Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(541)

Unified Diff: src/a64/macro-assembler-a64.cc

Issue 207823003: Rename A64 port to ARM64 port (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: retry Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/macro-assembler-a64.h ('k') | src/a64/macro-assembler-a64-inl.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/macro-assembler-a64.cc
diff --git a/src/a64/macro-assembler-a64.cc b/src/a64/macro-assembler-a64.cc
deleted file mode 100644
index 851f10aba83fcec7687e21c62ca6a86646246bbd..0000000000000000000000000000000000000000
--- a/src/a64/macro-assembler-a64.cc
+++ /dev/null
@@ -1,5171 +0,0 @@
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#if V8_TARGET_ARCH_A64
-
-#include "bootstrapper.h"
-#include "codegen.h"
-#include "cpu-profiler.h"
-#include "debug.h"
-#include "isolate-inl.h"
-#include "runtime.h"
-
-namespace v8 {
-namespace internal {
-
-// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
-#define __
-
-
-MacroAssembler::MacroAssembler(Isolate* arg_isolate,
- byte * buffer,
- unsigned buffer_size)
- : Assembler(arg_isolate, buffer, buffer_size),
- generating_stub_(false),
-#if DEBUG
- allow_macro_instructions_(true),
-#endif
- has_frame_(false),
- use_real_aborts_(true),
- sp_(jssp), tmp_list_(ip0, ip1), fptmp_list_(fp_scratch) {
- if (isolate() != NULL) {
- code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
- isolate());
- }
-}
-
-
-void MacroAssembler::LogicalMacro(const Register& rd,
- const Register& rn,
- const Operand& operand,
- LogicalOp op) {
- UseScratchRegisterScope temps(this);
-
- if (operand.NeedsRelocation()) {
- Register temp = temps.AcquireX();
- LoadRelocated(temp, operand);
- Logical(rd, rn, temp, op);
-
- } else if (operand.IsImmediate()) {
- int64_t immediate = operand.immediate();
- unsigned reg_size = rd.SizeInBits();
- ASSERT(rd.Is64Bits() || is_uint32(immediate));
-
- // If the operation is NOT, invert the operation and immediate.
- if ((op & NOT) == NOT) {
- op = static_cast<LogicalOp>(op & ~NOT);
- immediate = ~immediate;
- if (rd.Is32Bits()) {
- immediate &= kWRegMask;
- }
- }
-
- // Special cases for all set or all clear immediates.
- if (immediate == 0) {
- switch (op) {
- case AND:
- Mov(rd, 0);
- return;
- case ORR: // Fall through.
- case EOR:
- Mov(rd, rn);
- return;
- case ANDS: // Fall through.
- case BICS:
- break;
- default:
- UNREACHABLE();
- }
- } else if ((rd.Is64Bits() && (immediate == -1L)) ||
- (rd.Is32Bits() && (immediate == 0xffffffffL))) {
- switch (op) {
- case AND:
- Mov(rd, rn);
- return;
- case ORR:
- Mov(rd, immediate);
- return;
- case EOR:
- Mvn(rd, rn);
- return;
- case ANDS: // Fall through.
- case BICS:
- break;
- default:
- UNREACHABLE();
- }
- }
-
- unsigned n, imm_s, imm_r;
- if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
- // Immediate can be encoded in the instruction.
- LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
- } else {
- // Immediate can't be encoded: synthesize using move immediate.
- Register temp = temps.AcquireSameSizeAs(rn);
- Mov(temp, immediate);
- if (rd.Is(csp)) {
- // If rd is the stack pointer we cannot use it as the destination
- // register so we use the temp register as an intermediate again.
- Logical(temp, rn, temp, op);
- Mov(csp, temp);
- } else {
- Logical(rd, rn, temp, op);
- }
- }
-
- } else if (operand.IsExtendedRegister()) {
- ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
- // Add/sub extended supports shift <= 4. We want to support exactly the
- // same modes here.
- ASSERT(operand.shift_amount() <= 4);
- ASSERT(operand.reg().Is64Bits() ||
- ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
- Register temp = temps.AcquireSameSizeAs(rn);
- EmitExtendShift(temp, operand.reg(), operand.extend(),
- operand.shift_amount());
- Logical(rd, rn, temp, op);
-
- } else {
- // The operand can be encoded in the instruction.
- ASSERT(operand.IsShiftedRegister());
- Logical(rd, rn, operand, op);
- }
-}
-
-
-void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
- ASSERT(allow_macro_instructions_);
- ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
- ASSERT(!rd.IsZero());
-
- // TODO(all) extend to support more immediates.
- //
- // Immediates on Aarch64 can be produced using an initial value, and zero to
- // three move keep operations.
- //
- // Initial values can be generated with:
- // 1. 64-bit move zero (movz).
- // 2. 32-bit move inverted (movn).
- // 3. 64-bit move inverted.
- // 4. 32-bit orr immediate.
- // 5. 64-bit orr immediate.
- // Move-keep may then be used to modify each of the 16-bit half-words.
- //
- // The code below supports all five initial value generators, and
- // applying move-keep operations to move-zero and move-inverted initial
- // values.
-
- unsigned reg_size = rd.SizeInBits();
- unsigned n, imm_s, imm_r;
- if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
- // Immediate can be represented in a move zero instruction. Movz can't
- // write to the stack pointer.
- movz(rd, imm);
- } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
- // Immediate can be represented in a move inverted instruction. Movn can't
- // write to the stack pointer.
- movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
- } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
- // Immediate can be represented in a logical orr instruction.
- LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
- } else {
- // Generic immediate case. Imm will be represented by
- // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
- // A move-zero or move-inverted is generated for the first non-zero or
- // non-0xffff immX, and a move-keep for subsequent non-zero immX.
-
- uint64_t ignored_halfword = 0;
- bool invert_move = false;
- // If the number of 0xffff halfwords is greater than the number of 0x0000
- // halfwords, it's more efficient to use move-inverted.
- if (CountClearHalfWords(~imm, reg_size) >
- CountClearHalfWords(imm, reg_size)) {
- ignored_halfword = 0xffffL;
- invert_move = true;
- }
-
- // Mov instructions can't move immediate values into the stack pointer, so
- // set up a temporary register, if needed.
- UseScratchRegisterScope temps(this);
- Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
-
- // Iterate through the halfwords. Use movn/movz for the first non-ignored
- // halfword, and movk for subsequent halfwords.
- ASSERT((reg_size % 16) == 0);
- bool first_mov_done = false;
- for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
- uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
- if (imm16 != ignored_halfword) {
- if (!first_mov_done) {
- if (invert_move) {
- movn(temp, (~imm16) & 0xffffL, 16 * i);
- } else {
- movz(temp, imm16, 16 * i);
- }
- first_mov_done = true;
- } else {
- // Construct a wider constant.
- movk(temp, imm16, 16 * i);
- }
- }
- }
- ASSERT(first_mov_done);
-
- // Move the temporary if the original destination register was the stack
- // pointer.
- if (rd.IsSP()) {
- mov(rd, temp);
- }
- }
-}
-
-
-void MacroAssembler::Mov(const Register& rd,
- const Operand& operand,
- DiscardMoveMode discard_mode) {
- ASSERT(allow_macro_instructions_);
- ASSERT(!rd.IsZero());
-
- // Provide a swap register for instructions that need to write into the
- // system stack pointer (and can't do this inherently).
- UseScratchRegisterScope temps(this);
- Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
-
- if (operand.NeedsRelocation()) {
- LoadRelocated(dst, operand);
-
- } else if (operand.IsImmediate()) {
- // Call the macro assembler for generic immediates.
- Mov(dst, operand.immediate());
-
- } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
- // Emit a shift instruction if moving a shifted register. This operation
- // could also be achieved using an orr instruction (like orn used by Mvn),
- // but using a shift instruction makes the disassembly clearer.
- EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
-
- } else if (operand.IsExtendedRegister()) {
- // Emit an extend instruction if moving an extended register. This handles
- // extend with post-shift operations, too.
- EmitExtendShift(dst, operand.reg(), operand.extend(),
- operand.shift_amount());
-
- } else {
- // Otherwise, emit a register move only if the registers are distinct, or
- // if they are not X registers.
- //
- // Note that mov(w0, w0) is not a no-op because it clears the top word of
- // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
- // registers is not required to clear the top word of the X register. In
- // this case, the instruction is discarded.
- //
- // If csp is an operand, add #0 is emitted, otherwise, orr #0.
- if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
- (discard_mode == kDontDiscardForSameWReg))) {
- Assembler::mov(rd, operand.reg());
- }
- // This case can handle writes into the system stack pointer directly.
- dst = rd;
- }
-
- // Copy the result to the system stack pointer.
- if (!dst.Is(rd)) {
- ASSERT(rd.IsSP());
- Assembler::mov(rd, dst);
- }
-}
-
-
-void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
- ASSERT(allow_macro_instructions_);
-
- if (operand.NeedsRelocation()) {
- LoadRelocated(rd, operand);
- mvn(rd, rd);
-
- } else if (operand.IsImmediate()) {
- // Call the macro assembler for generic immediates.
- Mov(rd, ~operand.immediate());
-
- } else if (operand.IsExtendedRegister()) {
- // Emit two instructions for the extend case. This differs from Mov, as
- // the extend and invert can't be achieved in one instruction.
- EmitExtendShift(rd, operand.reg(), operand.extend(),
- operand.shift_amount());
- mvn(rd, rd);
-
- } else {
- mvn(rd, operand);
- }
-}
-
-
-unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
- ASSERT((reg_size % 8) == 0);
- int count = 0;
- for (unsigned i = 0; i < (reg_size / 16); i++) {
- if ((imm & 0xffff) == 0) {
- count++;
- }
- imm >>= 16;
- }
- return count;
-}
-
-
-// The movz instruction can generate immediates containing an arbitrary 16-bit
-// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
-bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
- ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
- return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
-}
-
-
-// The movn instruction can generate immediates containing an arbitrary 16-bit
-// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
-bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
- return IsImmMovz(~imm, reg_size);
-}
-
-
-void MacroAssembler::ConditionalCompareMacro(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond,
- ConditionalCompareOp op) {
- ASSERT((cond != al) && (cond != nv));
- if (operand.NeedsRelocation()) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- LoadRelocated(temp, operand);
- ConditionalCompareMacro(rn, temp, nzcv, cond, op);
-
- } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
- (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
- // The immediate can be encoded in the instruction, or the operand is an
- // unshifted register: call the assembler.
- ConditionalCompare(rn, operand, nzcv, cond, op);
-
- } else {
- // The operand isn't directly supported by the instruction: perform the
- // operation on a temporary register.
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireSameSizeAs(rn);
- Mov(temp, operand);
- ConditionalCompare(rn, temp, nzcv, cond, op);
- }
-}
-
-
-void MacroAssembler::Csel(const Register& rd,
- const Register& rn,
- const Operand& operand,
- Condition cond) {
- ASSERT(allow_macro_instructions_);
- ASSERT(!rd.IsZero());
- ASSERT((cond != al) && (cond != nv));
- if (operand.IsImmediate()) {
- // Immediate argument. Handle special cases of 0, 1 and -1 using zero
- // register.
- int64_t imm = operand.immediate();
- Register zr = AppropriateZeroRegFor(rn);
- if (imm == 0) {
- csel(rd, rn, zr, cond);
- } else if (imm == 1) {
- csinc(rd, rn, zr, cond);
- } else if (imm == -1) {
- csinv(rd, rn, zr, cond);
- } else {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireSameSizeAs(rn);
- Mov(temp, operand.immediate());
- csel(rd, rn, temp, cond);
- }
- } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
- // Unshifted register argument.
- csel(rd, rn, operand.reg(), cond);
- } else {
- // All other arguments.
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireSameSizeAs(rn);
- Mov(temp, operand);
- csel(rd, rn, temp, cond);
- }
-}
-
-
-void MacroAssembler::AddSubMacro(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubOp op) {
- if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
- !operand.NeedsRelocation() && (S == LeaveFlags)) {
- // The instruction would be a nop. Avoid generating useless code.
- return;
- }
-
- if (operand.NeedsRelocation()) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- LoadRelocated(temp, operand);
- AddSubMacro(rd, rn, temp, S, op);
- } else if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
- (rn.IsZero() && !operand.IsShiftedRegister()) ||
- (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireSameSizeAs(rn);
- Mov(temp, operand);
- AddSub(rd, rn, temp, S, op);
- } else {
- AddSub(rd, rn, operand, S, op);
- }
-}
-
-
-void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubWithCarryOp op) {
- ASSERT(rd.SizeInBits() == rn.SizeInBits());
- UseScratchRegisterScope temps(this);
-
- if (operand.NeedsRelocation()) {
- Register temp = temps.AcquireX();
- LoadRelocated(temp, operand);
- AddSubWithCarryMacro(rd, rn, temp, S, op);
-
- } else if (operand.IsImmediate() ||
- (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
- // Add/sub with carry (immediate or ROR shifted register.)
- Register temp = temps.AcquireSameSizeAs(rn);
- Mov(temp, operand);
- AddSubWithCarry(rd, rn, temp, S, op);
-
- } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
- // Add/sub with carry (shifted register).
- ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
- ASSERT(operand.shift() != ROR);
- ASSERT(is_uintn(operand.shift_amount(),
- rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
- : kWRegSizeInBitsLog2));
- Register temp = temps.AcquireSameSizeAs(rn);
- EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
- AddSubWithCarry(rd, rn, temp, S, op);
-
- } else if (operand.IsExtendedRegister()) {
- // Add/sub with carry (extended register).
- ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
- // Add/sub extended supports a shift <= 4. We want to support exactly the
- // same modes.
- ASSERT(operand.shift_amount() <= 4);
- ASSERT(operand.reg().Is64Bits() ||
- ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
- Register temp = temps.AcquireSameSizeAs(rn);
- EmitExtendShift(temp, operand.reg(), operand.extend(),
- operand.shift_amount());
- AddSubWithCarry(rd, rn, temp, S, op);
-
- } else {
- // The addressing mode is directly supported by the instruction.
- AddSubWithCarry(rd, rn, operand, S, op);
- }
-}
-
-
-void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
- const MemOperand& addr,
- LoadStoreOp op) {
- int64_t offset = addr.offset();
- LSDataSize size = CalcLSDataSize(op);
-
- // Check if an immediate offset fits in the immediate field of the
- // appropriate instruction. If not, emit two instructions to perform
- // the operation.
- if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
- !IsImmLSUnscaled(offset)) {
- // Immediate offset that can't be encoded using unsigned or unscaled
- // addressing modes.
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireSameSizeAs(addr.base());
- Mov(temp, addr.offset());
- LoadStore(rt, MemOperand(addr.base(), temp), op);
- } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
- // Post-index beyond unscaled addressing range.
- LoadStore(rt, MemOperand(addr.base()), op);
- add(addr.base(), addr.base(), offset);
- } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
- // Pre-index beyond unscaled addressing range.
- add(addr.base(), addr.base(), offset);
- LoadStore(rt, MemOperand(addr.base()), op);
- } else {
- // Encodable in one load/store instruction.
- LoadStore(rt, addr, op);
- }
-}
-
-
-void MacroAssembler::Load(const Register& rt,
- const MemOperand& addr,
- Representation r) {
- ASSERT(!r.IsDouble());
-
- if (r.IsInteger8()) {
- Ldrsb(rt, addr);
- } else if (r.IsUInteger8()) {
- Ldrb(rt, addr);
- } else if (r.IsInteger16()) {
- Ldrsh(rt, addr);
- } else if (r.IsUInteger16()) {
- Ldrh(rt, addr);
- } else if (r.IsInteger32()) {
- Ldr(rt.W(), addr);
- } else {
- ASSERT(rt.Is64Bits());
- Ldr(rt, addr);
- }
-}
-
-
-void MacroAssembler::Store(const Register& rt,
- const MemOperand& addr,
- Representation r) {
- ASSERT(!r.IsDouble());
-
- if (r.IsInteger8() || r.IsUInteger8()) {
- Strb(rt, addr);
- } else if (r.IsInteger16() || r.IsUInteger16()) {
- Strh(rt, addr);
- } else if (r.IsInteger32()) {
- Str(rt.W(), addr);
- } else {
- ASSERT(rt.Is64Bits());
- Str(rt, addr);
- }
-}
-
-
-bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
- Label *label, ImmBranchType b_type) {
- bool need_longer_range = false;
- // There are two situations in which we care about the offset being out of
- // range:
- // - The label is bound but too far away.
- // - The label is not bound but linked, and the previous branch
- // instruction in the chain is too far away.
- if (label->is_bound() || label->is_linked()) {
- need_longer_range =
- !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
- }
- if (!need_longer_range && !label->is_bound()) {
- int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
- unresolved_branches_.insert(
- std::pair<int, FarBranchInfo>(max_reachable_pc,
- FarBranchInfo(pc_offset(), label)));
- // Also maintain the next pool check.
