Index: src/a64/macro-assembler-a64.cc |
diff --git a/src/a64/macro-assembler-a64.cc b/src/a64/macro-assembler-a64.cc |
deleted file mode 100644 |
index 851f10aba83fcec7687e21c62ca6a86646246bbd..0000000000000000000000000000000000000000 |
--- a/src/a64/macro-assembler-a64.cc |
+++ /dev/null |
@@ -1,5171 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following |
-// disclaimer in the documentation and/or other materials provided |
-// with the distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived |
-// from this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-#include "v8.h" |
- |
-#if V8_TARGET_ARCH_A64 |
- |
-#include "bootstrapper.h" |
-#include "codegen.h" |
-#include "cpu-profiler.h" |
-#include "debug.h" |
-#include "isolate-inl.h" |
-#include "runtime.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros. |
-#define __ |
- |
- |
-MacroAssembler::MacroAssembler(Isolate* arg_isolate, |
- byte * buffer, |
- unsigned buffer_size) |
- : Assembler(arg_isolate, buffer, buffer_size), |
- generating_stub_(false), |
-#if DEBUG |
- allow_macro_instructions_(true), |
-#endif |
- has_frame_(false), |
- use_real_aborts_(true), |
- sp_(jssp), tmp_list_(ip0, ip1), fptmp_list_(fp_scratch) { |
- if (isolate() != NULL) { |
- code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), |
- isolate()); |
- } |
-} |
- |
- |
-void MacroAssembler::LogicalMacro(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- LogicalOp op) { |
- UseScratchRegisterScope temps(this); |
- |
- if (operand.NeedsRelocation()) { |
- Register temp = temps.AcquireX(); |
- LoadRelocated(temp, operand); |
- Logical(rd, rn, temp, op); |
- |
- } else if (operand.IsImmediate()) { |
- int64_t immediate = operand.immediate(); |
- unsigned reg_size = rd.SizeInBits(); |
- ASSERT(rd.Is64Bits() || is_uint32(immediate)); |
- |
- // If the operation is NOT, invert the operation and immediate. |
- if ((op & NOT) == NOT) { |
- op = static_cast<LogicalOp>(op & ~NOT); |
- immediate = ~immediate; |
- if (rd.Is32Bits()) { |
- immediate &= kWRegMask; |
- } |
- } |
- |
- // Special cases for all set or all clear immediates. |
- if (immediate == 0) { |
- switch (op) { |
- case AND: |
- Mov(rd, 0); |
- return; |
- case ORR: // Fall through. |
- case EOR: |
- Mov(rd, rn); |
- return; |
- case ANDS: // Fall through. |
- case BICS: |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- } else if ((rd.Is64Bits() && (immediate == -1L)) || |
- (rd.Is32Bits() && (immediate == 0xffffffffL))) { |
- switch (op) { |
- case AND: |
- Mov(rd, rn); |
- return; |
- case ORR: |
- Mov(rd, immediate); |
- return; |
- case EOR: |
- Mvn(rd, rn); |
- return; |
- case ANDS: // Fall through. |
- case BICS: |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- } |
- |
- unsigned n, imm_s, imm_r; |
- if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { |
- // Immediate can be encoded in the instruction. |
- LogicalImmediate(rd, rn, n, imm_s, imm_r, op); |
- } else { |
- // Immediate can't be encoded: synthesize using move immediate. |
- Register temp = temps.AcquireSameSizeAs(rn); |
- Mov(temp, immediate); |
- if (rd.Is(csp)) { |
- // If rd is the stack pointer we cannot use it as the destination |
- // register so we use the temp register as an intermediate again. |
- Logical(temp, rn, temp, op); |
- Mov(csp, temp); |
- } else { |
- Logical(rd, rn, temp, op); |
- } |
- } |
- |
- } else if (operand.IsExtendedRegister()) { |
- ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits()); |
- // Add/sub extended supports shift <= 4. We want to support exactly the |
- // same modes here. |
- ASSERT(operand.shift_amount() <= 4); |
- ASSERT(operand.reg().Is64Bits() || |
- ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- EmitExtendShift(temp, operand.reg(), operand.extend(), |
- operand.shift_amount()); |
- Logical(rd, rn, temp, op); |
- |
- } else { |
- // The operand can be encoded in the instruction. |
- ASSERT(operand.IsShiftedRegister()); |
- Logical(rd, rn, operand, op); |
- } |
-} |
- |
- |
-void MacroAssembler::Mov(const Register& rd, uint64_t imm) { |
- ASSERT(allow_macro_instructions_); |
- ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits()); |
- ASSERT(!rd.IsZero()); |
- |
- // TODO(all) extend to support more immediates. |
- // |
- // Immediates on Aarch64 can be produced using an initial value, and zero to |
- // three move keep operations. |
- // |
- // Initial values can be generated with: |
- // 1. 64-bit move zero (movz). |
- // 2. 32-bit move inverted (movn). |
- // 3. 64-bit move inverted. |
- // 4. 32-bit orr immediate. |
- // 5. 64-bit orr immediate. |
- // Move-keep may then be used to modify each of the 16-bit half-words. |
- // |
- // The code below supports all five initial value generators, and |
- // applying move-keep operations to move-zero and move-inverted initial |
- // values. |
- |
- unsigned reg_size = rd.SizeInBits(); |
- unsigned n, imm_s, imm_r; |
- if (IsImmMovz(imm, reg_size) && !rd.IsSP()) { |
- // Immediate can be represented in a move zero instruction. Movz can't |
- // write to the stack pointer. |
- movz(rd, imm); |
- } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) { |
- // Immediate can be represented in a move inverted instruction. Movn can't |
- // write to the stack pointer. |
- movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask)); |
- } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) { |
- // Immediate can be represented in a logical orr instruction. |
- LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR); |
- } else { |
- // Generic immediate case. Imm will be represented by |
- // [imm3, imm2, imm1, imm0], where each imm is 16 bits. |
- // A move-zero or move-inverted is generated for the first non-zero or |
- // non-0xffff immX, and a move-keep for subsequent non-zero immX. |
- |
- uint64_t ignored_halfword = 0; |
- bool invert_move = false; |
- // If the number of 0xffff halfwords is greater than the number of 0x0000 |
- // halfwords, it's more efficient to use move-inverted. |
- if (CountClearHalfWords(~imm, reg_size) > |
- CountClearHalfWords(imm, reg_size)) { |
- ignored_halfword = 0xffffL; |
- invert_move = true; |
- } |
- |
- // Mov instructions can't move immediate values into the stack pointer, so |
- // set up a temporary register, if needed. |
- UseScratchRegisterScope temps(this); |
- Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd; |
- |
- // Iterate through the halfwords. Use movn/movz for the first non-ignored |
- // halfword, and movk for subsequent halfwords. |
- ASSERT((reg_size % 16) == 0); |
- bool first_mov_done = false; |
- for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) { |
- uint64_t imm16 = (imm >> (16 * i)) & 0xffffL; |
- if (imm16 != ignored_halfword) { |
- if (!first_mov_done) { |
- if (invert_move) { |
- movn(temp, (~imm16) & 0xffffL, 16 * i); |
- } else { |
- movz(temp, imm16, 16 * i); |
- } |
- first_mov_done = true; |
- } else { |
- // Construct a wider constant. |
- movk(temp, imm16, 16 * i); |
- } |
- } |
- } |
- ASSERT(first_mov_done); |
- |
- // Move the temporary if the original destination register was the stack |
- // pointer. |
- if (rd.IsSP()) { |
- mov(rd, temp); |
- } |
- } |
-} |
- |
- |
-void MacroAssembler::Mov(const Register& rd, |
- const Operand& operand, |
- DiscardMoveMode discard_mode) { |
- ASSERT(allow_macro_instructions_); |
- ASSERT(!rd.IsZero()); |
- |
- // Provide a swap register for instructions that need to write into the |
- // system stack pointer (and can't do this inherently). |
- UseScratchRegisterScope temps(this); |
- Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd; |
- |
- if (operand.NeedsRelocation()) { |
- LoadRelocated(dst, operand); |
- |
- } else if (operand.IsImmediate()) { |
- // Call the macro assembler for generic immediates. |
- Mov(dst, operand.immediate()); |
- |
- } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { |
- // Emit a shift instruction if moving a shifted register. This operation |
- // could also be achieved using an orr instruction (like orn used by Mvn), |
- // but using a shift instruction makes the disassembly clearer. |
- EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount()); |
- |
- } else if (operand.IsExtendedRegister()) { |
