
|
| - BlockPoolsScope scope(this);
|
| - Bind(&msg_address);
|
| - EmitStringData(GetBailoutReason(reason));
|
| - }
|
| - }
|
| -
|
| - SetStackPointer(old_stack_pointer);
|
| - TmpList()->set_list(old_tmp_list);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadTransitionedArrayMapConditional(
|
| - ElementsKind expected_kind,
|
| - ElementsKind transitioned_kind,
|
| - Register map_in_out,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Label* no_map_match) {
|
| - // Load the global or builtins object from the current context.
|
| - Ldr(scratch1, GlobalObjectMemOperand());
|
| - Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
|
| -
|
| - // Check that the function's map is the same as the expected cached map.
|
| - Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
|
| - size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
|
| - Ldr(scratch2, FieldMemOperand(scratch1, offset));
|
| - Cmp(map_in_out, scratch2);
|
| - B(ne, no_map_match);
|
| -
|
| - // Use the transitioned cached map.
|
| - offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
|
| - Ldr(map_in_out, FieldMemOperand(scratch1, offset));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadGlobalFunction(int index, Register function) {
|
| - // Load the global or builtins object from the current context.
|
| - Ldr(function, GlobalObjectMemOperand());
|
| - // Load the native context from the global or builtins object.
|
| - Ldr(function, FieldMemOperand(function,
|
| - GlobalObject::kNativeContextOffset));
|
| - // Load the function from the native context.
|
| - Ldr(function, ContextMemOperand(function, index));
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
|
| - Register map,
|
| - Register scratch) {
|
| - // Load the initial map. The global functions all have initial maps.
|
| - Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
| - if (emit_debug_code()) {
|
| - Label ok, fail;
|
| - CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
|
| - B(&ok);
|
| - Bind(&fail);
|
| - Abort(kGlobalFunctionsMustHaveInitialMap);
|
| - Bind(&ok);
|
| - }
|
| -}
|
| -
|
| -
|
| -// This is the main Printf implementation. All other Printf variants call
|
| -// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
|
| -void MacroAssembler::PrintfNoPreserve(const char * format,
|
| - const CPURegister& arg0,
|
| - const CPURegister& arg1,
|
| - const CPURegister& arg2,
|
| - const CPURegister& arg3) {
|
| - // We cannot handle a caller-saved stack pointer. It doesn't make much sense
|
| - // in most cases anyway, so this restriction shouldn't be too serious.
|
| - ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
|
| -
|
| - // Make sure that the macro assembler doesn't try to use any of our arguments
|
| - // as scratch registers.
|
| - ASSERT(!TmpList()->IncludesAliasOf(arg0, arg1, arg2, arg3));
|
| - ASSERT(!FPTmpList()->IncludesAliasOf(arg0, arg1, arg2, arg3));
|
| -
|
| - // We cannot print the stack pointer because it is typically used to preserve
|
| - // caller-saved registers (using other Printf variants which depend on this
|
| - // helper).
|
| - ASSERT(!AreAliased(arg0, StackPointer()));
|
| - ASSERT(!AreAliased(arg1, StackPointer()));
|
| - ASSERT(!AreAliased(arg2, StackPointer()));
|
| - ASSERT(!AreAliased(arg3, StackPointer()));
|
| -
|
| - static const int kMaxArgCount = 4;
|
| - // Assume that we have the maximum number of arguments until we know
|
| - // otherwise.
|
| - int arg_count = kMaxArgCount;
|
| -
|
| - // The provided arguments.
|
| - CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3};
|
| -
|
| - // The PCS registers where the arguments need to end up.
|
| - CPURegister pcs[kMaxArgCount] = {NoCPUReg, NoCPUReg, NoCPUReg, NoCPUReg};
|
| -
|
| - // Promote FP arguments to doubles, and integer arguments to X registers.
|
| - // Note that FP and integer arguments cannot be mixed, but we'll check
|
| - // AreSameSizeAndType once we've processed these promotions.
|
| - for (int i = 0; i < kMaxArgCount; i++) {
|
| - if (args[i].IsRegister()) {
|
| - // Note that we use x1 onwards, because x0 will hold the format string.
|
| - pcs[i] = Register::XRegFromCode(i + 1);
|
| - // For simplicity, we handle all integer arguments as X registers. An X
|
| - // register argument takes the same space as a W register argument in the
|
| - // PCS anyway. The only limitation is that we must explicitly clear the
|
| - // top word for W register arguments as the callee will expect it to be
|
| - // clear.