- next_veneer_pool_check_ =
- Min(next_veneer_pool_check_,
- max_reachable_pc - kVeneerDistanceCheckMargin);
- }
- return need_longer_range;
-}
-
-
-void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
- ASSERT((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
- (bit == -1 || type >= kBranchTypeFirstUsingBit));
- if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
- B(static_cast<Condition>(type), label);
- } else {
- switch (type) {
- case always: B(label); break;
- case never: break;
- case reg_zero: Cbz(reg, label); break;
- case reg_not_zero: Cbnz(reg, label); break;
- case reg_bit_clear: Tbz(reg, bit, label); break;
- case reg_bit_set: Tbnz(reg, bit, label); break;
- default:
- UNREACHABLE();
- }
- }
-}
-
-
-void MacroAssembler::B(Label* label, Condition cond) {
- ASSERT(allow_macro_instructions_);
- ASSERT((cond != al) && (cond != nv));
-
- Label done;
- bool need_extra_instructions =
- NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
-
- if (need_extra_instructions) {
- b(&done, InvertCondition(cond));
- B(label);
- } else {
- b(label, cond);
- }
- bind(&done);
-}
-
-
-void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
- ASSERT(allow_macro_instructions_);
-
- Label done;
- bool need_extra_instructions =
- NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
-
- if (need_extra_instructions) {
- tbz(rt, bit_pos, &done);
- B(label);
- } else {
- tbnz(rt, bit_pos, label);
- }
- bind(&done);
-}
-
-
-void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
- ASSERT(allow_macro_instructions_);
-
- Label done;
- bool need_extra_instructions =
- NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
-
- if (need_extra_instructions) {
- tbnz(rt, bit_pos, &done);
- B(label);
- } else {
- tbz(rt, bit_pos, label);
- }
- bind(&done);
-}
-
-
-void MacroAssembler::Cbnz(const Register& rt, Label* label) {
- ASSERT(allow_macro_instructions_);
-
- Label done;
- bool need_extra_instructions =
- NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
-
- if (need_extra_instructions) {
- cbz(rt, &done);
- B(label);
- } else {
- cbnz(rt, label);
- }
- bind(&done);
-}
-
-
-void MacroAssembler::Cbz(const Register& rt, Label* label) {
- ASSERT(allow_macro_instructions_);
-
- Label done;
- bool need_extra_instructions =
- NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
-
- if (need_extra_instructions) {
- cbnz(rt, &done);
- B(label);
- } else {
- cbz(rt, label);
- }
- bind(&done);
-}
-
-
-// Pseudo-instructions.
-
-
-void MacroAssembler::Abs(const Register& rd, const Register& rm,
- Label* is_not_representable,
- Label* is_representable) {
- ASSERT(allow_macro_instructions_);
- ASSERT(AreSameSizeAndType(rd, rm));
-
- Cmp(rm, 1);
- Cneg(rd, rm, lt);
-
- // If the comparison sets the v flag, the input was the smallest value
- // representable by rm, and the mathematical result of abs(rm) is not
- // representable using two's complement.
- if ((is_not_representable != NULL) && (is_representable != NULL)) {
- B(is_not_representable, vs);
- B(is_representable);
- } else if (is_not_representable != NULL) {
- B(is_not_representable, vs);
- } else if (is_representable != NULL) {
- B(is_representable, vc);
- }
-}
-
-
-// Abstracted stack operations.
-
-
-void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
- const CPURegister& src2, const CPURegister& src3) {
- ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
-
- int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
- int size = src0.SizeInBytes();
-
- PrepareForPush(count, size);
- PushHelper(count, size, src0, src1, src2, src3);
-}
-
-
-void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
- const CPURegister& src2, const CPURegister& src3,
- const CPURegister& src4, const CPURegister& src5,
- const CPURegister& src6, const CPURegister& src7) {
- ASSERT(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
-
- int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
- int size = src0.SizeInBytes();
-
- PrepareForPush(count, size);
- PushHelper(4, size, src0, src1, src2, src3);
- PushHelper(count - 4, size, src4, src5, src6, src7);
-}
-
-
-void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
- const CPURegister& dst2, const CPURegister& dst3) {
- // It is not valid to pop into the same register more than once in one
- // instruction, not even into the zero register.
- ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
- ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
- ASSERT(dst0.IsValid());
-
- int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
- int size = dst0.SizeInBytes();
-
- PrepareForPop(count, size);
- PopHelper(count, size, dst0, dst1, dst2, dst3);
-
- if (!csp.Is(StackPointer()) && emit_debug_code()) {
- // It is safe to leave csp where it is when unwinding the JavaScript stack,
- // but if we keep it matching StackPointer, the simulator can detect memory
- // accesses in the now-free part of the stack.
- Mov(csp, StackPointer());
- }
-}
-
-
-void MacroAssembler::PushPopQueue::PushQueued() {
- if (queued_.empty()) return;
-
- masm_->PrepareForPush(size_);
-
- int count = queued_.size();
- int index = 0;
- while (index < count) {
- // PushHelper can only handle registers with the same size and type, and it
- // can handle only four at a time. Batch them up accordingly.
- CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
- int batch_index = 0;
- do {
- batch[batch_index++] = queued_[index++];
- } while ((batch_index < 4) && (index < count) &&
- batch[0].IsSameSizeAndType(queued_[index]));
-
- masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
- batch[0], batch[1], batch[2], batch[3]);
- }
-
- queued_.clear();
-}
-
-
-void MacroAssembler::PushPopQueue::PopQueued() {
- if (queued_.empty()) return;
-
- masm_->PrepareForPop(size_);
-
- int count = queued_.size();
- int index = 0;
- while (index < count) {
- // PopHelper can only handle registers with the same size and type, and it
- // can handle only four at a time. Batch them up accordingly.
- CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
- int batch_index = 0;
- do {
- batch[batch_index++] = queued_[index++];
- } while ((batch_index < 4) && (index < count) &&
- batch[0].IsSameSizeAndType(queued_[index]));
-
- masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
- batch[0], batch[1], batch[2], batch[3]);
- }
-
- queued_.clear();
-}
-
-
-void MacroAssembler::PushCPURegList(CPURegList registers) {
- int size = registers.RegisterSizeInBytes();
-
- PrepareForPush(registers.Count(), size);
- // Push up to four registers at a time because if the current stack pointer is
- // csp and reg_size is 32, registers must be pushed in blocks of four in order
- // to maintain the 16-byte alignment for csp.
- while (!registers.IsEmpty()) {
- int count_before = registers.Count();
- const CPURegister& src0 = registers.PopHighestIndex();
- const CPURegister& src1 = registers.PopHighestIndex();
- const CPURegister& src2 = registers.PopHighestIndex();
- const CPURegister& src3 = registers.PopHighestIndex();
- int count = count_before - registers.Count();
- PushHelper(count, size, src0, src1, src2, src3);
- }
-}
-
-
-void MacroAssembler::PopCPURegList(CPURegList registers) {
- int size = registers.RegisterSizeInBytes();
-
- PrepareForPop(registers.Count(), size);
- // Pop up to four registers at a time because if the current stack pointer is
- // csp and reg_size is 32, registers must be pushed in blocks of four in
- // order to maintain the 16-byte alignment for csp.
- while (!registers.IsEmpty()) {
- int count_before = registers.Count();
- const CPURegister& dst0 = registers.PopLowestIndex();
- const CPURegister& dst1 = registers.PopLowestIndex();
- const CPURegister& dst2 = registers.PopLowestIndex();
- const CPURegister& dst3 = registers.PopLowestIndex();
- int count = count_before - registers.Count();
- PopHelper(count, size, dst0, dst1, dst2, dst3);
- }
-
- if (!csp.Is(StackPointer()) && emit_debug_code()) {
- // It is safe to leave csp where it is when unwinding the JavaScript stack,
- // but if we keep it matching StackPointer, the simulator can detect memory
- // accesses in the now-free part of the stack.
- Mov(csp, StackPointer());
- }
-}
-
-
-void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
- int size = src.SizeInBytes();
-
- PrepareForPush(count, size);
-
- if (FLAG_optimize_for_size && count > 8) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
-
- Label loop;
- __ Mov(temp, count / 2);
- __ Bind(&loop);
- PushHelper(2, size, src, src, NoReg, NoReg);
- __ Subs(temp, temp, 1);
- __ B(ne, &loop);
-
- count %= 2;
- }
-
- // Push up to four registers at a time if possible because if the current
- // stack pointer is csp and the register size is 32, registers must be pushed
- // in blocks of four in order to maintain the 16-byte alignment for csp.
- while (count >= 4) {
- PushHelper(4, size, src, src, src, src);
- count -= 4;
- }
- if (count >= 2) {
- PushHelper(2, size, src, src, NoReg, NoReg);
- count -= 2;
- }
- if (count == 1) {
- PushHelper(1, size, src, NoReg, NoReg, NoReg);
- count -= 1;
- }
- ASSERT(count == 0);
-}
-
-
-void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
- PrepareForPush(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
-
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireSameSizeAs(count);
-
- if (FLAG_optimize_for_size) {
- Label loop, done;
-
- Subs(temp, count, 1);
- B(mi, &done);
-
- // Push all registers individually, to save code size.
- Bind(&loop);
- Subs(temp, temp, 1);
- PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
- B(pl, &loop);
-
- Bind(&done);
- } else {
- Label loop, leftover2, leftover1, done;
-
- Subs(temp, count, 4);
- B(mi, &leftover2);
-
- // Push groups of four first.
- Bind(&loop);
- Subs(temp, temp, 4);
- PushHelper(4, src.SizeInBytes(), src, src, src, src);
- B(pl, &loop);
-
- // Push groups of two.
- Bind(&leftover2);
- Tbz(count, 1, &leftover1);
- PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
-
- // Push the last one (if required).
- Bind(&leftover1);
- Tbz(count, 0, &done);
- PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
-
- Bind(&done);
- }
-}
-
-
-void MacroAssembler::PushHelper(int count, int size,
- const CPURegister& src0,
- const CPURegister& src1,
- const CPURegister& src2,
- const CPURegister& src3) {
- // Ensure that we don't unintentially modify scratch or debug registers.
- InstructionAccurateScope scope(this);
-
- ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
- ASSERT(size == src0.SizeInBytes());
-
- // When pushing multiple registers, the store order is chosen such that
- // Push(a, b) is equivalent to Push(a) followed by Push(b).
- switch (count) {
- case 1:
- ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
- str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
- break;
- case 2:
- ASSERT(src2.IsNone() && src3.IsNone());
- stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
- break;
- case 3:
- ASSERT(src3.IsNone());
- stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
- str(src0, MemOperand(StackPointer(), 2 * size));
- break;
- case 4:
- // Skip over 4 * size, then fill in the gap. This allows four W registers
- // to be pushed using csp, whilst maintaining 16-byte alignment for csp
- // at all times.
- stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
- stp(src1, src0, MemOperand(StackPointer(), 2 * size));
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void MacroAssembler::PopHelper(int count, int size,
- const CPURegister& dst0,
- const CPURegister& dst1,
- const CPURegister& dst2,
- const CPURegister& dst3) {
- // Ensure that we don't unintentially modify scratch or debug registers.
- InstructionAccurateScope scope(this);
-
- ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
- ASSERT(size == dst0.SizeInBytes());
-
- // When popping multiple registers, the load order is chosen such that
- // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
- switch (count) {
- case 1:
- ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
- ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
- break;
- case 2:
- ASSERT(dst2.IsNone() && dst3.IsNone());
- ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
- break;
- case 3:
- ASSERT(dst3.IsNone());
- ldr(dst2, MemOperand(StackPointer(), 2 * size));
- ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
- break;
- case 4:
- // Load the higher addresses first, then load the lower addresses and
- // skip the whole block in the second instruction. This allows four W
- // registers to be popped using csp, whilst maintaining 16-byte alignment
- // for csp at all times.
- ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
- ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void MacroAssembler::PrepareForPush(Operand total_size) {
- // TODO(jbramley): This assertion generates too much code in some debug tests.
- // AssertStackConsistency();
- if (csp.Is(StackPointer())) {
- // If the current stack pointer is csp, then it must be aligned to 16 bytes
- // on entry and the total size of the specified registers must also be a
- // multiple of 16 bytes.
- if (total_size.IsImmediate()) {
- ASSERT((total_size.immediate() % 16) == 0);
- }
-
- // Don't check access size for non-immediate sizes. It's difficult to do
- // well, and it will be caught by hardware (or the simulator) anyway.
- } else {
- // Even if the current stack pointer is not the system stack pointer (csp),
- // the system stack pointer will still be modified in order to comply with
- // ABI rules about accessing memory below the system stack pointer.
- BumpSystemStackPointer(total_size);
- }
-}
-
-
-void MacroAssembler::PrepareForPop(Operand total_size) {
- AssertStackConsistency();
- if (csp.Is(StackPointer())) {
- // If the current stack pointer is csp, then it must be aligned to 16 bytes
- // on entry and the total size of the specified registers must also be a
- // multiple of 16 bytes.
- if (total_size.IsImmediate()) {
- ASSERT((total_size.immediate() % 16) == 0);
- }
-
- // Don't check access size for non-immediate sizes. It's difficult to do
- // well, and it will be caught by hardware (or the simulator) anyway.
- }
-}
-
-
-void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
- if (offset.IsImmediate()) {
- ASSERT(offset.immediate() >= 0);
- } else if (emit_debug_code()) {
- Cmp(xzr, offset);
- Check(le, kStackAccessBelowStackPointer);
- }
-
- Str(src, MemOperand(StackPointer(), offset));
-}
-
-
-void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
- if (offset.IsImmediate()) {
- ASSERT(offset.immediate() >= 0);
- } else if (emit_debug_code()) {
- Cmp(xzr, offset);
- Check(le, kStackAccessBelowStackPointer);
- }
-
- Ldr(dst, MemOperand(StackPointer(), offset));
-}
-
-
-void MacroAssembler::PokePair(const CPURegister& src1,
- const CPURegister& src2,
- int offset) {
- ASSERT(AreSameSizeAndType(src1, src2));
- ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
- Stp(src1, src2, MemOperand(StackPointer(), offset));
-}
-
-
-void MacroAssembler::PeekPair(const CPURegister& dst1,
- const CPURegister& dst2,
- int offset) {
- ASSERT(AreSameSizeAndType(dst1, dst2));
- ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
- Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
-}
-
-
-void MacroAssembler::PushCalleeSavedRegisters() {
- // Ensure that the macro-assembler doesn't use any scratch registers.
- InstructionAccurateScope scope(this);
-
- // This method must not be called unless the current stack pointer is the
- // system stack pointer (csp).
- ASSERT(csp.Is(StackPointer()));
-
- MemOperand tos(csp, -2 * kXRegSize, PreIndex);
-
- stp(d14, d15, tos);
- stp(d12, d13, tos);
- stp(d10, d11, tos);
- stp(d8, d9, tos);
-
- stp(x29, x30, tos);
- stp(x27, x28, tos); // x28 = jssp
- stp(x25, x26, tos);
- stp(x23, x24, tos);
- stp(x21, x22, tos);
- stp(x19, x20, tos);
-}
-
-
-void MacroAssembler::PopCalleeSavedRegisters() {
- // Ensure that the macro-assembler doesn't use any scratch registers.
- InstructionAccurateScope scope(this);
-
- // This method must not be called unless the current stack pointer is the
- // system stack pointer (csp).
- ASSERT(csp.Is(StackPointer()));
-
- MemOperand tos(csp, 2 * kXRegSize, PostIndex);
-
- ldp(x19, x20, tos);
- ldp(x21, x22, tos);
- ldp(x23, x24, tos);
- ldp(x25, x26, tos);
- ldp(x27, x28, tos); // x28 = jssp
- ldp(x29, x30, tos);
-
- ldp(d8, d9, tos);
- ldp(d10, d11, tos);
- ldp(d12, d13, tos);
- ldp(d14, d15, tos);
-}
-
-
-void MacroAssembler::AssertStackConsistency() {
- if (emit_debug_code()) {
- if (csp.Is(StackPointer())) {
- // We can't check the alignment of csp without using a scratch register
- // (or clobbering the flags), but the processor (or simulator) will abort
- // if it is not properly aligned during a load.
- ldr(xzr, MemOperand(csp, 0));
- } else if (FLAG_enable_slow_asserts) {
- Label ok;
- // Check that csp <= StackPointer(), preserving all registers and NZCV.
- sub(StackPointer(), csp, StackPointer());
- cbz(StackPointer(), &ok); // Ok if csp == StackPointer().
- tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer().
-
- Abort(kTheCurrentStackPointerIsBelowCsp);
-
- bind(&ok);
- // Restore StackPointer().
- sub(StackPointer(), csp, StackPointer());
- }
- }
-}
-
-
-void MacroAssembler::LoadRoot(Register destination,
- Heap::RootListIndex index) {
- // TODO(jbramley): Most root values are constants, and can be synthesized
- // without a load. Refer to the ARM back end for details.
- Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
-}
-
-
-void MacroAssembler::StoreRoot(Register source,
- Heap::RootListIndex index) {
- Str(source, MemOperand(root, index << kPointerSizeLog2));
-}
-
-
-void MacroAssembler::LoadTrueFalseRoots(Register true_root,
- Register false_root) {
- STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
- Ldp(true_root, false_root,
- MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
-}
-
-
-void MacroAssembler::LoadHeapObject(Register result,
- Handle<HeapObject> object) {
- AllowDeferredHandleDereference using_raw_address;
- if (isolate()->heap()->InNewSpace(*object)) {
- Handle<Cell> cell = isolate()->factory()->NewCell(object);
- Mov(result, Operand(cell));
- Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
- } else {
- Mov(result, Operand(object));
- }
-}
-
-
-void MacroAssembler::LoadInstanceDescriptors(Register map,
- Register descriptors) {
- Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
-}
-
-
-void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
- Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
- DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
-}
-
-
-void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
- STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
- Ldrsw(dst, UntagSmiFieldMemOperand(map, Map::kBitField3Offset));
- And(dst, dst, Map::EnumLengthBits::kMask);
-}
-
-
-void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
- STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
- Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
- And(dst, dst, Smi::FromInt(Map::EnumLengthBits::kMask));
-}
-
-
-void MacroAssembler::CheckEnumCache(Register object,
- Register null_value,
- Register scratch0,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* call_runtime) {
- ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
- scratch3));
-
- Register empty_fixed_array_value = scratch0;
- Register current_object = scratch1;
-
- LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
- Label next, start;
-
- Mov(current_object, object);
-
- // Check if the enum length field is properly initialized, indicating that
- // there is an enum cache.
- Register map = scratch2;
- Register enum_length = scratch3;
- Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
-
- EnumLengthUntagged(enum_length, map);
- Cmp(enum_length, kInvalidEnumCacheSentinel);
- B(eq, call_runtime);
-
- B(&start);
-
- Bind(&next);
- Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
-
- // For all objects but the receiver, check that the cache is empty.
- EnumLengthUntagged(enum_length, map);
- Cbnz(enum_length, call_runtime);
-
- Bind(&start);
-
- // Check that there are no elements. Register current_object contains the
- // current JS object we've reached through the prototype chain.
- Label no_elements;
- Ldr(current_object, FieldMemOperand(current_object,
- JSObject::kElementsOffset));
- Cmp(current_object, empty_fixed_array_value);
- B(eq, &no_elements);
-
- // Second chance, the object may be using the empty slow element dictionary.
- CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
- B(ne, call_runtime);
-
- Bind(&no_elements);
- Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
- Cmp(current_object, null_value);
- B(ne, &next);
-}
-
-
-void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
- Register scratch1,
- Register scratch2,
- Label* no_memento_found) {
- ExternalReference new_space_start =
- ExternalReference::new_space_start(isolate());
- ExternalReference new_space_allocation_top =
- ExternalReference::new_space_allocation_top_address(isolate());
-
- Add(scratch1, receiver,
- JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
- Cmp(scratch1, new_space_start);
- B(lt, no_memento_found);
-
- Mov(scratch2, new_space_allocation_top);
- Ldr(scratch2, MemOperand(scratch2));
- Cmp(scratch1, scratch2);
- B(gt, no_memento_found);
-
- Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
- Cmp(scratch1,
- Operand(isolate()->factory()->allocation_memento_map()));
-}
-
-
-void MacroAssembler::JumpToHandlerEntry(Register exception,
- Register object,
- Register state,
- Register scratch1,
- Register scratch2) {
- // Handler expects argument in x0.
- ASSERT(exception.Is(x0));
-
- // Compute the handler entry address and jump to it. The handler table is
- // a fixed array of (smi-tagged) code offsets.
- Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
- Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
- STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
- Lsr(scratch2, state, StackHandler::kKindWidth);
- Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
- Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
- Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
- Br(scratch1);
-}
-
-
-void MacroAssembler::InNewSpace(Register object,
- Condition cond,
- Label* branch) {
- ASSERT(cond == eq || cond == ne);
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- And(temp, object, ExternalReference::new_space_mask(isolate()));
- Cmp(temp, ExternalReference::new_space_start(isolate()));
- B(cond, branch);
-}
-
-
-void MacroAssembler::Throw(Register value,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4) {
- // Adjust this code if not the case.
- STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
- STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
-
- // The handler expects the exception in x0.
- ASSERT(value.Is(x0));
-
- // Drop the stack pointer to the top of the top handler.
- ASSERT(jssp.Is(StackPointer()));
- Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
- isolate())));
- Ldr(jssp, MemOperand(scratch1));
- // Restore the next handler.
- Pop(scratch2);
- Str(scratch2, MemOperand(scratch1));
-
- // Get the code object and state. Restore the context and frame pointer.
- Register object = scratch1;
- Register state = scratch2;
- Pop(object, state, cp, fp);
-
- // If the handler is a JS frame, restore the context to the frame.
- // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
- // or cp.
- Label not_js_frame;
- Cbz(cp, &not_js_frame);
- Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
- Bind(&not_js_frame);
-
- JumpToHandlerEntry(value, object, state, scratch3, scratch4);
-}
-
-
-void MacroAssembler::ThrowUncatchable(Register value,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4) {
- // Adjust this code if not the case.
- STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
-
- // The handler expects the exception in x0.
- ASSERT(value.Is(x0));
-
- // Drop the stack pointer to the top of the top stack handler.
- ASSERT(jssp.Is(StackPointer()));
- Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
- isolate())));
- Ldr(jssp, MemOperand(scratch1));
-
- // Unwind the handlers until the ENTRY handler is found.
- Label fetch_next, check_kind;
- B(&check_kind);
- Bind(&fetch_next);
- Peek(jssp, StackHandlerConstants::kNextOffset);
-
- Bind(&check_kind);
- STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
- Peek(scratch2, StackHandlerConstants::kStateOffset);
- TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
-
- // Set the top handler address to next handler past the top ENTRY handler.
- Pop(scratch2);
- Str(scratch2, MemOperand(scratch1));
-
- // Get the code object and state. Clear the context and frame pointer (0 was
- // saved in the handler).
- Register object = scratch1;
- Register state = scratch2;
- Pop(object, state, cp, fp);
-
- JumpToHandlerEntry(value, object, state, scratch3, scratch4);
-}
-
-
-void MacroAssembler::Throw(BailoutReason reason) {
- Label throw_start;
- Bind(&throw_start);
-#ifdef DEBUG
- const char* msg = GetBailoutReason(reason);
- RecordComment("Throw message: ");
- RecordComment((msg != NULL) ? msg : "UNKNOWN");
-#endif
-
- Mov(x0, Smi::FromInt(reason));
- Push(x0);
-
- // Disable stub call restrictions to always allow calls to throw.
- if (!has_frame_) {
- // We don't actually want to generate a pile of code for this, so just
- // claim there is a stack frame, without generating one.
- FrameScope scope(this, StackFrame::NONE);
- CallRuntime(Runtime::kThrowMessage, 1);
- } else {
- CallRuntime(Runtime::kThrowMessage, 1);
- }
- // ThrowMessage should not return here.
- Unreachable();
-}
-
-
-void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) {
- Label ok;
- B(InvertCondition(cc), &ok);
- Throw(reason);
- Bind(&ok);
-}
-
-
-void MacroAssembler::ThrowIfSmi(const Register& value, BailoutReason reason) {
- Label ok;
- JumpIfNotSmi(value, &ok);
- Throw(reason);
- Bind(&ok);
-}
-
-
-void MacroAssembler::SmiAbs(const Register& smi, Label* slow) {
- ASSERT(smi.Is64Bits());
- Abs(smi, smi, slow);
-}
-
-
-void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
- if (emit_debug_code()) {
- STATIC_ASSERT(kSmiTag == 0);
- Tst(object, kSmiTagMask);
- Check(eq, reason);
- }
-}
-
-
-void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
- if (emit_debug_code()) {
- STATIC_ASSERT(kSmiTag == 0);
- Tst(object, kSmiTagMask);
- Check(ne, reason);
- }
-}
-
-
-void MacroAssembler::AssertName(Register object) {
- if (emit_debug_code()) {
- AssertNotSmi(object, kOperandIsASmiAndNotAName);
-
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
-
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- CompareInstanceType(temp, temp, LAST_NAME_TYPE);
- Check(ls, kOperandIsNotAName);
- }
-}
-
-
-void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
- Register scratch) {
- if (emit_debug_code()) {
- Label done_checking;
- AssertNotSmi(object);
- JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
- Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
- CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
- Assert(eq, kExpectedUndefinedOrCell);
- Bind(&done_checking);
- }
-}
-
-
-void MacroAssembler::AssertString(Register object) {
- if (emit_debug_code()) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- STATIC_ASSERT(kSmiTag == 0);
- Tst(object, kSmiTagMask);
- Check(ne, kOperandIsASmiAndNotAString);
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
- Check(lo, kOperandIsNotAString);
- }
-}
-
-
-void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
- ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
- Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id);
-}
-
-
-void MacroAssembler::TailCallStub(CodeStub* stub) {
- Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET);
-}
-
-
-void MacroAssembler::CallRuntime(const Runtime::Function* f,
- int num_arguments,
- SaveFPRegsMode save_doubles) {
- // All arguments must be on the stack before this function is called.
- // x0 holds the return value after the call.
-
- // Check that the number of arguments matches what the function expects.
- // If f->nargs is -1, the function can accept a variable number of arguments.
- if (f->nargs >= 0 && f->nargs != num_arguments) {
- // Illegal operation: drop the stack arguments and return undefined.
- if (num_arguments > 0) {
- Drop(num_arguments);
- }
- LoadRoot(x0, Heap::kUndefinedValueRootIndex);
- return;
- }
-
- // Place the necessary arguments.
- Mov(x0, num_arguments);
- Mov(x1, ExternalReference(f, isolate()));
-
- CEntryStub stub(1, save_doubles);
- CallStub(&stub);
-}
-
-
-static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
- return ref0.address() - ref1.address();
-}
-
-
-void MacroAssembler::CallApiFunctionAndReturn(
- Register function_address,
- ExternalReference thunk_ref,
- int stack_space,
- int spill_offset,
- MemOperand return_value_operand,
- MemOperand* context_restore_operand) {
- ASM_LOCATION("CallApiFunctionAndReturn");
- ExternalReference next_address =
- ExternalReference::handle_scope_next_address(isolate());
- const int kNextOffset = 0;
- const int kLimitOffset = AddressOffset(
- ExternalReference::handle_scope_limit_address(isolate()),
- next_address);
- const int kLevelOffset = AddressOffset(
- ExternalReference::handle_scope_level_address(isolate()),
- next_address);
-
- ASSERT(function_address.is(x1) || function_address.is(x2));
-
- Label profiler_disabled;
- Label end_profiler_check;
- bool* is_profiling_flag = isolate()->cpu_profiler()->is_profiling_address();
- STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
- Mov(x10, reinterpret_cast<uintptr_t>(is_profiling_flag));
- Ldrb(w10, MemOperand(x10));
- Cbz(w10, &profiler_disabled);
- Mov(x3, thunk_ref);
- B(&end_profiler_check);
-
- Bind(&profiler_disabled);
- Mov(x3, function_address);
- Bind(&end_profiler_check);
-
- // Save the callee-save registers we are going to use.
- // TODO(all): Is this necessary? ARM doesn't do it.
- STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
- Poke(x19, (spill_offset + 0) * kXRegSize);
- Poke(x20, (spill_offset + 1) * kXRegSize);
- Poke(x21, (spill_offset + 2) * kXRegSize);
- Poke(x22, (spill_offset + 3) * kXRegSize);
-
- // Allocate HandleScope in callee-save registers.
- // We will need to restore the HandleScope after the call to the API function,
- // by allocating it in callee-save registers they will be preserved by C code.
- Register handle_scope_base = x22;
- Register next_address_reg = x19;
- Register limit_reg = x20;
- Register level_reg = w21;
-
- Mov(handle_scope_base, next_address);
- Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
- Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
- Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
- Add(level_reg, level_reg, 1);
- Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
-
- if (FLAG_log_timer_events) {
- FrameScope frame(this, StackFrame::MANUAL);
- PushSafepointRegisters();
- Mov(x0, ExternalReference::isolate_address(isolate()));
- CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
- PopSafepointRegisters();
- }
-
- // Native call returns to the DirectCEntry stub which redirects to the
- // return address pushed on stack (could have moved after GC).
- // DirectCEntry stub itself is generated early and never moves.
- DirectCEntryStub stub;
- stub.GenerateCall(this, x3);
-
- if (FLAG_log_timer_events) {
- FrameScope frame(this, StackFrame::MANUAL);
- PushSafepointRegisters();
- Mov(x0, ExternalReference::isolate_address(isolate()));
- CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
- PopSafepointRegisters();
- }
-
- Label promote_scheduled_exception;
- Label exception_handled;
- Label delete_allocated_handles;
- Label leave_exit_frame;
- Label return_value_loaded;
-
- // Load value from ReturnValue.
- Ldr(x0, return_value_operand);
- Bind(&return_value_loaded);
- // No more valid handles (the result handle was the last one). Restore
- // previous handle scope.
- Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
- if (emit_debug_code()) {
- Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
- Cmp(w1, level_reg);
- Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
- }
- Sub(level_reg, level_reg, 1);
- Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
- Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
- Cmp(limit_reg, x1);
- B(ne, &delete_allocated_handles);
-
- Bind(&leave_exit_frame);
- // Restore callee-saved registers.
- Peek(x19, (spill_offset + 0) * kXRegSize);
- Peek(x20, (spill_offset + 1) * kXRegSize);
- Peek(x21, (spill_offset + 2) * kXRegSize);
- Peek(x22, (spill_offset + 3) * kXRegSize);
-
- // Check if the function scheduled an exception.
- Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
- Ldr(x5, MemOperand(x5));
- JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
- Bind(&exception_handled);
-
- bool restore_context = context_restore_operand != NULL;
- if (restore_context) {
- Ldr(cp, *context_restore_operand);
- }
-
- LeaveExitFrame(false, x1, !restore_context);
- Drop(stack_space);
- Ret();
-
- Bind(&promote_scheduled_exception);
- {
- FrameScope frame(this, StackFrame::INTERNAL);
- CallExternalReference(
- ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0);
- }
- B(&exception_handled);
-
- // HandleScope limit has changed. Delete allocated extensions.
- Bind(&delete_allocated_handles);
- Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
- // Save the return value in a callee-save register.
- Register saved_result = x19;
- Mov(saved_result, x0);
- Mov(x0, ExternalReference::isolate_address(isolate()));
- CallCFunction(
- ExternalReference::delete_handle_scope_extensions(isolate()), 1);
- Mov(x0, saved_result);
- B(&leave_exit_frame);
-}
-
-
-void MacroAssembler::CallExternalReference(const ExternalReference& ext,
- int num_arguments) {
- Mov(x0, num_arguments);
- Mov(x1, ext);
-
- CEntryStub stub(1);
- CallStub(&stub);
-}
-
-
-void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
- Mov(x1, builtin);
- CEntryStub stub(1);
- Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
-}
-
-
-void MacroAssembler::GetBuiltinFunction(Register target,
- Builtins::JavaScript id) {
- // Load the builtins object into target register.
- Ldr(target, GlobalObjectMemOperand());
- Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
- // Load the JavaScript builtin function from the builtins object.
- Ldr(target, FieldMemOperand(target,
- JSBuiltinsObject::OffsetOfFunctionWithId(id)));
-}
-
-
-void MacroAssembler::GetBuiltinEntry(Register target,
- Register function,
- Builtins::JavaScript id) {
- ASSERT(!AreAliased(target, function));
- GetBuiltinFunction(function, id);
- // Load the code entry point from the builtins object.
- Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
-}
-
-
-void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
- InvokeFlag flag,
- const CallWrapper& call_wrapper) {
- ASM_LOCATION("MacroAssembler::InvokeBuiltin");
- // You can't call a builtin without a valid frame.
- ASSERT(flag == JUMP_FUNCTION || has_frame());
-
- // Get the builtin entry in x2 and setup the function object in x1.
- GetBuiltinEntry(x2, x1, id);
- if (flag == CALL_FUNCTION) {
- call_wrapper.BeforeCall(CallSize(x2));
- Call(x2);
- call_wrapper.AfterCall();
- } else {
- ASSERT(flag == JUMP_FUNCTION);
- Jump(x2);
- }
-}
-
-
-void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
- int num_arguments,
- int result_size) {
- // TODO(1236192): Most runtime routines don't need the number of
- // arguments passed in because it is constant. At some point we
- // should remove this need and make the runtime routine entry code
- // smarter.
- Mov(x0, num_arguments);
- JumpToExternalReference(ext);
-}
-
-
-void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
- int num_arguments,
- int result_size) {
- TailCallExternalReference(ExternalReference(fid, isolate()),
- num_arguments,
- result_size);
-}
-
-
-void MacroAssembler::InitializeNewString(Register string,
- Register length,
- Heap::RootListIndex map_index,
- Register scratch1,
- Register scratch2) {
- ASSERT(!AreAliased(string, length, scratch1, scratch2));
- LoadRoot(scratch2, map_index);
- SmiTag(scratch1, length);
- Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
-
- Mov(scratch2, String::kEmptyHashField);
- Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
- Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
-}
-
-
-int MacroAssembler::ActivationFrameAlignment() {
-#if V8_HOST_ARCH_A64
- // Running on the real platform. Use the alignment as mandated by the local
- // environment.
- // Note: This will break if we ever start generating snapshots on one ARM
- // platform for another ARM platform with a different alignment.
- return OS::ActivationFrameAlignment();
-#else // V8_HOST_ARCH_A64
- // If we are using the simulator then we should always align to the expected
- // alignment. As the simulator is used to generate snapshots we do not know
- // if the target platform will need alignment, so this is controlled from a
- // flag.
- return FLAG_sim_stack_alignment;
-#endif // V8_HOST_ARCH_A64
-}
-
-
-void MacroAssembler::CallCFunction(ExternalReference function,
- int num_of_reg_args) {
- CallCFunction(function, num_of_reg_args, 0);
-}
-
-
-void MacroAssembler::CallCFunction(ExternalReference function,
- int num_of_reg_args,
- int num_of_double_args) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- Mov(temp, function);
- CallCFunction(temp, num_of_reg_args, num_of_double_args);
-}
-
-
-void MacroAssembler::CallCFunction(Register function,
- int num_of_reg_args,
- int num_of_double_args) {
- ASSERT(has_frame());
- // We can pass 8 integer arguments in registers. If we need to pass more than
- // that, we'll need to implement support for passing them on the stack.
- ASSERT(num_of_reg_args <= 8);
-
- // If we're passing doubles, we're limited to the following prototypes
- // (defined by ExternalReference::Type):
- // BUILTIN_COMPARE_CALL: int f(double, double)
- // BUILTIN_FP_FP_CALL: double f(double, double)
- // BUILTIN_FP_CALL: double f(double)
- // BUILTIN_FP_INT_CALL: double f(double, int)
- if (num_of_double_args > 0) {
- ASSERT(num_of_reg_args <= 1);
- ASSERT((num_of_double_args + num_of_reg_args) <= 2);
- }
-
-
- // If the stack pointer is not csp, we need to derive an aligned csp from the
- // current stack pointer.
- const Register old_stack_pointer = StackPointer();
- if (!csp.Is(old_stack_pointer)) {
- AssertStackConsistency();
-
- int sp_alignment = ActivationFrameAlignment();
- // The ABI mandates at least 16-byte alignment.
- ASSERT(sp_alignment >= 16);
- ASSERT(IsPowerOf2(sp_alignment));
-
- // The current stack pointer is a callee saved register, and is preserved
- // across the call.
- ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
-
- // Align and synchronize the system stack pointer with jssp.
- Bic(csp, old_stack_pointer, sp_alignment - 1);
- SetStackPointer(csp);
- }
-
- // Call directly. The function called cannot cause a GC, or allow preemption,
- // so the return address in the link register stays correct.
- Call(function);
-
- if (!csp.Is(old_stack_pointer)) {
- if (emit_debug_code()) {
- // Because the stack pointer must be aligned on a 16-byte boundary, the
- // aligned csp can be up to 12 bytes below the jssp. This is the case
- // where we only pushed one W register on top of an aligned jssp.
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- ASSERT(ActivationFrameAlignment() == 16);
- Sub(temp, csp, old_stack_pointer);
- // We want temp <= 0 && temp >= -12.
- Cmp(temp, 0);
- Ccmp(temp, -12, NFlag, le);
- Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
- }
- SetStackPointer(old_stack_pointer);
- }
-}
-
-
-void MacroAssembler::Jump(Register target) {
- Br(target);
-}
-
-
-void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- Mov(temp, Operand(target, rmode));
- Br(temp);
-}
-
-
-void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
- ASSERT(!RelocInfo::IsCodeTarget(rmode));
- Jump(reinterpret_cast<intptr_t>(target), rmode);
-}
-
-
-void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
- ASSERT(RelocInfo::IsCodeTarget(rmode));
- AllowDeferredHandleDereference embedding_raw_address;
- Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
-}
-
-
-void MacroAssembler::Call(Register target) {
- BlockPoolsScope scope(this);
-#ifdef DEBUG
- Label start_call;
- Bind(&start_call);
-#endif
-
- Blr(target);
-
-#ifdef DEBUG
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
-#endif
-}
-
-
-void MacroAssembler::Call(Label* target) {
- BlockPoolsScope scope(this);
-#ifdef DEBUG
- Label start_call;
- Bind(&start_call);
-#endif
-
- Bl(target);
-
-#ifdef DEBUG
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
-#endif
-}
-
-
-// MacroAssembler::CallSize is sensitive to changes in this function, as it
-// requires to know how many instructions are used to branch to the target.
-void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
- BlockPoolsScope scope(this);
-#ifdef DEBUG
- Label start_call;
- Bind(&start_call);
-#endif
- // Statement positions are expected to be recorded when the target
- // address is loaded.
- positions_recorder()->WriteRecordedPositions();
-
- // Addresses always have 64 bits, so we shouldn't encounter NONE32.
- ASSERT(rmode != RelocInfo::NONE32);
-
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
-
- if (rmode == RelocInfo::NONE64) {
- uint64_t imm = reinterpret_cast<uint64_t>(target);
- movz(temp, (imm >> 0) & 0xffff, 0);
- movk(temp, (imm >> 16) & 0xffff, 16);
- movk(temp, (imm >> 32) & 0xffff, 32);
- movk(temp, (imm >> 48) & 0xffff, 48);
- } else {
- LoadRelocated(temp, Operand(reinterpret_cast<intptr_t>(target), rmode));
- }
- Blr(temp);
-#ifdef DEBUG
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
-#endif
-}
-
-
-void MacroAssembler::Call(Handle<Code> code,
- RelocInfo::Mode rmode,
- TypeFeedbackId ast_id) {
-#ifdef DEBUG
- Label start_call;
- Bind(&start_call);
-#endif
-
- if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
- SetRecordedAstId(ast_id);
- rmode = RelocInfo::CODE_TARGET_WITH_ID;
- }
-
- AllowDeferredHandleDereference embedding_raw_address;
- Call(reinterpret_cast<Address>(code.location()), rmode);
-
-#ifdef DEBUG
- // Check the size of the code generated.
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
-#endif
-}
-
-
-int MacroAssembler::CallSize(Register target) {
- USE(target);
- return kInstructionSize;
-}
-
-
-int MacroAssembler::CallSize(Label* target) {
- USE(target);
- return kInstructionSize;
-}
-
-
-int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
- USE(target);
-
- // Addresses always have 64 bits, so we shouldn't encounter NONE32.
- ASSERT(rmode != RelocInfo::NONE32);
-
- if (rmode == RelocInfo::NONE64) {
- return kCallSizeWithoutRelocation;
- } else {
- return kCallSizeWithRelocation;
- }
-}
-
-
-int MacroAssembler::CallSize(Handle<Code> code,
- RelocInfo::Mode rmode,
- TypeFeedbackId ast_id) {
- USE(code);
- USE(ast_id);
-
- // Addresses always have 64 bits, so we shouldn't encounter NONE32.
- ASSERT(rmode != RelocInfo::NONE32);
-
- if (rmode == RelocInfo::NONE64) {
- return kCallSizeWithoutRelocation;
- } else {
- return kCallSizeWithRelocation;
- }
-}
-
-
-
-
-
-void MacroAssembler::JumpForHeapNumber(Register object,
- Register heap_number_map,
- Label* on_heap_number,
- Label* on_not_heap_number) {
- ASSERT(on_heap_number || on_not_heap_number);
- AssertNotSmi(object);
-
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
-
- // Load the HeapNumber map if it is not passed.
- if (heap_number_map.Is(NoReg)) {
- heap_number_map = temps.AcquireX();
- LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
- } else {
- AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
- }
-
- ASSERT(!AreAliased(temp, heap_number_map));
-
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- Cmp(temp, heap_number_map);
-
- if (on_heap_number) {
- B(eq, on_heap_number);
- }
- if (on_not_heap_number) {
- B(ne, on_not_heap_number);
- }
-}
-
-
-void MacroAssembler::JumpIfHeapNumber(Register object,
- Label* on_heap_number,
- Register heap_number_map) {
- JumpForHeapNumber(object,
- heap_number_map,
- on_heap_number,
- NULL);
-}
-
-
-void MacroAssembler::JumpIfNotHeapNumber(Register object,
- Label* on_not_heap_number,
- Register heap_number_map) {
- JumpForHeapNumber(object,
- heap_number_map,
- NULL,
- on_not_heap_number);
-}
-
-
-void MacroAssembler::LookupNumberStringCache(Register object,
- Register result,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* not_found) {
- ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3));
-
- // Use of registers. Register result is used as a temporary.
- Register number_string_cache = result;
- Register mask = scratch3;
-
- // Load the number string cache.
- LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
-
- // Make the hash mask from the length of the number string cache. It
- // contains two elements (number and string) for each cache entry.
- Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
- FixedArray::kLengthOffset));
- Asr(mask, mask, 1); // Divide length by two.
- Sub(mask, mask, 1); // Make mask.
-
- // Calculate the entry in the number string cache. The hash value in the
- // number string cache for smis is just the smi value, and the hash for
- // doubles is the xor of the upper and lower words. See
- // Heap::GetNumberStringCache.
- Label is_smi;
- Label load_result_from_cache;
-
- JumpIfSmi(object, &is_smi);
- CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
- DONT_DO_SMI_CHECK);
-
- STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
- Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
- Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
- Eor(scratch1, scratch1, scratch2);
- And(scratch1, scratch1, mask);
-
- // Calculate address of entry in string cache: each entry consists of two
- // pointer sized fields.
- Add(scratch1, number_string_cache,
- Operand(scratch1, LSL, kPointerSizeLog2 + 1));
-
- Register probe = mask;
- Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
- JumpIfSmi(probe, not_found);
- Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
- Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
- Fcmp(d0, d1);
- B(ne, not_found);
- B(&load_result_from_cache);
-
- Bind(&is_smi);
- Register scratch = scratch1;
- And(scratch, mask, Operand::UntagSmi(object));
- // Calculate address of entry in string cache: each entry consists
- // of two pointer sized fields.
- Add(scratch, number_string_cache,
- Operand(scratch, LSL, kPointerSizeLog2 + 1));
-
- // Check if the entry is the smi we are looking for.
- Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
- Cmp(object, probe);
- B(ne, not_found);
-
- // Get the result from the cache.
- Bind(&load_result_from_cache);
- Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
- IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
- scratch1, scratch2);
-}
-
-
-void MacroAssembler::TryConvertDoubleToInt(Register as_int,
- FPRegister value,
- FPRegister scratch_d,
- Label* on_successful_conversion,
- Label* on_failed_conversion) {
- // Convert to an int and back again, then compare with the original value.
- Fcvtzs(as_int, value);
- Scvtf(scratch_d, as_int);
- Fcmp(value, scratch_d);
-
- if (on_successful_conversion) {
- B(on_successful_conversion, eq);
- }
- if (on_failed_conversion) {
- B(on_failed_conversion, ne);
- }
-}
-
-
-void MacroAssembler::TestForMinusZero(DoubleRegister input) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
- // cause overflow.
- Fmov(temp, input);
- Cmp(temp, 1);
-}
-
-
-void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
- Label* on_negative_zero) {
- TestForMinusZero(input);
- B(vs, on_negative_zero);
-}
-
-
-void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
- // Clamp the value to [0..255].
- Cmp(input.W(), Operand(input.W(), UXTB));
- // If input < input & 0xff, it must be < 0, so saturate to 0.
- Csel(output.W(), wzr, input.W(), lt);
- // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
- Csel(output.W(), output.W(), 255, le);
-}
-
-
-void MacroAssembler::ClampInt32ToUint8(Register in_out) {
- ClampInt32ToUint8(in_out, in_out);
-}
-
-
-void MacroAssembler::ClampDoubleToUint8(Register output,
- DoubleRegister input,
- DoubleRegister dbl_scratch) {
- // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
- // - Inputs lower than 0 (including -infinity) produce 0.
- // - Inputs higher than 255 (including +infinity) produce 255.
- // Also, it seems that PIXEL types use round-to-nearest rather than
- // round-towards-zero.
-
- // Squash +infinity before the conversion, since Fcvtnu will normally
- // convert it to 0.
- Fmov(dbl_scratch, 255);
- Fmin(dbl_scratch, dbl_scratch, input);
-
- // Convert double to unsigned integer. Values less than zero become zero.
- // Values greater than 255 have already been clamped to 255.
- Fcvtnu(output, dbl_scratch);
-}
-
-
-void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
- Register src,
- unsigned count,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4,
- Register scratch5) {
- // Untag src and dst into scratch registers.
- // Copy src->dst in a tight loop.
- ASSERT(!AreAliased(dst, src,
- scratch1, scratch2, scratch3, scratch4, scratch5));
- ASSERT(count >= 2);
-
- const Register& remaining = scratch3;
- Mov(remaining, count / 2);
-
- const Register& dst_untagged = scratch1;
- const Register& src_untagged = scratch2;
- Sub(dst_untagged, dst, kHeapObjectTag);
- Sub(src_untagged, src, kHeapObjectTag);
-
- // Copy fields in pairs.
- Label loop;
- Bind(&loop);
- Ldp(scratch4, scratch5,
- MemOperand(src_untagged, kXRegSize* 2, PostIndex));
- Stp(scratch4, scratch5,
- MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
- Sub(remaining, remaining, 1);
- Cbnz(remaining, &loop);
-
- // Handle the leftovers.
- if (count & 1) {
- Ldr(scratch4, MemOperand(src_untagged));
- Str(scratch4, MemOperand(dst_untagged));
- }
-}
-
-
-void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
- Register src,
- unsigned count,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4) {
- // Untag src and dst into scratch registers.
- // Copy src->dst in an unrolled loop.
- ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
-
- const Register& dst_untagged = scratch1;
- const Register& src_untagged = scratch2;
- sub(dst_untagged, dst, kHeapObjectTag);
- sub(src_untagged, src, kHeapObjectTag);
-
- // Copy fields in pairs.
- for (unsigned i = 0; i < count / 2; i++) {
- Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
- Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
- }
-
- // Handle the leftovers.
- if (count & 1) {
- Ldr(scratch3, MemOperand(src_untagged));
- Str(scratch3, MemOperand(dst_untagged));
- }
-}
-
-
-void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
- Register src,
- unsigned count,
- Register scratch1,
- Register scratch2,
- Register scratch3) {
- // Untag src and dst into scratch registers.
- // Copy src->dst in an unrolled loop.
- ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3));
-
- const Register& dst_untagged = scratch1;
- const Register& src_untagged = scratch2;
- Sub(dst_untagged, dst, kHeapObjectTag);
- Sub(src_untagged, src, kHeapObjectTag);
-
- // Copy fields one by one.
- for (unsigned i = 0; i < count; i++) {
- Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
- Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
- }
-}
-
-
-void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
- unsigned count) {
- // One of two methods is used:
- //
- // For high 'count' values where many scratch registers are available:
- // Untag src and dst into scratch registers.
- // Copy src->dst in a tight loop.
- //
- // For low 'count' values or where few scratch registers are available:
- // Untag src and dst into scratch registers.
- // Copy src->dst in an unrolled loop.
- //
- // In both cases, fields are copied in pairs if possible, and left-overs are
- // handled separately.
- ASSERT(!AreAliased(dst, src));
- ASSERT(!temps.IncludesAliasOf(dst));
- ASSERT(!temps.IncludesAliasOf(src));
- ASSERT(!temps.IncludesAliasOf(xzr));
-
- if (emit_debug_code()) {
- Cmp(dst, src);
- Check(ne, kTheSourceAndDestinationAreTheSame);
- }
-
- // The value of 'count' at which a loop will be generated (if there are
- // enough scratch registers).
- static const unsigned kLoopThreshold = 8;
-
- UseScratchRegisterScope masm_temps(this);
- if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
- CopyFieldsLoopPairsHelper(dst, src, count,
- Register(temps.PopLowestIndex()),
- Register(temps.PopLowestIndex()),
- Register(temps.PopLowestIndex()),
- masm_temps.AcquireX(),
- masm_temps.AcquireX());
- } else if (temps.Count() >= 2) {
- CopyFieldsUnrolledPairsHelper(dst, src, count,
- Register(temps.PopLowestIndex()),
- Register(temps.PopLowestIndex()),
- masm_temps.AcquireX(),
- masm_temps.AcquireX());
- } else if (temps.Count() == 1) {
- CopyFieldsUnrolledHelper(dst, src, count,
- Register(temps.PopLowestIndex()),
- masm_temps.AcquireX(),
- masm_temps.AcquireX());
- } else {
- UNREACHABLE();
- }
-}
-
-
-void MacroAssembler::CopyBytes(Register dst,
- Register src,
- Register length,
- Register scratch,
- CopyHint hint) {
- UseScratchRegisterScope temps(this);
- Register tmp1 = temps.AcquireX();
- Register tmp2 = temps.AcquireX();
- ASSERT(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
- ASSERT(!AreAliased(src, dst, csp));
-
- if (emit_debug_code()) {
- // Check copy length.
- Cmp(length, 0);
- Assert(ge, kUnexpectedNegativeValue);
-
- // Check src and dst buffers don't overlap.
- Add(scratch, src, length); // Calculate end of src buffer.
- Cmp(scratch, dst);
- Add(scratch, dst, length); // Calculate end of dst buffer.
- Ccmp(scratch, src, ZFlag, gt);
- Assert(le, kCopyBuffersOverlap);
- }
-
- Label short_copy, short_loop, bulk_loop, done;
-
- if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
- Register bulk_length = scratch;
- int pair_size = 2 * kXRegSize;
- int pair_mask = pair_size - 1;
-
- Bic(bulk_length, length, pair_mask);
- Cbz(bulk_length, &short_copy);
- Bind(&bulk_loop);
- Sub(bulk_length, bulk_length, pair_size);
- Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
- Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
- Cbnz(bulk_length, &bulk_loop);
-
- And(length, length, pair_mask);
- }
-
- Bind(&short_copy);
- Cbz(length, &done);
- Bind(&short_loop);
- Sub(length, length, 1);
- Ldrb(tmp1, MemOperand(src, 1, PostIndex));
- Strb(tmp1, MemOperand(dst, 1, PostIndex));
- Cbnz(length, &short_loop);
-
-
- Bind(&done);
-}
-
-
-void MacroAssembler::FillFields(Register dst,
- Register field_count,
- Register filler) {
- ASSERT(!dst.Is(csp));
- UseScratchRegisterScope temps(this);
- Register field_ptr = temps.AcquireX();
- Register counter = temps.AcquireX();
- Label done;
-
- // Decrement count. If the result < zero, count was zero, and there's nothing
- // to do. If count was one, flags are set to fail the gt condition at the end
- // of the pairs loop.
- Subs(counter, field_count, 1);
- B(lt, &done);
-
- // There's at least one field to fill, so do this unconditionally.
- Str(filler, MemOperand(dst, kPointerSize, PostIndex));
-
- // If the bottom bit of counter is set, there are an even number of fields to
- // fill, so pull the start pointer back by one field, allowing the pairs loop
- // to overwrite the field that was stored above.
- And(field_ptr, counter, 1);
- Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
-
- // Store filler to memory in pairs.
- Label entry, loop;
- B(&entry);
- Bind(&loop);
- Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
- Subs(counter, counter, 2);
- Bind(&entry);
- B(gt, &loop);
-
- Bind(&done);
-}
-
-
-void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings(
- Register first,
- Register second,
- Register scratch1,
- Register scratch2,
- Label* failure,
- SmiCheckType smi_check) {
-
- if (smi_check == DO_SMI_CHECK) {
- JumpIfEitherSmi(first, second, failure);
- } else if (emit_debug_code()) {
- ASSERT(smi_check == DONT_DO_SMI_CHECK);
- Label not_smi;
- JumpIfEitherSmi(first, second, NULL, &not_smi);
-
- // At least one input is a smi, but the flags indicated a smi check wasn't
- // needed.
- Abort(kUnexpectedSmi);
-
- Bind(&not_smi);
- }
-
- // Test that both first and second are sequential ASCII strings.
- Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
- Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
- Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
- Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
-
- JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1,
- scratch2,
- scratch1,
- scratch2,
- failure);
-}
-
-
-void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii(
- Register first,
- Register second,
- Register scratch1,
- Register scratch2,
- Label* failure) {
- ASSERT(!AreAliased(scratch1, second));
- ASSERT(!AreAliased(scratch1, scratch2));
- static const int kFlatAsciiStringMask =
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
- static const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
- And(scratch1, first, kFlatAsciiStringMask);
- And(scratch2, second, kFlatAsciiStringMask);
- Cmp(scratch1, kFlatAsciiStringTag);
- Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
- B(ne, failure);
-}
-
-
-void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
- Register scratch,
- Label* failure) {
- const int kFlatAsciiStringMask =
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
- const int kFlatAsciiStringTag =
- kStringTag | kOneByteStringTag | kSeqStringTag;
- And(scratch, type, kFlatAsciiStringMask);
- Cmp(scratch, kFlatAsciiStringTag);
- B(ne, failure);
-}
-
-
-void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
- Register first,
- Register second,
- Register scratch1,
- Register scratch2,
- Label* failure) {
- ASSERT(!AreAliased(first, second, scratch1, scratch2));
- const int kFlatAsciiStringMask =
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
- const int kFlatAsciiStringTag =
- kStringTag | kOneByteStringTag | kSeqStringTag;
- And(scratch1, first, kFlatAsciiStringMask);
- And(scratch2, second, kFlatAsciiStringMask);
- Cmp(scratch1, kFlatAsciiStringTag);
- Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
- B(ne, failure);
-}
-
-
-void MacroAssembler::JumpIfNotUniqueName(Register type,
- Label* not_unique_name) {
- STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
- // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
- // continue
- // } else {
- // goto not_unique_name
- // }
- Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
- Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
- B(ne, not_unique_name);
-}
-
-
-void MacroAssembler::InvokePrologue(const ParameterCount& expected,
- const ParameterCount& actual,
- Handle<Code> code_constant,
- Register code_reg,
- Label* done,
- InvokeFlag flag,
- bool* definitely_mismatches,
- const CallWrapper& call_wrapper) {
- bool definitely_matches = false;
- *definitely_mismatches = false;
- Label regular_invoke;
-
- // Check whether the expected and actual arguments count match. If not,
- // setup registers according to contract with ArgumentsAdaptorTrampoline:
- // x0: actual arguments count.