|
| - if (!args[i].Is64Bits()) {
|
| - const Register& as_x = args[i].X();
|
| - And(as_x, as_x, 0x00000000ffffffff);
|
| - args[i] = as_x;
|
| - }
|
| - } else if (args[i].IsFPRegister()) {
|
| - pcs[i] = FPRegister::DRegFromCode(i);
|
| - // C and C++ varargs functions (such as printf) implicitly promote float
|
| - // arguments to doubles.
|
| - if (!args[i].Is64Bits()) {
|
| - FPRegister s(args[i]);
|
| - const FPRegister& as_d = args[i].D();
|
| - Fcvt(as_d, s);
|
| - args[i] = as_d;
|
| - }
|
| - } else {
|
| - // This is the first empty (NoCPUReg) argument, so use it to set the
|
| - // argument count and bail out.
|
| - arg_count = i;
|
| - break;
|
| - }
|
| - }
|
| - ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount));
|
| - // Check that every remaining argument is NoCPUReg.
|
| - for (int i = arg_count; i < kMaxArgCount; i++) {
|
| - ASSERT(args[i].IsNone());
|
| - }
|
| - ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1],
|
| - args[2], args[3],
|
| - pcs[0], pcs[1],
|
| - pcs[2], pcs[3]));
|
| -
|
| - // Move the arguments into the appropriate PCS registers.
|
| - //
|
| - // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is
|
| - // surprisingly complicated.
|
| - //
|
| - // * For even numbers of registers, we push the arguments and then pop them
|
| - // into their final registers. This maintains 16-byte stack alignment in
|
| - // case csp is the stack pointer, since we're only handling X or D
|
| - // registers at this point.
|
| - //
|
| - // * For odd numbers of registers, we push and pop all but one register in
|
| - // the same way, but the left-over register is moved directly, since we
|
| - // can always safely move one register without clobbering any source.
|
| - if (arg_count >= 4) {
|
| - Push(args[3], args[2], args[1], args[0]);
|
| - } else if (arg_count >= 2) {
|
| - Push(args[1], args[0]);
|
| - }
|
| -
|
| - if ((arg_count % 2) != 0) {
|
| - // Move the left-over register directly.
|
| - const CPURegister& leftover_arg = args[arg_count - 1];
|
| - const CPURegister& leftover_pcs = pcs[arg_count - 1];
|
| - if (leftover_arg.IsRegister()) {
|
| - Mov(Register(leftover_pcs), Register(leftover_arg));
|
| - } else {
|
| - Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg));
|
| - }
|
| - }
|
| -
|
| - if (arg_count >= 4) {
|
| - Pop(pcs[0], pcs[1], pcs[2], pcs[3]);
|
| - } else if (arg_count >= 2) {
|
| - Pop(pcs[0], pcs[1]);
|
| - }
|
| -
|
| - // Load the format string into x0, as per the procedure-call standard.
|
| - //
|
| - // To make the code as portable as possible, the format string is encoded
|
| - // directly in the instruction stream. It might be cleaner to encode it in a
|
| - // literal pool, but since Printf is usually used for debugging, it is
|
| - // beneficial for it to be minimally dependent on other features.
|
| - Label format_address;
|
| - Adr(x0, &format_address);
|
| -
|
| - // Emit the format string directly in the instruction stream.
|
| - { BlockPoolsScope scope(this);
|
| - Label after_data;
|
| - B(&after_data);
|
| - Bind(&format_address);
|
| - EmitStringData(format);
|
| - Unreachable();
|
| - Bind(&after_data);
|
| - }
|
| -
|
| - // We don't pass any arguments on the stack, but we still need to align the C
|
| - // stack pointer to a 16-byte boundary for PCS compliance.
|
| - if (!csp.Is(StackPointer())) {
|
| - Bic(csp, StackPointer(), 0xf);
|
| - }
|
| -
|
| - CallPrintf(pcs[0].type());
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::CallPrintf(CPURegister::RegisterType type) {
|
| - // A call to printf needs special handling for the simulator, since the system
|
| - // printf function will use a different instruction set and the procedure-call
|
| - // standard will not be compatible.
|
| -#ifdef USE_SIMULATOR
|
| - { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
|
| - hlt(kImmExceptionIsPrintf);
|
| - dc32(type);
|
| - }
|
| -#else
|
| - Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::Printf(const char * format,
|
| - const CPURegister& arg0,
|
| - const CPURegister& arg1,
|
| - const CPURegister& arg2,
|
| - const CPURegister& arg3) {
|
| - // Printf is expected to preserve all registers, so make sure that none are
|
| - // available as scratch registers until we've preserved them.