- // x1: function (passed through to callee).
- // x2: expected arguments count.
-
- // The code below is made a lot easier because the calling code already sets
- // up actual and expected registers according to the contract if values are
- // passed in registers.
- ASSERT(actual.is_immediate() || actual.reg().is(x0));
- ASSERT(expected.is_immediate() || expected.reg().is(x2));
- ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
-
- if (expected.is_immediate()) {
- ASSERT(actual.is_immediate());
- if (expected.immediate() == actual.immediate()) {
- definitely_matches = true;
-
- } else {
- Mov(x0, actual.immediate());
- if (expected.immediate() ==
- SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
- // Don't worry about adapting arguments for builtins that
- // don't want that done. Skip adaption code by making it look
- // like we have a match between expected and actual number of
- // arguments.
- definitely_matches = true;
- } else {
- *definitely_mismatches = true;
- // Set up x2 for the argument adaptor.
- Mov(x2, expected.immediate());
- }
- }
-
- } else { // expected is a register.
- Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
- : Operand(actual.reg());
- // If actual == expected perform a regular invocation.
- Cmp(expected.reg(), actual_op);
- B(eq, &regular_invoke);
- // Otherwise set up x0 for the argument adaptor.
- Mov(x0, actual_op);
- }
-
- // If the argument counts may mismatch, generate a call to the argument
- // adaptor.
- if (!definitely_matches) {
- if (!code_constant.is_null()) {
- Mov(x3, Operand(code_constant));
- Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
- }
-
- Handle<Code> adaptor =
- isolate()->builtins()->ArgumentsAdaptorTrampoline();
- if (flag == CALL_FUNCTION) {
- call_wrapper.BeforeCall(CallSize(adaptor));
- Call(adaptor);
- call_wrapper.AfterCall();
- if (!*definitely_mismatches) {
- // If the arg counts don't match, no extra code is emitted by
- // MAsm::InvokeCode and we can just fall through.
- B(done);
- }
- } else {
- Jump(adaptor, RelocInfo::CODE_TARGET);
- }
- }
- Bind(&regular_invoke);
-}
-
-
-void MacroAssembler::InvokeCode(Register code,
- const ParameterCount& expected,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper) {
- // You can't call a function without a valid frame.
- ASSERT(flag == JUMP_FUNCTION || has_frame());
-
- Label done;
-
- bool definitely_mismatches = false;
- InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
- &definitely_mismatches, call_wrapper);
-
- // If we are certain that actual != expected, then we know InvokePrologue will
- // have handled the call through the argument adaptor mechanism.
- // The called function expects the call kind in x5.
- if (!definitely_mismatches) {
- if (flag == CALL_FUNCTION) {
- call_wrapper.BeforeCall(CallSize(code));
- Call(code);
- call_wrapper.AfterCall();
- } else {
- ASSERT(flag == JUMP_FUNCTION);
- Jump(code);
- }
- }
-
- // Continue here if InvokePrologue does handle the invocation due to
- // mismatched parameter counts.
- Bind(&done);
-}
-
-
-void MacroAssembler::InvokeFunction(Register function,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper) {
- // You can't call a function without a valid frame.
- ASSERT(flag == JUMP_FUNCTION || has_frame());
-
- // Contract with called JS functions requires that function is passed in x1.
- // (See FullCodeGenerator::Generate().)
- ASSERT(function.is(x1));
-
- Register expected_reg = x2;
- Register code_reg = x3;
-
- Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
- // The number of arguments is stored as an int32_t, and -1 is a marker
- // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
- // extension to correctly handle it.
- Ldr(expected_reg, FieldMemOperand(function,
- JSFunction::kSharedFunctionInfoOffset));
- Ldrsw(expected_reg,
- FieldMemOperand(expected_reg,
- SharedFunctionInfo::kFormalParameterCountOffset));
- Ldr(code_reg,
- FieldMemOperand(function, JSFunction::kCodeEntryOffset));
-
- ParameterCount expected(expected_reg);
- InvokeCode(code_reg, expected, actual, flag, call_wrapper);
-}
-
-
-void MacroAssembler::InvokeFunction(Register function,
- const ParameterCount& expected,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper) {
- // You can't call a function without a valid frame.
- ASSERT(flag == JUMP_FUNCTION || has_frame());
-
- // Contract with called JS functions requires that function is passed in x1.
- // (See FullCodeGenerator::Generate().)
- ASSERT(function.Is(x1));
-
- Register code_reg = x3;
-
- // Set up the context.
- Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
-
- // We call indirectly through the code field in the function to
- // allow recompilation to take effect without changing any of the
- // call sites.
- Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
- InvokeCode(code_reg, expected, actual, flag, call_wrapper);
-}
-
-
-void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
- const ParameterCount& expected,
- const ParameterCount& actual,
- InvokeFlag flag,
- const CallWrapper& call_wrapper) {
- // Contract with called JS functions requires that function is passed in x1.
- // (See FullCodeGenerator::Generate().)
- __ LoadObject(x1, function);
- InvokeFunction(x1, expected, actual, flag, call_wrapper);
-}
-
-
-void MacroAssembler::TryConvertDoubleToInt64(Register result,
- DoubleRegister double_input,
- Label* done) {
- // Try to convert with an FPU convert instruction. It's trivial to compute
- // the modulo operation on an integer register so we convert to a 64-bit
- // integer.
- //
- // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
- // when the double is out of range. NaNs and infinities will be converted to 0
- // (as ECMA-262 requires).
- Fcvtzs(result.X(), double_input);
-
- // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
- // representable using a double, so if the result is one of those then we know
- // that saturation occured, and we need to manually handle the conversion.
- //
- // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
- // 1 will cause signed overflow.
- Cmp(result.X(), 1);
- Ccmp(result.X(), -1, VFlag, vc);
-
- B(vc, done);
-}
-
-
-void MacroAssembler::TruncateDoubleToI(Register result,
- DoubleRegister double_input) {
- Label done;
- ASSERT(jssp.Is(StackPointer()));
-
- // Try to convert the double to an int64. If successful, the bottom 32 bits
- // contain our truncated int32 result.
- TryConvertDoubleToInt64(result, double_input, &done);
-
- // If we fell through then inline version didn't succeed - call stub instead.
- Push(lr);
- Push(double_input); // Put input on stack.
-
- DoubleToIStub stub(jssp,
- result,
- 0,
- true, // is_truncating
- true); // skip_fastpath
- CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
-
- Drop(1, kDoubleSize); // Drop the double input on the stack.
- Pop(lr);
-
- Bind(&done);
-}
-
-
-void MacroAssembler::TruncateHeapNumberToI(Register result,
- Register object) {
- Label done;
- ASSERT(!result.is(object));
- ASSERT(jssp.Is(StackPointer()));
-
- Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
-
- // Try to convert the double to an int64. If successful, the bottom 32 bits
- // contain our truncated int32 result.
- TryConvertDoubleToInt64(result, fp_scratch, &done);
-
- // If we fell through then inline version didn't succeed - call stub instead.
- Push(lr);
- DoubleToIStub stub(object,
- result,
- HeapNumber::kValueOffset - kHeapObjectTag,
- true, // is_truncating
- true); // skip_fastpath
- CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
- Pop(lr);
-
- Bind(&done);
-}
-
-
-void MacroAssembler::Prologue(PrologueFrameMode frame_mode) {
- if (frame_mode == BUILD_STUB_FRAME) {
- ASSERT(StackPointer().Is(jssp));
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- __ Mov(temp, Smi::FromInt(StackFrame::STUB));
- // Compiled stubs don't age, and so they don't need the predictable code
- // ageing sequence.
- __ Push(lr, fp, cp, temp);
- __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
- } else {
- if (isolate()->IsCodePreAgingActive()) {
- Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
- __ EmitCodeAgeSequence(stub);
- } else {
- __ EmitFrameSetupForCodeAgePatching();
- }
- }
-}
-
-
-void MacroAssembler::EnterFrame(StackFrame::Type type) {
- ASSERT(jssp.Is(StackPointer()));
- UseScratchRegisterScope temps(this);
- Register type_reg = temps.AcquireX();
- Register code_reg = temps.AcquireX();
-
- Push(lr, fp, cp);
- Mov(type_reg, Smi::FromInt(type));
- Mov(code_reg, Operand(CodeObject()));
- Push(type_reg, code_reg);
- // jssp[4] : lr
- // jssp[3] : fp
- // jssp[2] : cp
- // jssp[1] : type
- // jssp[0] : code object
-
- // Adjust FP to point to saved FP.
- Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
-}
-
-
-void MacroAssembler::LeaveFrame(StackFrame::Type type) {
- ASSERT(jssp.Is(StackPointer()));
- // Drop the execution stack down to the frame pointer and restore
- // the caller frame pointer and return address.
- Mov(jssp, fp);
- AssertStackConsistency();
- Pop(fp, lr);
-}
-
-
-void MacroAssembler::ExitFramePreserveFPRegs() {
- PushCPURegList(kCallerSavedFP);
-}
-
-
-void MacroAssembler::ExitFrameRestoreFPRegs() {
- // Read the registers from the stack without popping them. The stack pointer
- // will be reset as part of the unwinding process.
- CPURegList saved_fp_regs = kCallerSavedFP;
- ASSERT(saved_fp_regs.Count() % 2 == 0);
-
- int offset = ExitFrameConstants::kLastExitFrameField;
- while (!saved_fp_regs.IsEmpty()) {
- const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
- const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
- offset -= 2 * kDRegSize;
- Ldp(dst1, dst0, MemOperand(fp, offset));
- }
-}
-
-
-void MacroAssembler::EnterExitFrame(bool save_doubles,
- const Register& scratch,
- int extra_space) {
- ASSERT(jssp.Is(StackPointer()));
-
- // Set up the new stack frame.
- Mov(scratch, Operand(CodeObject()));
- Push(lr, fp);
- Mov(fp, StackPointer());
- Push(xzr, scratch);
- // fp[8]: CallerPC (lr)
- // fp -> fp[0]: CallerFP (old fp)
- // fp[-8]: Space reserved for SPOffset.
- // jssp -> fp[-16]: CodeObject()
- STATIC_ASSERT((2 * kPointerSize) ==
- ExitFrameConstants::kCallerSPDisplacement);
- STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
- STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
- STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
- STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
-
- // Save the frame pointer and context pointer in the top frame.
- Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
- isolate())));
- Str(fp, MemOperand(scratch));
- Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
- isolate())));
- Str(cp, MemOperand(scratch));
-
- STATIC_ASSERT((-2 * kPointerSize) ==
- ExitFrameConstants::kLastExitFrameField);
- if (save_doubles) {
- ExitFramePreserveFPRegs();
- }
-
- // Reserve space for the return address and for user requested memory.
- // We do this before aligning to make sure that we end up correctly
- // aligned with the minimum of wasted space.
- Claim(extra_space + 1, kXRegSize);
- // fp[8]: CallerPC (lr)
- // fp -> fp[0]: CallerFP (old fp)
- // fp[-8]: Space reserved for SPOffset.
- // fp[-16]: CodeObject()
- // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
- // jssp[8]: Extra space reserved for caller (if extra_space != 0).
- // jssp -> jssp[0]: Space reserved for the return address.
-
- // Align and synchronize the system stack pointer with jssp.
- AlignAndSetCSPForFrame();
- ASSERT(csp.Is(StackPointer()));
-
- // fp[8]: CallerPC (lr)
- // fp -> fp[0]: CallerFP (old fp)
- // fp[-8]: Space reserved for SPOffset.
- // fp[-16]: CodeObject()
- // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
- // csp[8]: Memory reserved for the caller if extra_space != 0.
- // Alignment padding, if necessary.
- // csp -> csp[0]: Space reserved for the return address.
-
- // ExitFrame::GetStateForFramePointer expects to find the return address at
- // the memory address immediately below the pointer stored in SPOffset.
- // It is not safe to derive much else from SPOffset, because the size of the
- // padding can vary.
- Add(scratch, csp, kXRegSize);
- Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
-}
-
-
-// Leave the current exit frame.
-void MacroAssembler::LeaveExitFrame(bool restore_doubles,
- const Register& scratch,
- bool restore_context) {
- ASSERT(csp.Is(StackPointer()));
-
- if (restore_doubles) {
- ExitFrameRestoreFPRegs();
- }
-
- // Restore the context pointer from the top frame.
- if (restore_context) {
- Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
- isolate())));
- Ldr(cp, MemOperand(scratch));
- }
-
- if (emit_debug_code()) {
- // Also emit debug code to clear the cp in the top frame.
- Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
- isolate())));
- Str(xzr, MemOperand(scratch));
- }
- // Clear the frame pointer from the top frame.
- Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
- isolate())));
- Str(xzr, MemOperand(scratch));
-
- // Pop the exit frame.
- // fp[8]: CallerPC (lr)
- // fp -> fp[0]: CallerFP (old fp)
- // fp[...]: The rest of the frame.
- Mov(jssp, fp);
- SetStackPointer(jssp);
- AssertStackConsistency();
- Pop(fp, lr);
-}
-
-
-void MacroAssembler::SetCounter(StatsCounter* counter, int value,
- Register scratch1, Register scratch2) {
- if (FLAG_native_code_counters && counter->Enabled()) {
- Mov(scratch1, value);
- Mov(scratch2, ExternalReference(counter));
- Str(scratch1, MemOperand(scratch2));
- }
-}
-
-
-void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
- Register scratch1, Register scratch2) {
- ASSERT(value != 0);
- if (FLAG_native_code_counters && counter->Enabled()) {
- Mov(scratch2, ExternalReference(counter));
- Ldr(scratch1, MemOperand(scratch2));
- Add(scratch1, scratch1, value);
- Str(scratch1, MemOperand(scratch2));
- }
-}
-
-
-void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
- Register scratch1, Register scratch2) {
- IncrementCounter(counter, -value, scratch1, scratch2);
-}
-
-
-void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
- if (context_chain_length > 0) {
- // Move up the chain of contexts to the context containing the slot.
- Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
- for (int i = 1; i < context_chain_length; i++) {
- Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
- }
- } else {
- // Slot is in the current function context. Move it into the
- // destination register in case we store into it (the write barrier
- // cannot be allowed to destroy the context in cp).
- Mov(dst, cp);
- }
-}
-
-
-#ifdef ENABLE_DEBUGGER_SUPPORT
-void MacroAssembler::DebugBreak() {
- Mov(x0, 0);
- Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
- CEntryStub ces(1);
- ASSERT(AllowThisStubCall(&ces));
- Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
-}
-#endif
-
-
-void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
- int handler_index) {
- ASSERT(jssp.Is(StackPointer()));
- // Adjust this code if the asserts don't hold.
- STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
- STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
-
- // For the JSEntry handler, we must preserve the live registers x0-x4.
- // (See JSEntryStub::GenerateBody().)
-
- unsigned state =
- StackHandler::IndexField::encode(handler_index) |
- StackHandler::KindField::encode(kind);
-
- // Set up the code object and the state for pushing.
- Mov(x10, Operand(CodeObject()));
- Mov(x11, state);
-
- // Push the frame pointer, context, state, and code object.
- if (kind == StackHandler::JS_ENTRY) {
- ASSERT(Smi::FromInt(0) == 0);
- Push(xzr, xzr, x11, x10);
- } else {
- Push(fp, cp, x11, x10);
- }
-
- // Link the current handler as the next handler.
- Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
- Ldr(x10, MemOperand(x11));
- Push(x10);
- // Set this new handler as the current one.
- Str(jssp, MemOperand(x11));
-}
-
-
-void MacroAssembler::PopTryHandler() {
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
- Pop(x10);
- Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
- Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
- Str(x10, MemOperand(x11));
-}
-
-
-void MacroAssembler::Allocate(int object_size,
- Register result,
- Register scratch1,
- Register scratch2,
- Label* gc_required,
- AllocationFlags flags) {
- ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
- if (!FLAG_inline_new) {
- if (emit_debug_code()) {
- // Trash the registers to simulate an allocation failure.
- // We apply salt to the original zap value to easily spot the values.
- Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
- Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
- Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
- }
- B(gc_required);
- return;
- }
-
- UseScratchRegisterScope temps(this);
- Register scratch3 = temps.AcquireX();
-
- ASSERT(!AreAliased(result, scratch1, scratch2, scratch3));
- ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
-
- // Make object size into bytes.
- if ((flags & SIZE_IN_WORDS) != 0) {
- object_size *= kPointerSize;
- }
- ASSERT(0 == (object_size & kObjectAlignmentMask));
-
- // Check relative positions of allocation top and limit addresses.
- // The values must be adjacent in memory to allow the use of LDP.
- ExternalReference heap_allocation_top =
- AllocationUtils::GetAllocationTopReference(isolate(), flags);
- ExternalReference heap_allocation_limit =
- AllocationUtils::GetAllocationLimitReference(isolate(), flags);
- intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
- intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
- ASSERT((limit - top) == kPointerSize);
-
- // Set up allocation top address and object size registers.
- Register top_address = scratch1;
- Register allocation_limit = scratch2;
- Mov(top_address, Operand(heap_allocation_top));
-
- if ((flags & RESULT_CONTAINS_TOP) == 0) {
- // Load allocation top into result and the allocation limit.
- Ldp(result, allocation_limit, MemOperand(top_address));
- } else {
- if (emit_debug_code()) {
- // Assert that result actually contains top on entry.
- Ldr(scratch3, MemOperand(top_address));
- Cmp(result, scratch3);
- Check(eq, kUnexpectedAllocationTop);
- }
- // Load the allocation limit. 'result' already contains the allocation top.
- Ldr(allocation_limit, MemOperand(top_address, limit - top));
- }
-
- // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
- // the same alignment on A64.
- STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
-
- // Calculate new top and bail out if new space is exhausted.
- Adds(scratch3, result, object_size);
- B(vs, gc_required);
- Cmp(scratch3, allocation_limit);
- B(hi, gc_required);
- Str(scratch3, MemOperand(top_address));
-
- // Tag the object if requested.
- if ((flags & TAG_OBJECT) != 0) {
- Orr(result, result, kHeapObjectTag);
- }
-}
-
-
-void MacroAssembler::Allocate(Register object_size,
- Register result,
- Register scratch1,
- Register scratch2,
- Label* gc_required,
- AllocationFlags flags) {
- if (!FLAG_inline_new) {
- if (emit_debug_code()) {
- // Trash the registers to simulate an allocation failure.
- // We apply salt to the original zap value to easily spot the values.
- Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
- Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
- Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
- }
- B(gc_required);
- return;
- }
-
- UseScratchRegisterScope temps(this);
- Register scratch3 = temps.AcquireX();
-
- ASSERT(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
- ASSERT(object_size.Is64Bits() && result.Is64Bits() &&
- scratch1.Is64Bits() && scratch2.Is64Bits());
-
- // Check relative positions of allocation top and limit addresses.
- // The values must be adjacent in memory to allow the use of LDP.
- ExternalReference heap_allocation_top =
- AllocationUtils::GetAllocationTopReference(isolate(), flags);
- ExternalReference heap_allocation_limit =
- AllocationUtils::GetAllocationLimitReference(isolate(), flags);
- intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
- intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
- ASSERT((limit - top) == kPointerSize);
-
- // Set up allocation top address and object size registers.
- Register top_address = scratch1;
- Register allocation_limit = scratch2;
- Mov(top_address, heap_allocation_top);
-
- if ((flags & RESULT_CONTAINS_TOP) == 0) {
- // Load allocation top into result and the allocation limit.
- Ldp(result, allocation_limit, MemOperand(top_address));
- } else {
- if (emit_debug_code()) {
- // Assert that result actually contains top on entry.
- Ldr(scratch3, MemOperand(top_address));
- Cmp(result, scratch3);
- Check(eq, kUnexpectedAllocationTop);
- }
- // Load the allocation limit. 'result' already contains the allocation top.
- Ldr(allocation_limit, MemOperand(top_address, limit - top));
- }
-
- // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
- // the same alignment on A64.
- STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
-
- // Calculate new top and bail out if new space is exhausted
- if ((flags & SIZE_IN_WORDS) != 0) {
- Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
- } else {
- Adds(scratch3, result, object_size);
- }
-
- if (emit_debug_code()) {
- Tst(scratch3, kObjectAlignmentMask);
- Check(eq, kUnalignedAllocationInNewSpace);
- }
-
- B(vs, gc_required);
- Cmp(scratch3, allocation_limit);
- B(hi, gc_required);
- Str(scratch3, MemOperand(top_address));
-
- // Tag the object if requested.
- if ((flags & TAG_OBJECT) != 0) {
- Orr(result, result, kHeapObjectTag);
- }
-}
-
-
-void MacroAssembler::UndoAllocationInNewSpace(Register object,
- Register scratch) {
- ExternalReference new_space_allocation_top =
- ExternalReference::new_space_allocation_top_address(isolate());
-
- // Make sure the object has no tag before resetting top.
- Bic(object, object, kHeapObjectTagMask);
-#ifdef DEBUG
- // Check that the object un-allocated is below the current top.
- Mov(scratch, new_space_allocation_top);
- Ldr(scratch, MemOperand(scratch));
- Cmp(object, scratch);
- Check(lt, kUndoAllocationOfNonAllocatedMemory);
-#endif
- // Write the address of the object to un-allocate as the current top.
- Mov(scratch, new_space_allocation_top);
- Str(object, MemOperand(scratch));
-}
-
-
-void MacroAssembler::AllocateTwoByteString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* gc_required) {
- ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
- // Calculate the number of bytes needed for the characters in the string while
- // observing object alignment.
- STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
- Add(scratch1, length, length); // Length in bytes, not chars.
- Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
- Bic(scratch1, scratch1, kObjectAlignmentMask);
-
- // Allocate two-byte string in new space.
- Allocate(scratch1,
- result,
- scratch2,
- scratch3,
- gc_required,
- TAG_OBJECT);
-
- // Set the map, length and hash field.
- InitializeNewString(result,
- length,
- Heap::kStringMapRootIndex,
- scratch1,
- scratch2);
-}
-
-
-void MacroAssembler::AllocateAsciiString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Label* gc_required) {
- ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
- // Calculate the number of bytes needed for the characters in the string while
- // observing object alignment.
- STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
- STATIC_ASSERT(kCharSize == 1);
- Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
- Bic(scratch1, scratch1, kObjectAlignmentMask);
-
- // Allocate ASCII string in new space.
- Allocate(scratch1,
- result,
- scratch2,
- scratch3,
- gc_required,
- TAG_OBJECT);
-
- // Set the map, length and hash field.
- InitializeNewString(result,
- length,
- Heap::kAsciiStringMapRootIndex,
- scratch1,
- scratch2);
-}
-
-
-void MacroAssembler::AllocateTwoByteConsString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required) {
- Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
- TAG_OBJECT);
-
- InitializeNewString(result,
- length,
- Heap::kConsStringMapRootIndex,
- scratch1,
- scratch2);
-}
-
-
-void MacroAssembler::AllocateAsciiConsString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required) {
- Label allocate_new_space, install_map;
- AllocationFlags flags = TAG_OBJECT;
-
- ExternalReference high_promotion_mode = ExternalReference::
- new_space_high_promotion_mode_active_address(isolate());
- Mov(scratch1, high_promotion_mode);
- Ldr(scratch1, MemOperand(scratch1));
- Cbz(scratch1, &allocate_new_space);
-
- Allocate(ConsString::kSize,
- result,
- scratch1,
- scratch2,
- gc_required,
- static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
-
- B(&install_map);
-
- Bind(&allocate_new_space);
- Allocate(ConsString::kSize,
- result,
- scratch1,
- scratch2,
- gc_required,
- flags);
-
- Bind(&install_map);
-
- InitializeNewString(result,
- length,
- Heap::kConsAsciiStringMapRootIndex,
- scratch1,
- scratch2);
-}
-
-
-void MacroAssembler::AllocateTwoByteSlicedString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required) {
- ASSERT(!AreAliased(result, length, scratch1, scratch2));
- Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
- TAG_OBJECT);
-
- InitializeNewString(result,
- length,
- Heap::kSlicedStringMapRootIndex,
- scratch1,
- scratch2);
-}
-
-
-void MacroAssembler::AllocateAsciiSlicedString(Register result,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* gc_required) {
- ASSERT(!AreAliased(result, length, scratch1, scratch2));
- Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
- TAG_OBJECT);
-
- InitializeNewString(result,
- length,
- Heap::kSlicedAsciiStringMapRootIndex,
- scratch1,
- scratch2);
-}
-
-
-// Allocates a heap number or jumps to the need_gc label if the young space
-// is full and a scavenge is needed.
-void MacroAssembler::AllocateHeapNumber(Register result,
- Label* gc_required,
- Register scratch1,
- Register scratch2,
- Register heap_number_map) {
- // Allocate an object in the heap for the heap number and tag it as a heap
- // object.
- Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
- TAG_OBJECT);
-
- // Store heap number map in the allocated object.
- if (heap_number_map.Is(NoReg)) {
- heap_number_map = scratch1;
- LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
- }
- AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
- Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
-}
-
-
-void MacroAssembler::AllocateHeapNumberWithValue(Register result,
- DoubleRegister value,
- Label* gc_required,
- Register scratch1,
- Register scratch2,
- Register heap_number_map) {
- // TODO(all): Check if it would be more efficient to use STP to store both
- // the map and the value.
- AllocateHeapNumber(result, gc_required, scratch1, scratch2, heap_number_map);
- Str(value, FieldMemOperand(result, HeapNumber::kValueOffset));
-}
-
-
-void MacroAssembler::JumpIfObjectType(Register object,
- Register map,
- Register type_reg,
- InstanceType type,
- Label* if_cond_pass,
- Condition cond) {
- CompareObjectType(object, map, type_reg, type);
- B(cond, if_cond_pass);
-}
-
-
-void MacroAssembler::JumpIfNotObjectType(Register object,
- Register map,
- Register type_reg,
- InstanceType type,
- Label* if_not_object) {
- JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
-}
-
-
-// Sets condition flags based on comparison, and returns type in type_reg.
-void MacroAssembler::CompareObjectType(Register object,
- Register map,
- Register type_reg,
- InstanceType type) {
- Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
- CompareInstanceType(map, type_reg, type);
-}
-
-
-// Sets condition flags based on comparison, and returns type in type_reg.
-void MacroAssembler::CompareInstanceType(Register map,
- Register type_reg,
- InstanceType type) {
- Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
- Cmp(type_reg, type);
-}
-
-
-void MacroAssembler::CompareMap(Register obj,
- Register scratch,
- Handle<Map> map) {
- Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
- CompareMap(scratch, map);
-}
-
-
-void MacroAssembler::CompareMap(Register obj_map,
- Handle<Map> map) {
- Cmp(obj_map, Operand(map));
-}
-
-
-void MacroAssembler::CheckMap(Register obj,
- Register scratch,
- Handle<Map> map,
- Label* fail,
- SmiCheckType smi_check_type) {
- if (smi_check_type == DO_SMI_CHECK) {
- JumpIfSmi(obj, fail);
- }
-
- CompareMap(obj, scratch, map);
- B(ne, fail);
-}
-
-
-void MacroAssembler::CheckMap(Register obj,
- Register scratch,
- Heap::RootListIndex index,
- Label* fail,
- SmiCheckType smi_check_type) {
- if (smi_check_type == DO_SMI_CHECK) {
- JumpIfSmi(obj, fail);
- }
- Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
- JumpIfNotRoot(scratch, index, fail);
-}
-
-
-void MacroAssembler::CheckMap(Register obj_map,
- Handle<Map> map,
- Label* fail,
- SmiCheckType smi_check_type) {
- if (smi_check_type == DO_SMI_CHECK) {
- JumpIfSmi(obj_map, fail);
- }
-
- CompareMap(obj_map, map);
- B(ne, fail);
-}
-
-
-void MacroAssembler::DispatchMap(Register obj,
- Register scratch,
- Handle<Map> map,
- Handle<Code> success,
- SmiCheckType smi_check_type) {
- Label fail;
- if (smi_check_type == DO_SMI_CHECK) {
- JumpIfSmi(obj, &fail);
- }
- Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
- Cmp(scratch, Operand(map));
- B(ne, &fail);
- Jump(success, RelocInfo::CODE_TARGET);
- Bind(&fail);
-}
-
-
-void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
- Tst(temp, mask);
-}
-
-
-void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
- // Load the map's "bit field 2".
- __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
- // Retrieve elements_kind from bit field 2.
- __ Ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
-}
-
-
-void MacroAssembler::TryGetFunctionPrototype(Register function,
- Register result,
- Register scratch,
- Label* miss,
- BoundFunctionAction action) {
- ASSERT(!AreAliased(function, result, scratch));
-
- // Check that the receiver isn't a smi.
- JumpIfSmi(function, miss);
-
- // Check that the function really is a function. Load map into result reg.
- JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
-
- if (action == kMissOnBoundFunction) {
- Register scratch_w = scratch.W();
- Ldr(scratch,
- FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
- // On 64-bit platforms, compiler hints field is not a smi. See definition of
- // kCompilerHintsOffset in src/objects.h.
- Ldr(scratch_w,
- FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
- Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
- }
-
- // Make sure that the function has an instance prototype.
- Label non_instance;
- Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
- Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
-
- // Get the prototype or initial map from the function.
- Ldr(result,
- FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
-
- // If the prototype or initial map is the hole, don't return it and simply
- // miss the cache instead. This will allow us to allocate a prototype object
- // on-demand in the runtime system.
- JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
-
- // If the function does not have an initial map, we're done.
- Label done;
- JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
-
- // Get the prototype from the initial map.
- Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
- B(&done);
-
- // Non-instance prototype: fetch prototype from constructor field in initial
- // map.
- Bind(&non_instance);
- Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
-
- // All done.
- Bind(&done);
-}
-
-
-void MacroAssembler::CompareRoot(const Register& obj,
- Heap::RootListIndex index) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- ASSERT(!AreAliased(obj, temp));
- LoadRoot(temp, index);
- Cmp(obj, temp);
-}
-
-
-void MacroAssembler::JumpIfRoot(const Register& obj,
- Heap::RootListIndex index,
- Label* if_equal) {
- CompareRoot(obj, index);
- B(eq, if_equal);
-}
-
-
-void MacroAssembler::JumpIfNotRoot(const Register& obj,
- Heap::RootListIndex index,
- Label* if_not_equal) {
- CompareRoot(obj, index);
- B(ne, if_not_equal);
-}
-
-
-void MacroAssembler::CompareAndSplit(const Register& lhs,
- const Operand& rhs,
- Condition cond,
- Label* if_true,
- Label* if_false,
- Label* fall_through) {
- if ((if_true == if_false) && (if_false == fall_through)) {
- // Fall through.
- } else if (if_true == if_false) {
- B(if_true);
- } else if (if_false == fall_through) {
- CompareAndBranch(lhs, rhs, cond, if_true);
- } else if (if_true == fall_through) {
- CompareAndBranch(lhs, rhs, InvertCondition(cond), if_false);
- } else {
- CompareAndBranch(lhs, rhs, cond, if_true);
- B(if_false);
- }
-}
-
-
-void MacroAssembler::TestAndSplit(const Register& reg,
- uint64_t bit_pattern,
- Label* if_all_clear,
- Label* if_any_set,
- Label* fall_through) {
- if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
- // Fall through.
- } else if (if_all_clear == if_any_set) {
- B(if_all_clear);
- } else if (if_all_clear == fall_through) {
- TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
- } else if (if_any_set == fall_through) {
- TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
- } else {
- TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
- B(if_all_clear);
- }
-}
-
-
-void MacroAssembler::CheckFastElements(Register map,
- Register scratch,
- Label* fail) {
- STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
- STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
- STATIC_ASSERT(FAST_ELEMENTS == 2);
- STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
- Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
- Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
- B(hi, fail);
-}
-
-
-void MacroAssembler::CheckFastObjectElements(Register map,
- Register scratch,
- Label* fail) {
- STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
- STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
- STATIC_ASSERT(FAST_ELEMENTS == 2);
- STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
- Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
- Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
- // If cond==ls, set cond=hi, otherwise compare.
- Ccmp(scratch,
- Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
- B(hi, fail);
-}
-
-
-// Note: The ARM version of this clobbers elements_reg, but this version does
-// not. Some uses of this in A64 assume that elements_reg will be preserved.
-void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
- Register key_reg,
- Register elements_reg,
- Register scratch1,
- FPRegister fpscratch1,
- FPRegister fpscratch2,
- Label* fail,
- int elements_offset) {
- ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
- Label store_num;
-
- // Speculatively convert the smi to a double - all smis can be exactly
- // represented as a double.
- SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
-
- // If value_reg is a smi, we're done.
- JumpIfSmi(value_reg, &store_num);
-
- // Ensure that the object is a heap number.
- CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(),
- fail, DONT_DO_SMI_CHECK);
-
- Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
- Fmov(fpscratch2, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
-
- // Check for NaN by comparing the number to itself: NaN comparison will
- // report unordered, indicated by the overflow flag being set.
- Fcmp(fpscratch1, fpscratch1);
- Fcsel(fpscratch1, fpscratch2, fpscratch1, vs);
-
- // Store the result.
- Bind(&store_num);
- Add(scratch1, elements_reg,
- Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
- Str(fpscratch1,
- FieldMemOperand(scratch1,
- FixedDoubleArray::kHeaderSize - elements_offset));
-}
-
-
-bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
- return has_frame_ || !stub->SometimesSetsUpAFrame();
-}
-
-
-void MacroAssembler::IndexFromHash(Register hash, Register index) {
- // If the hash field contains an array index pick it out. The assert checks
- // that the constants for the maximum number of digits for an array index
- // cached in the hash field and the number of bits reserved for it does not
- // conflict.
- ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
- (1 << String::kArrayIndexValueBits));
- // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
- // the low kHashShift bits.
- STATIC_ASSERT(kSmiTag == 0);
- Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
- SmiTag(index, hash);
-}
-
-
-void MacroAssembler::EmitSeqStringSetCharCheck(
- Register string,
- Register index,
- SeqStringSetCharCheckIndexType index_type,
- Register scratch,
- uint32_t encoding_mask) {
- ASSERT(!AreAliased(string, index, scratch));
-
- if (index_type == kIndexIsSmi) {
- AssertSmi(index);
- }
-
- // Check that string is an object.
- AssertNotSmi(string, kNonObject);
-
- // Check that string has an appropriate map.
- Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
- Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
-
- And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
- Cmp(scratch, encoding_mask);
- Check(eq, kUnexpectedStringType);
-
- Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
- Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
- Check(lt, kIndexIsTooLarge);
-
- ASSERT_EQ(0, Smi::FromInt(0));
- Cmp(index, 0);
- Check(ge, kIndexIsNegative);
-}
-
-
-void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
- Register scratch1,
- Register scratch2,
- Label* miss) {
- ASSERT(!AreAliased(holder_reg, scratch1, scratch2));
- Label same_contexts;
-
- // Load current lexical context from the stack frame.
- Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
- // In debug mode, make sure the lexical context is set.
-#ifdef DEBUG
- Cmp(scratch1, 0);
- Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
-#endif
-
- // Load the native context of the current context.