|
| - RegList old_tmp_list = TmpList()->list();
|
| - RegList old_fp_tmp_list = FPTmpList()->list();
|
| - TmpList()->set_list(0);
|
| - FPTmpList()->set_list(0);
|
| -
|
| - // Preserve all caller-saved registers as well as NZCV.
|
| - // If csp is the stack pointer, PushCPURegList asserts that the size of each
|
| - // list is a multiple of 16 bytes.
|
| - PushCPURegList(kCallerSaved);
|
| - PushCPURegList(kCallerSavedFP);
|
| -
|
| - // We can use caller-saved registers as scratch values (except for argN).
|
| - CPURegList tmp_list = kCallerSaved;
|
| - CPURegList fp_tmp_list = kCallerSavedFP;
|
| - tmp_list.Remove(arg0, arg1, arg2, arg3);
|
| - fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
|
| - TmpList()->set_list(tmp_list.list());
|
| - FPTmpList()->set_list(fp_tmp_list.list());
|
| -
|
| - // Preserve NZCV.
|
| - { UseScratchRegisterScope temps(this);
|
| - Register tmp = temps.AcquireX();
|
| - Mrs(tmp, NZCV);
|
| - Push(tmp, xzr);
|
| - }
|
| -
|
| - PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
|
| -
|
| - { UseScratchRegisterScope temps(this);
|
| - Register tmp = temps.AcquireX();
|
| - Pop(xzr, tmp);
|
| - Msr(NZCV, tmp);
|
| - }
|
| -
|
| - PopCPURegList(kCallerSavedFP);
|
| - PopCPURegList(kCallerSaved);
|
| -
|
| - TmpList()->set_list(old_tmp_list);
|
| - FPTmpList()->set_list(old_fp_tmp_list);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
|
| - // TODO(jbramley): Other architectures use the internal memcpy to copy the
|
| - // sequence. If this is a performance bottleneck, we should consider caching
|
| - // the sequence and copying it in the same way.
|
| - InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - EmitFrameSetupForCodeAgePatching(this);
|
| -}
|
| -
|
| -
|
| -
|
| -void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
|
| - InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
|
| - ASSERT(jssp.Is(StackPointer()));
|
| - EmitCodeAgeSequence(this, stub);
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -#define __ assm->
|
| -
|
| -
|
| -void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
|
| - Label start;
|
| - __ bind(&start);
|
| -
|
| - // We can do this sequence using four instructions, but the code ageing
|
| - // sequence that patches it needs five, so we use the extra space to try to
|
| - // simplify some addressing modes and remove some dependencies (compared to
|
| - // using two stp instructions with write-back).
|
| - __ sub(jssp, jssp, 4 * kXRegSize);
|
| - __ sub(csp, csp, 4 * kXRegSize);
|
| - __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
|
| - __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
|
| - __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
|
| -
|
| - __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
|
| -}
|
| -
|
| -
|
| -void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
|
| - Code * stub) {
|
| - Label start;
|
| - __ bind(&start);
|
| - // When the stub is called, the sequence is replaced with the young sequence
|
| - // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
|
| - // stub jumps to &start, stored in x0. The young sequence does not call the
|
| - // stub so there is no infinite loop here.
|
| - //
|
| - // A branch (br) is used rather than a call (blr) because this code replaces
|
| - // the frame setup code that would normally preserve lr.
|
| - __ LoadLiteral(ip0, kCodeAgeStubEntryOffset);
|
| - __ adr(x0, &start);
|
| - __ br(ip0);
|
| - // IsCodeAgeSequence in codegen-a64.cc assumes that the code generated up
|
| - // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
|
| - __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
|
| - if (stub) {
|
| - __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
|
| - __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool MacroAssembler::IsYoungSequence(byte* sequence) {
|
| - // Generate a young sequence to compare with.
|
| - const int length = kCodeAgeSequenceSize / kInstructionSize;
|
| - static bool initialized = false;
|
| - static byte young[kCodeAgeSequenceSize];
|
| - if (!initialized) {
|
| - PatchingAssembler patcher(young, length);
|
| - // The young sequence is the frame setup code for FUNCTION code types. It is
|
| - // generated by FullCodeGenerator::Generate.