- int offset =
- Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
- Ldr(scratch1, FieldMemOperand(scratch1, offset));
- Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
-
- // Check the context is a native context.
- if (emit_debug_code()) {
- // Read the first word and compare to the global_context_map.
- Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
- CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
- Check(eq, kExpectedNativeContext);
- }
-
- // Check if both contexts are the same.
- Ldr(scratch2, FieldMemOperand(holder_reg,
- JSGlobalProxy::kNativeContextOffset));
- Cmp(scratch1, scratch2);
- B(&same_contexts, eq);
-
- // Check the context is a native context.
- if (emit_debug_code()) {
- // We're short on scratch registers here, so use holder_reg as a scratch.
- Push(holder_reg);
- Register scratch3 = holder_reg;
-
- CompareRoot(scratch2, Heap::kNullValueRootIndex);
- Check(ne, kExpectedNonNullContext);
-
- Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
- CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
- Check(eq, kExpectedNativeContext);
- Pop(holder_reg);
- }
-
- // Check that the security token in the calling global object is
- // compatible with the security token in the receiving global
- // object.
- int token_offset = Context::kHeaderSize +
- Context::SECURITY_TOKEN_INDEX * kPointerSize;
-
- Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
- Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
- Cmp(scratch1, scratch2);
- B(miss, ne);
-
- Bind(&same_contexts);
-}
-
-
-// Compute the hash code from the untagged key. This must be kept in sync with
-// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
-// code-stub-hydrogen.cc
-void MacroAssembler::GetNumberHash(Register key, Register scratch) {
- ASSERT(!AreAliased(key, scratch));
-
- // Xor original key with a seed.
- LoadRoot(scratch, Heap::kHashSeedRootIndex);
- Eor(key, key, Operand::UntagSmi(scratch));
-
- // The algorithm uses 32-bit integer values.
- key = key.W();
- scratch = scratch.W();
-
- // Compute the hash code from the untagged key. This must be kept in sync
- // with ComputeIntegerHash in utils.h.
- //
- // hash = ~hash + (hash <<1 15);
- Mvn(scratch, key);
- Add(key, scratch, Operand(key, LSL, 15));
- // hash = hash ^ (hash >> 12);
- Eor(key, key, Operand(key, LSR, 12));
- // hash = hash + (hash << 2);
- Add(key, key, Operand(key, LSL, 2));
- // hash = hash ^ (hash >> 4);
- Eor(key, key, Operand(key, LSR, 4));
- // hash = hash * 2057;
- Mov(scratch, Operand(key, LSL, 11));
- Add(key, key, Operand(key, LSL, 3));
- Add(key, key, scratch);
- // hash = hash ^ (hash >> 16);
- Eor(key, key, Operand(key, LSR, 16));
-}
-
-
-void MacroAssembler::LoadFromNumberDictionary(Label* miss,
- Register elements,
- Register key,
- Register result,
- Register scratch0,
- Register scratch1,
- Register scratch2,
- Register scratch3) {
- ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
-
- Label done;
-
- SmiUntag(scratch0, key);
- GetNumberHash(scratch0, scratch1);
-
- // Compute the capacity mask.
- Ldrsw(scratch1,
- UntagSmiFieldMemOperand(elements,
- SeededNumberDictionary::kCapacityOffset));
- Sub(scratch1, scratch1, 1);
-
- // Generate an unrolled loop that performs a few probes before giving up.
- for (int i = 0; i < kNumberDictionaryProbes; i++) {
- // Compute the masked index: (hash + i + i * i) & mask.
- if (i > 0) {
- Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
- } else {
- Mov(scratch2, scratch0);
- }
- And(scratch2, scratch2, scratch1);
-
- // Scale the index by multiplying by the element size.
- ASSERT(SeededNumberDictionary::kEntrySize == 3);
- Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
-
- // Check if the key is identical to the name.
- Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
- Ldr(scratch3,
- FieldMemOperand(scratch2,
- SeededNumberDictionary::kElementsStartOffset));
- Cmp(key, scratch3);
- if (i != (kNumberDictionaryProbes - 1)) {
- B(eq, &done);
- } else {
- B(ne, miss);
- }
- }
-
- Bind(&done);
- // Check that the value is a normal property.
- const int kDetailsOffset =
- SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
- Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
- TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
-
- // Get the value at the masked, scaled index and return.
- const int kValueOffset =
- SeededNumberDictionary::kElementsStartOffset + kPointerSize;
- Ldr(result, FieldMemOperand(scratch2, kValueOffset));
-}
-
-
-void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
- Register address,
- Register scratch1,
- SaveFPRegsMode fp_mode,
- RememberedSetFinalAction and_then) {
- ASSERT(!AreAliased(object, address, scratch1));
- Label done, store_buffer_overflow;
- if (emit_debug_code()) {
- Label ok;
- JumpIfNotInNewSpace(object, &ok);
- Abort(kRememberedSetPointerInNewSpace);
- bind(&ok);
- }
- UseScratchRegisterScope temps(this);
- Register scratch2 = temps.AcquireX();
-
- // Load store buffer top.
- Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
- Ldr(scratch1, MemOperand(scratch2));
- // Store pointer to buffer and increment buffer top.
- Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
- // Write back new top of buffer.
- Str(scratch1, MemOperand(scratch2));
- // Call stub on end of buffer.
- // Check for end of buffer.
- ASSERT(StoreBuffer::kStoreBufferOverflowBit ==
- (1 << (14 + kPointerSizeLog2)));
- if (and_then == kFallThroughAtEnd) {
- Tbz(scratch1, (14 + kPointerSizeLog2), &done);
- } else {
- ASSERT(and_then == kReturnAtEnd);
- Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
- Ret();
- }
-
- Bind(&store_buffer_overflow);
- Push(lr);
- StoreBufferOverflowStub store_buffer_overflow_stub =
- StoreBufferOverflowStub(fp_mode);
- CallStub(&store_buffer_overflow_stub);
- Pop(lr);
-
- Bind(&done);
- if (and_then == kReturnAtEnd) {
- Ret();
- }
-}
-
-
-void MacroAssembler::PopSafepointRegisters() {
- const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
- PopXRegList(kSafepointSavedRegisters);
- Drop(num_unsaved);
-}
-
-
-void MacroAssembler::PushSafepointRegisters() {
- // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
- // adjust the stack for unsaved registers.
- const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
- ASSERT(num_unsaved >= 0);
- Claim(num_unsaved);
- PushXRegList(kSafepointSavedRegisters);
-}
-
-
-void MacroAssembler::PushSafepointFPRegisters() {
- PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
- FPRegister::kAllocatableFPRegisters));
-}
-
-
-void MacroAssembler::PopSafepointFPRegisters() {
- PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
- FPRegister::kAllocatableFPRegisters));
-}
-
-
-int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
- // Make sure the safepoint registers list is what we expect.
- ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
-
- // Safepoint registers are stored contiguously on the stack, but not all the
- // registers are saved. The following registers are excluded:
- // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
- // the macro assembler.
- // - x28 (jssp) because JS stack pointer doesn't need to be included in
- // safepoint registers.
- // - x31 (csp) because the system stack pointer doesn't need to be included
- // in safepoint registers.
- //
- // This function implements the mapping of register code to index into the
- // safepoint register slots.
- if ((reg_code >= 0) && (reg_code <= 15)) {
- return reg_code;
- } else if ((reg_code >= 18) && (reg_code <= 27)) {
- // Skip ip0 and ip1.
- return reg_code - 2;
- } else if ((reg_code == 29) || (reg_code == 30)) {
- // Also skip jssp.
- return reg_code - 3;
- } else {
- // This register has no safepoint register slot.
- UNREACHABLE();
- return -1;
- }
-}
-
-
-void MacroAssembler::CheckPageFlagSet(const Register& object,
- const Register& scratch,
- int mask,
- Label* if_any_set) {
- And(scratch, object, ~Page::kPageAlignmentMask);
- Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
- TestAndBranchIfAnySet(scratch, mask, if_any_set);
-}
-
-
-void MacroAssembler::CheckPageFlagClear(const Register& object,
- const Register& scratch,
- int mask,
- Label* if_all_clear) {
- And(scratch, object, ~Page::kPageAlignmentMask);
- Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
- TestAndBranchIfAllClear(scratch, mask, if_all_clear);
-}
-
-
-void MacroAssembler::RecordWriteField(
- Register object,
- int offset,
- Register value,
- Register scratch,
- LinkRegisterStatus lr_status,
- SaveFPRegsMode save_fp,
- RememberedSetAction remembered_set_action,
- SmiCheck smi_check) {
- // First, check if a write barrier is even needed. The tests below
- // catch stores of Smis.
- Label done;
-
- // Skip the barrier if writing a smi.
- if (smi_check == INLINE_SMI_CHECK) {
- JumpIfSmi(value, &done);
- }
-
- // Although the object register is tagged, the offset is relative to the start
- // of the object, so offset must be a multiple of kPointerSize.
- ASSERT(IsAligned(offset, kPointerSize));
-
- Add(scratch, object, offset - kHeapObjectTag);
- if (emit_debug_code()) {
- Label ok;
- Tst(scratch, (1 << kPointerSizeLog2) - 1);
- B(eq, &ok);
- Abort(kUnalignedCellInWriteBarrier);
- Bind(&ok);
- }
-
- RecordWrite(object,
- scratch,
- value,
- lr_status,
- save_fp,
- remembered_set_action,
- OMIT_SMI_CHECK);
-
- Bind(&done);
-
- // Clobber clobbered input registers when running with the debug-code flag
- // turned on to provoke errors.
- if (emit_debug_code()) {
- Mov(value, Operand(BitCast<int64_t>(kZapValue + 4)));
- Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8)));
- }
-}
-
-
-// Will clobber: object, address, value.
-// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
-//
-// The register 'object' contains a heap object pointer. The heap object tag is
-// shifted away.
-void MacroAssembler::RecordWrite(Register object,
- Register address,
- Register value,
- LinkRegisterStatus lr_status,
- SaveFPRegsMode fp_mode,
- RememberedSetAction remembered_set_action,
- SmiCheck smi_check) {
- ASM_LOCATION("MacroAssembler::RecordWrite");
- ASSERT(!AreAliased(object, value));
-
- if (emit_debug_code()) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
-
- Ldr(temp, MemOperand(address));
- Cmp(temp, value);
- Check(eq, kWrongAddressOrValuePassedToRecordWrite);
- }
-
- // Count number of write barriers in generated code.
- isolate()->counters()->write_barriers_static()->Increment();
- // TODO(mstarzinger): Dynamic counter missing.
-
- // First, check if a write barrier is even needed. The tests below
- // catch stores of smis and stores into the young generation.
- Label done;
-
- if (smi_check == INLINE_SMI_CHECK) {
- ASSERT_EQ(0, kSmiTag);
- JumpIfSmi(value, &done);
- }
-
- CheckPageFlagClear(value,
- value, // Used as scratch.
- MemoryChunk::kPointersToHereAreInterestingMask,
- &done);
- CheckPageFlagClear(object,
- value, // Used as scratch.
- MemoryChunk::kPointersFromHereAreInterestingMask,
- &done);
-
- // Record the actual write.
- if (lr_status == kLRHasNotBeenSaved) {
- Push(lr);
- }
- RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
- CallStub(&stub);
- if (lr_status == kLRHasNotBeenSaved) {
- Pop(lr);
- }
-
- Bind(&done);
-
- // Clobber clobbered registers when running with the debug-code flag
- // turned on to provoke errors.
- if (emit_debug_code()) {
- Mov(address, Operand(BitCast<int64_t>(kZapValue + 12)));
- Mov(value, Operand(BitCast<int64_t>(kZapValue + 16)));
- }
-}
-
-
-void MacroAssembler::AssertHasValidColor(const Register& reg) {
- if (emit_debug_code()) {
- // The bit sequence is backward. The first character in the string
- // represents the least significant bit.
- ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
-
- Label color_is_valid;
- Tbnz(reg, 0, &color_is_valid);
- Tbz(reg, 1, &color_is_valid);
- Abort(kUnexpectedColorFound);
- Bind(&color_is_valid);
- }
-}
-
-
-void MacroAssembler::GetMarkBits(Register addr_reg,
- Register bitmap_reg,
- Register shift_reg) {
- ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg));
- ASSERT(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
- // addr_reg is divided into fields:
- // |63 page base 20|19 high 8|7 shift 3|2 0|
- // 'high' gives the index of the cell holding color bits for the object.
- // 'shift' gives the offset in the cell for this object's color.
- const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
- Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
- Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
- // bitmap_reg:
- // |63 page base 20|19 zeros 15|14 high 3|2 0|
- Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
-}
-
-
-void MacroAssembler::HasColor(Register object,
- Register bitmap_scratch,
- Register shift_scratch,
- Label* has_color,
- int first_bit,
- int second_bit) {
- // See mark-compact.h for color definitions.
- ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch));
-
- GetMarkBits(object, bitmap_scratch, shift_scratch);
- Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
- // Shift the bitmap down to get the color of the object in bits [1:0].
- Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
-
- AssertHasValidColor(bitmap_scratch);
-
- // These bit sequences are backwards. The first character in the string
- // represents the least significant bit.
- ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
- ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
- ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
-
- // Check for the color.
- if (first_bit == 0) {
- // Checking for white.
- ASSERT(second_bit == 0);
- // We only need to test the first bit.
- Tbz(bitmap_scratch, 0, has_color);
- } else {
- Label other_color;
- // Checking for grey or black.
- Tbz(bitmap_scratch, 0, &other_color);
- if (second_bit == 0) {
- Tbz(bitmap_scratch, 1, has_color);
- } else {
- Tbnz(bitmap_scratch, 1, has_color);
- }
- Bind(&other_color);
- }
-
- // Fall through if it does not have the right color.
-}
-
-
-void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
- Register scratch,
- Label* if_deprecated) {
- if (map->CanBeDeprecated()) {
- Mov(scratch, Operand(map));
- Ldrsw(scratch, UntagSmiFieldMemOperand(scratch, Map::kBitField3Offset));
- TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
- }
-}
-
-
-void MacroAssembler::JumpIfBlack(Register object,
- Register scratch0,
- Register scratch1,
- Label* on_black) {
- ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
- HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
-}
-
-
-void MacroAssembler::JumpIfDictionaryInPrototypeChain(
- Register object,
- Register scratch0,
- Register scratch1,
- Label* found) {
- ASSERT(!AreAliased(object, scratch0, scratch1));
- Factory* factory = isolate()->factory();
- Register current = scratch0;
- Label loop_again;
-
- // Scratch contains elements pointer.
- Mov(current, object);
-
- // Loop based on the map going up the prototype chain.
- Bind(&loop_again);
- Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
- Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
- Ubfx(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount);
- CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
- Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
- CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
-}
-
-
-void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
- Register result) {
- ASSERT(!result.Is(ldr_location));
- const uint32_t kLdrLitOffset_lsb = 5;
- const uint32_t kLdrLitOffset_width = 19;
- Ldr(result, MemOperand(ldr_location));
- if (emit_debug_code()) {
- And(result, result, LoadLiteralFMask);
- Cmp(result, LoadLiteralFixed);
- Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
- // The instruction was clobbered. Reload it.
- Ldr(result, MemOperand(ldr_location));
- }
- Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
- Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
-}
-
-
-void MacroAssembler::EnsureNotWhite(
- Register value,
- Register bitmap_scratch,
- Register shift_scratch,
- Register load_scratch,
- Register length_scratch,
- Label* value_is_white_and_not_data) {
- ASSERT(!AreAliased(
- value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
-
- // These bit sequences are backwards. The first character in the string
- // represents the least significant bit.
- ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
- ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
- ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
-
- GetMarkBits(value, bitmap_scratch, shift_scratch);
- Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
- Lsr(load_scratch, load_scratch, shift_scratch);
-
- AssertHasValidColor(load_scratch);
-
- // If the value is black or grey we don't need to do anything.
- // Since both black and grey have a 1 in the first position and white does
- // not have a 1 there we only need to check one bit.
- Label done;
- Tbnz(load_scratch, 0, &done);
-
- // Value is white. We check whether it is data that doesn't need scanning.
- Register map = load_scratch; // Holds map while checking type.
- Label is_data_object;
-
- // Check for heap-number.
- Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
- Mov(length_scratch, HeapNumber::kSize);
- JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
-
- // Check for strings.
- ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
- ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
- // If it's a string and it's not a cons string then it's an object containing
- // no GC pointers.
- Register instance_type = load_scratch;
- Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
- TestAndBranchIfAnySet(instance_type,
- kIsIndirectStringMask | kIsNotStringMask,
- value_is_white_and_not_data);
-
- // It's a non-indirect (non-cons and non-slice) string.
- // If it's external, the length is just ExternalString::kSize.
- // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
- // External strings are the only ones with the kExternalStringTag bit
- // set.
- ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
- ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
- Mov(length_scratch, ExternalString::kSize);
- TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
-
- // Sequential string, either ASCII or UC16.
- // For ASCII (char-size of 1) we shift the smi tag away to get the length.
- // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
- // getting the length multiplied by 2.
- ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
- Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
- String::kLengthOffset));
- Tst(instance_type, kStringEncodingMask);
- Cset(load_scratch, eq);
- Lsl(length_scratch, length_scratch, load_scratch);
- Add(length_scratch,
- length_scratch,
- SeqString::kHeaderSize + kObjectAlignmentMask);
- Bic(length_scratch, length_scratch, kObjectAlignmentMask);
-
- Bind(&is_data_object);
- // Value is a data object, and it is white. Mark it black. Since we know
- // that the object is white we can make it black by flipping one bit.