|
| - MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
|
| - initialized = true;
|
| - }
|
| -
|
| - bool is_young = (memcmp(sequence, young, kCodeAgeSequenceSize) == 0);
|
| - ASSERT(is_young || IsCodeAgeSequence(sequence));
|
| - return is_young;
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -bool MacroAssembler::IsCodeAgeSequence(byte* sequence) {
|
| - // The old sequence varies depending on the code age. However, the code up
|
| - // until kCodeAgeStubEntryOffset does not change, so we can check that part to
|
| - // get a reasonable level of verification.
|
| - const int length = kCodeAgeStubEntryOffset / kInstructionSize;
|
| - static bool initialized = false;
|
| - static byte old[kCodeAgeStubEntryOffset];
|
| - if (!initialized) {
|
| - PatchingAssembler patcher(old, length);
|
| - MacroAssembler::EmitCodeAgeSequence(&patcher, NULL);
|
| - initialized = true;
|
| - }
|
| - return memcmp(sequence, old, kCodeAgeStubEntryOffset) == 0;
|
| -}
|
| -#endif
|
| -
|
| -
|
| -void MacroAssembler::TruncatingDiv(Register result,
|
| - Register dividend,
|
| - int32_t divisor) {
|
| - ASSERT(!AreAliased(result, dividend));
|
| - ASSERT(result.Is32Bits() && dividend.Is32Bits());
|
| - MultiplierAndShift ms(divisor);
|
| - Mov(result, ms.multiplier());
|
| - Smull(result.X(), dividend, result);
|
| - Asr(result.X(), result.X(), 32);
|
| - if (divisor > 0 && ms.multiplier() < 0) Add(result, result, dividend);
|
| - if (divisor < 0 && ms.multiplier() > 0) Sub(result, result, dividend);
|
| - if (ms.shift() > 0) Asr(result, result, ms.shift());
|
| - Add(result, result, Operand(dividend, LSR, 31));
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -
|
| -
|
| -UseScratchRegisterScope::~UseScratchRegisterScope() {
|
| - available_->set_list(old_available_);
|
| - availablefp_->set_list(old_availablefp_);
|
| -}
|
| -
|
| -
|
| -Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
|
| - int code = AcquireNextAvailable(available_).code();
|
| - return Register::Create(code, reg.SizeInBits());
|
| -}
|
| -
|
| -
|
| -FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
|
| - int code = AcquireNextAvailable(availablefp_).code();
|
| - return FPRegister::Create(code, reg.SizeInBits());
|
| -}
|
| -
|
| -
|
| -CPURegister UseScratchRegisterScope::AcquireNextAvailable(
|
| - CPURegList* available) {
|
| - CHECK(!available->IsEmpty());
|
| - CPURegister result = available->PopLowestIndex();
|
| - ASSERT(!AreAliased(result, xzr, csp));
|
| - return result;
|
| -}
|
| -
|
| -
|
| -#define __ masm->
|
| -
|
| -
|
| -void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
|
| - const Label* smi_check) {
|
| - Assembler::BlockPoolsScope scope(masm);
|
| - if (reg.IsValid()) {
|
| - ASSERT(smi_check->is_bound());
|
| - ASSERT(reg.Is64Bits());
|
| -
|
| - // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
|
| - // 'check' in the other bits. The possible offset is limited in that we
|
| - // use BitField to pack the data, and the underlying data type is a
|
| - // uint32_t.
|
| - uint32_t delta = __ InstructionsGeneratedSince(smi_check);
|
| - __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
|
| - } else {
|
| - ASSERT(!smi_check->is_bound());
|
| -
|
| - // An offset of 0 indicates that there is no patch site.
|
| - __ InlineData(0);
|
| - }
|
| -}
|
| -
|
| -
|
| -InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
|
| - : reg_(NoReg), smi_check_(NULL) {
|
| - InstructionSequence* inline_data = InstructionSequence::At(info);
|
| - ASSERT(inline_data->IsInlineData());
|
| - if (inline_data->IsInlineData()) {
|
| - uint64_t payload = inline_data->InlineData();
|
| - // We use BitField to decode the payload, and BitField can only handle
|
| - // 32-bit values.
|
| - ASSERT(is_uint32(payload));
|
| - if (payload != 0) {
|
| - int reg_code = RegisterBits::decode(payload);
|
| - reg_ = Register::XRegFromCode(reg_code);
|
| - uint64_t smi_check_delta = DeltaBits::decode(payload);
|
| - ASSERT(smi_check_delta != 0);
|
| - smi_check_ = inline_data->preceding(smi_check_delta);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#endif // V8_TARGET_ARCH_A64
|
|
|