- Register mask = shift_scratch;
- Mov(load_scratch, 1);
- Lsl(mask, load_scratch, shift_scratch);
-
- Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
- Orr(load_scratch, load_scratch, mask);
- Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
-
- Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
- Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
- Add(load_scratch, load_scratch, length_scratch);
- Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
-
- Bind(&done);
-}
-
-
-void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
- if (emit_debug_code()) {
- Check(cond, reason);
- }
-}
-
-
-
-void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
- if (emit_debug_code()) {
- CheckRegisterIsClear(reg, reason);
- }
-}
-
-
-void MacroAssembler::AssertRegisterIsRoot(Register reg,
- Heap::RootListIndex index,
- BailoutReason reason) {
- if (emit_debug_code()) {
- CompareRoot(reg, index);
- Check(eq, reason);
- }
-}
-
-
-void MacroAssembler::AssertFastElements(Register elements) {
- if (emit_debug_code()) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- Label ok;
- Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
- JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
- JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
- JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
- Abort(kJSObjectWithFastElementsMapHasSlowElements);
- Bind(&ok);
- }
-}
-
-
-void MacroAssembler::AssertIsString(const Register& object) {
- if (emit_debug_code()) {
- UseScratchRegisterScope temps(this);
- Register temp = temps.AcquireX();
- STATIC_ASSERT(kSmiTag == 0);
- Tst(object, kSmiTagMask);
- Check(ne, kOperandIsNotAString);
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
- CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
- Check(lo, kOperandIsNotAString);
- }
-}
-
-
-void MacroAssembler::Check(Condition cond, BailoutReason reason) {
- Label ok;
- B(cond, &ok);
- Abort(reason);
- // Will not return here.
- Bind(&ok);
-}
-
-
-void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
- Label ok;
- Cbz(reg, &ok);
- Abort(reason);
- // Will not return here.
- Bind(&ok);
-}
-
-
-void MacroAssembler::Abort(BailoutReason reason) {
-#ifdef DEBUG
- RecordComment("Abort message: ");
- RecordComment(GetBailoutReason(reason));
-
- if (FLAG_trap_on_abort) {
- Brk(0);
- return;
- }
-#endif
-
- // Abort is used in some contexts where csp is the stack pointer. In order to
- // simplify the CallRuntime code, make sure that jssp is the stack pointer.
- // There is no risk of register corruption here because Abort doesn't return.
- Register old_stack_pointer = StackPointer();
- SetStackPointer(jssp);
- Mov(jssp, old_stack_pointer);
-
- // We need some scratch registers for the MacroAssembler, so make sure we have
- // some. This is safe here because Abort never returns.
- RegList old_tmp_list = TmpList()->list();
- TmpList()->Combine(ip0);
- TmpList()->Combine(ip1);
-
- if (use_real_aborts()) {
- // Avoid infinite recursion; Push contains some assertions that use Abort.
- NoUseRealAbortsScope no_real_aborts(this);
-
- Mov(x0, Smi::FromInt(reason));
- Push(x0);
-
- if (!has_frame_) {
- // We don't actually want to generate a pile of code for this, so just
- // claim there is a stack frame, without generating one.
- FrameScope scope(this, StackFrame::NONE);
- CallRuntime(Runtime::kAbort, 1);
- } else {
- CallRuntime(Runtime::kAbort, 1);
- }
- } else {
- // Load the string to pass to Printf.
- Label msg_address;
- Adr(x0, &msg_address);
-
- // Call Printf directly to report the error.
- CallPrintf();
-
- // We need a way to stop execution on both the simulator and real hardware,
- // and Unreachable() is the best option.
- Unreachable();
-
- // Emit the message string directly in the instruction stream.
- {
- BlockPoolsScope scope(this);
- Bind(&msg_address);
- EmitStringData(GetBailoutReason(reason));
- }
- }
-
- SetStackPointer(old_stack_pointer);
- TmpList()->set_list(old_tmp_list);
-}
-
-
-void MacroAssembler::LoadTransitionedArrayMapConditional(
- ElementsKind expected_kind,
- ElementsKind transitioned_kind,
- Register map_in_out,
- Register scratch1,
- Register scratch2,
- Label* no_map_match) {
- // Load the global or builtins object from the current context.
- Ldr(scratch1, GlobalObjectMemOperand());
- Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
-
- // Check that the function's map is the same as the expected cached map.
- Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
- size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
- Ldr(scratch2, FieldMemOperand(scratch1, offset));
- Cmp(map_in_out, scratch2);
- B(ne, no_map_match);
-
- // Use the transitioned cached map.
- offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
- Ldr(map_in_out, FieldMemOperand(scratch1, offset));
-}
-
-
-void MacroAssembler::LoadGlobalFunction(int index, Register function) {
- // Load the global or builtins object from the current context.
- Ldr(function, GlobalObjectMemOperand());
- // Load the native context from the global or builtins object.
- Ldr(function, FieldMemOperand(function,
- GlobalObject::kNativeContextOffset));
- // Load the function from the native context.
- Ldr(function, ContextMemOperand(function, index));
-}
-
-
-void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
- Register map,
- Register scratch) {
- // Load the initial map. The global functions all have initial maps.
- Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
- if (emit_debug_code()) {
- Label ok, fail;
- CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
- B(&ok);
- Bind(&fail);
- Abort(kGlobalFunctionsMustHaveInitialMap);
- Bind(&ok);
- }
-}
-
-
-// This is the main Printf implementation. All other Printf variants call
-// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
-void MacroAssembler::PrintfNoPreserve(const char * format,
- const CPURegister& arg0,
- const CPURegister& arg1,
- const CPURegister& arg2,
- const CPURegister& arg3) {
- // We cannot handle a caller-saved stack pointer. It doesn't make much sense
- // in most cases anyway, so this restriction shouldn't be too serious.
- ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
-
- // Make sure that the macro assembler doesn't try to use any of our arguments
- // as scratch registers.
- ASSERT(!TmpList()->IncludesAliasOf(arg0, arg1, arg2, arg3));
- ASSERT(!FPTmpList()->IncludesAliasOf(arg0, arg1, arg2, arg3));
-
- // We cannot print the stack pointer because it is typically used to preserve
- // caller-saved registers (using other Printf variants which depend on this
- // helper).
- ASSERT(!AreAliased(arg0, StackPointer()));
- ASSERT(!AreAliased(arg1, StackPointer()));
- ASSERT(!AreAliased(arg2, StackPointer()));
- ASSERT(!AreAliased(arg3, StackPointer()));
-
- static const int kMaxArgCount = 4;
- // Assume that we have the maximum number of arguments until we know
- // otherwise.
- int arg_count = kMaxArgCount;
-
- // The provided arguments.
- CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3};
-
- // The PCS registers where the arguments need to end up.
- CPURegister pcs[kMaxArgCount] = {NoCPUReg, NoCPUReg, NoCPUReg, NoCPUReg};
-
- // Promote FP arguments to doubles, and integer arguments to X registers.
- // Note that FP and integer arguments cannot be mixed, but we'll check
- // AreSameSizeAndType once we've processed these promotions.
- for (int i = 0; i < kMaxArgCount; i++) {
- if (args[i].IsRegister()) {
- // Note that we use x1 onwards, because x0 will hold the format string.
- pcs[i] = Register::XRegFromCode(i + 1);
- // For simplicity, we handle all integer arguments as X registers. An X
- // register argument takes the same space as a W register argument in the
- // PCS anyway. The only limitation is that we must explicitly clear the
- // top word for W register arguments as the callee will expect it to be
- // clear.
- if (!args[i].Is64Bits()) {
- const Register& as_x = args[i].X();
- And(as_x, as_x, 0x00000000ffffffff);
- args[i] = as_x;
- }
- } else if (args[i].IsFPRegister()) {
- pcs[i] = FPRegister::DRegFromCode(i);
- // C and C++ varargs functions (such as printf) implicitly promote float
- // arguments to doubles.
- if (!args[i].Is64Bits()) {
- FPRegister s(args[i]);
- const FPRegister& as_d = args[i].D();
- Fcvt(as_d, s);
- args[i] = as_d;
- }
- } else {
- // This is the first empty (NoCPUReg) argument, so use it to set the
- // argument count and bail out.
- arg_count = i;
- break;
- }
- }
- ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount));
- // Check that every remaining argument is NoCPUReg.
- for (int i = arg_count; i < kMaxArgCount; i++) {
- ASSERT(args[i].IsNone());
- }
- ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1],
- args[2], args[3],
- pcs[0], pcs[1],
- pcs[2], pcs[3]));
-
- // Move the arguments into the appropriate PCS registers.
- //
- // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is
- // surprisingly complicated.
- //
- // * For even numbers of registers, we push the arguments and then pop them
- // into their final registers. This maintains 16-byte stack alignment in
- // case csp is the stack pointer, since we're only handling X or D
- // registers at this point.
- //
- // * For odd numbers of registers, we push and pop all but one register in
- // the same way, but the left-over register is moved directly, since we
- // can always safely move one register without clobbering any source.
- if (arg_count >= 4) {
- Push(args[3], args[2], args[1], args[0]);
- } else if (arg_count >= 2) {
- Push(args[1], args[0]);
- }
-
- if ((arg_count % 2) != 0) {
- // Move the left-over register directly.
- const CPURegister& leftover_arg = args[arg_count - 1];
- const CPURegister& leftover_pcs = pcs[arg_count - 1];
- if (leftover_arg.IsRegister()) {
- Mov(Register(leftover_pcs), Register(leftover_arg));
- } else {
- Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg));
- }
- }
-
- if (arg_count >= 4) {
- Pop(pcs[0], pcs[1], pcs[2], pcs[3]);
- } else if (arg_count >= 2) {
- Pop(pcs[0], pcs[1]);
- }
-
- // Load the format string into x0, as per the procedure-call standard.
- //
- // To make the code as portable as possible, the format string is encoded
- // directly in the instruction stream. It might be cleaner to encode it in a
- // literal pool, but since Printf is usually used for debugging, it is
- // beneficial for it to be minimally dependent on other features.
- Label format_address;
- Adr(x0, &format_address);
-
- // Emit the format string directly in the instruction stream.
- { BlockPoolsScope scope(this);
- Label after_data;
- B(&after_data);
- Bind(&format_address);
- EmitStringData(format);
- Unreachable();
- Bind(&after_data);
- }
-
- // We don't pass any arguments on the stack, but we still need to align the C
- // stack pointer to a 16-byte boundary for PCS compliance.
- if (!csp.Is(StackPointer())) {
- Bic(csp, StackPointer(), 0xf);
- }
-
- CallPrintf(pcs[0].type());
-}
-
-
-void MacroAssembler::CallPrintf(CPURegister::RegisterType type) {
- // A call to printf needs special handling for the simulator, since the system
- // printf function will use a different instruction set and the procedure-call
- // standard will not be compatible.
-#ifdef USE_SIMULATOR
- { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
- hlt(kImmExceptionIsPrintf);
- dc32(type);
- }
-#else
- Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
-#endif
-}
-
-
-void MacroAssembler::Printf(const char * format,
- const CPURegister& arg0,
- const CPURegister& arg1,
- const CPURegister& arg2,
- const CPURegister& arg3) {
- // Printf is expected to preserve all registers, so make sure that none are
- // available as scratch registers until we've preserved them.
- RegList old_tmp_list = TmpList()->list();
- RegList old_fp_tmp_list = FPTmpList()->list();
- TmpList()->set_list(0);
- FPTmpList()->set_list(0);
-
- // Preserve all caller-saved registers as well as NZCV.
- // If csp is the stack pointer, PushCPURegList asserts that the size of each
- // list is a multiple of 16 bytes.
- PushCPURegList(kCallerSaved);
- PushCPURegList(kCallerSavedFP);
-
- // We can use caller-saved registers as scratch values (except for argN).
- CPURegList tmp_list = kCallerSaved;
- CPURegList fp_tmp_list = kCallerSavedFP;
- tmp_list.Remove(arg0, arg1, arg2, arg3);
- fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
- TmpList()->set_list(tmp_list.list());
- FPTmpList()->set_list(fp_tmp_list.list());
-
- // Preserve NZCV.
- { UseScratchRegisterScope temps(this);
- Register tmp = temps.AcquireX();
- Mrs(tmp, NZCV);
- Push(tmp, xzr);
- }
-
- PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
-
- { UseScratchRegisterScope temps(this);
- Register tmp = temps.AcquireX();
- Pop(xzr, tmp);
- Msr(NZCV, tmp);
- }
-
- PopCPURegList(kCallerSavedFP);
- PopCPURegList(kCallerSaved);
-
- TmpList()->set_list(old_tmp_list);
- FPTmpList()->set_list(old_fp_tmp_list);
-}
-
-
-void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
- // TODO(jbramley): Other architectures use the internal memcpy to copy the
- // sequence. If this is a performance bottleneck, we should consider caching
- // the sequence and copying it in the same way.
- InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
- ASSERT(jssp.Is(StackPointer()));
- EmitFrameSetupForCodeAgePatching(this);
-}
-
-
-
-void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
- InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize);
- ASSERT(jssp.Is(StackPointer()));
- EmitCodeAgeSequence(this, stub);
-}
-
-
-#undef __
-#define __ assm->
-
-
-void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
- Label start;
- __ bind(&start);
-
- // We can do this sequence using four instructions, but the code ageing
- // sequence that patches it needs five, so we use the extra space to try to
- // simplify some addressing modes and remove some dependencies (compared to
- // using two stp instructions with write-back).
- __ sub(jssp, jssp, 4 * kXRegSize);
- __ sub(csp, csp, 4 * kXRegSize);
- __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
- __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
- __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
-
- __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
-}
-
-
-void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
- Code * stub) {
- Label start;
- __ bind(&start);
- // When the stub is called, the sequence is replaced with the young sequence
- // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
- // stub jumps to &start, stored in x0. The young sequence does not call the
- // stub so there is no infinite loop here.
- //
- // A branch (br) is used rather than a call (blr) because this code replaces
- // the frame setup code that would normally preserve lr.
- __ LoadLiteral(ip0, kCodeAgeStubEntryOffset);
- __ adr(x0, &start);
- __ br(ip0);
- // IsCodeAgeSequence in codegen-a64.cc assumes that the code generated up
- // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
- __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
- if (stub) {
- __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
- __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize);
- }
-}
-
-
-bool MacroAssembler::IsYoungSequence(byte* sequence) {
- // Generate a young sequence to compare with.
- const int length = kCodeAgeSequenceSize / kInstructionSize;
- static bool initialized = false;
- static byte young[kCodeAgeSequenceSize];
- if (!initialized) {
- PatchingAssembler patcher(young, length);
- // The young sequence is the frame setup code for FUNCTION code types. It is
- // generated by FullCodeGenerator::Generate.
- MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
- initialized = true;
- }
-
- bool is_young = (memcmp(sequence, young, kCodeAgeSequenceSize) == 0);
- ASSERT(is_young || IsCodeAgeSequence(sequence));
- return is_young;
-}
-
-
-#ifdef DEBUG
-bool MacroAssembler::IsCodeAgeSequence(byte* sequence) {
- // The old sequence varies depending on the code age. However, the code up
- // until kCodeAgeStubEntryOffset does not change, so we can check that part to
- // get a reasonable level of verification.
- const int length = kCodeAgeStubEntryOffset / kInstructionSize;
- static bool initialized = false;
- static byte old[kCodeAgeStubEntryOffset];
- if (!initialized) {
- PatchingAssembler patcher(old, length);
- MacroAssembler::EmitCodeAgeSequence(&patcher, NULL);
- initialized = true;
- }
- return memcmp(sequence, old, kCodeAgeStubEntryOffset) == 0;
-}
-#endif
-
-
-void MacroAssembler::TruncatingDiv(Register result,
- Register dividend,
- int32_t divisor) {
- ASSERT(!AreAliased(result, dividend));
- ASSERT(result.Is32Bits() && dividend.Is32Bits());
- MultiplierAndShift ms(divisor);
- Mov(result, ms.multiplier());
- Smull(result.X(), dividend, result);
- Asr(result.X(), result.X(), 32);
- if (divisor > 0 && ms.multiplier() < 0) Add(result, result, dividend);
- if (divisor < 0 && ms.multiplier() > 0) Sub(result, result, dividend);
- if (ms.shift() > 0) Asr(result, result, ms.shift());
- Add(result, result, Operand(dividend, LSR, 31));
-}
-
-
-#undef __
-
-
-UseScratchRegisterScope::~UseScratchRegisterScope() {
- available_->set_list(old_available_);
- availablefp_->set_list(old_availablefp_);
-}
-
-
-Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
- int code = AcquireNextAvailable(available_).code();
- return Register::Create(code, reg.SizeInBits());
-}
-
-
-FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
- int code = AcquireNextAvailable(availablefp_).code();
- return FPRegister::Create(code, reg.SizeInBits());
-}
-
-
-CPURegister UseScratchRegisterScope::AcquireNextAvailable(
- CPURegList* available) {
- CHECK(!available->IsEmpty());
- CPURegister result = available->PopLowestIndex();
- ASSERT(!AreAliased(result, xzr, csp));
- return result;
-}
-
-
-#define __ masm->
-
-
-void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
- const Label* smi_check) {
- Assembler::BlockPoolsScope scope(masm);
- if (reg.IsValid()) {
- ASSERT(smi_check->is_bound());
- ASSERT(reg.Is64Bits());
-
- // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
- // 'check' in the other bits. The possible offset is limited in that we
- // use BitField to pack the data, and the underlying data type is a
- // uint32_t.
- uint32_t delta = __ InstructionsGeneratedSince(smi_check);
- __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
- } else {
- ASSERT(!smi_check->is_bound());
-
- // An offset of 0 indicates that there is no patch site.
- __ InlineData(0);
- }
-}
-
-
-InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
- : reg_(NoReg), smi_check_(NULL) {
- InstructionSequence* inline_data = InstructionSequence::At(info);
- ASSERT(inline_data->IsInlineData());
- if (inline_data->IsInlineData()) {
- uint64_t payload = inline_data->InlineData();
- // We use BitField to decode the payload, and BitField can only handle
- // 32-bit values.
- ASSERT(is_uint32(payload));
- if (payload != 0) {
- int reg_code = RegisterBits::decode(payload);
- reg_ = Register::XRegFromCode(reg_code);
- uint64_t smi_check_delta = DeltaBits::decode(payload);
- ASSERT(smi_check_delta != 0);
- smi_check_ = inline_data->preceding(smi_check_delta);
- }
- }
-}
-
-
-#undef __
-
-
-} } // namespace v8::internal
-
-#endif // V8_TARGET_ARCH_A64
« no previous file with comments | « src/a64/macro-assembler-a64.h ('k') | src/a64/macro-assembler-a64-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698