- // Emit an extend instruction if moving an extended register. This handles |
- // extend with post-shift operations, too. |
- EmitExtendShift(dst, operand.reg(), operand.extend(), |
- operand.shift_amount()); |
- |
- } else { |
- // Otherwise, emit a register move only if the registers are distinct, or |
- // if they are not X registers. |
- // |
- // Note that mov(w0, w0) is not a no-op because it clears the top word of |
- // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W |
- // registers is not required to clear the top word of the X register. In |
- // this case, the instruction is discarded. |
- // |
- // If csp is an operand, add #0 is emitted, otherwise, orr #0. |
- if (!rd.Is(operand.reg()) || (rd.Is32Bits() && |
- (discard_mode == kDontDiscardForSameWReg))) { |
- Assembler::mov(rd, operand.reg()); |
- } |
- // This case can handle writes into the system stack pointer directly. |
- dst = rd; |
- } |
- |
- // Copy the result to the system stack pointer. |
- if (!dst.Is(rd)) { |
- ASSERT(rd.IsSP()); |
- Assembler::mov(rd, dst); |
- } |
-} |
- |
- |
-void MacroAssembler::Mvn(const Register& rd, const Operand& operand) { |
- ASSERT(allow_macro_instructions_); |
- |
- if (operand.NeedsRelocation()) { |
- LoadRelocated(rd, operand); |
- mvn(rd, rd); |
- |
- } else if (operand.IsImmediate()) { |
- // Call the macro assembler for generic immediates. |
- Mov(rd, ~operand.immediate()); |
- |
- } else if (operand.IsExtendedRegister()) { |
- // Emit two instructions for the extend case. This differs from Mov, as |
- // the extend and invert can't be achieved in one instruction. |
- EmitExtendShift(rd, operand.reg(), operand.extend(), |
- operand.shift_amount()); |
- mvn(rd, rd); |
- |
- } else { |
- mvn(rd, operand); |
- } |
-} |
- |
- |
-unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) { |
- ASSERT((reg_size % 8) == 0); |
- int count = 0; |
- for (unsigned i = 0; i < (reg_size / 16); i++) { |
- if ((imm & 0xffff) == 0) { |
- count++; |
- } |
- imm >>= 16; |
- } |
- return count; |
-} |
- |
- |
-// The movz instruction can generate immediates containing an arbitrary 16-bit |
-// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. |
-bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) { |
- ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits)); |
- return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); |
-} |
- |
- |
-// The movn instruction can generate immediates containing an arbitrary 16-bit |
-// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff. |
-bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) { |
- return IsImmMovz(~imm, reg_size); |
-} |
- |
- |
-void MacroAssembler::ConditionalCompareMacro(const Register& rn, |
- const Operand& operand, |
- StatusFlags nzcv, |
- Condition cond, |
- ConditionalCompareOp op) { |
- ASSERT((cond != al) && (cond != nv)); |
- if (operand.NeedsRelocation()) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- LoadRelocated(temp, operand); |
- ConditionalCompareMacro(rn, temp, nzcv, cond, op); |
- |
- } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) || |
- (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) { |
- // The immediate can be encoded in the instruction, or the operand is an |
- // unshifted register: call the assembler. |
- ConditionalCompare(rn, operand, nzcv, cond, op); |
- |
- } else { |
- // The operand isn't directly supported by the instruction: perform the |
- // operation on a temporary register. |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- Mov(temp, operand); |
- ConditionalCompare(rn, temp, nzcv, cond, op); |
- } |
-} |
- |
- |
-void MacroAssembler::Csel(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- Condition cond) { |
- ASSERT(allow_macro_instructions_); |
- ASSERT(!rd.IsZero()); |
- ASSERT((cond != al) && (cond != nv)); |
- if (operand.IsImmediate()) { |
- // Immediate argument. Handle special cases of 0, 1 and -1 using zero |
- // register. |
- int64_t imm = operand.immediate(); |
- Register zr = AppropriateZeroRegFor(rn); |
- if (imm == 0) { |
- csel(rd, rn, zr, cond); |
- } else if (imm == 1) { |
- csinc(rd, rn, zr, cond); |
- } else if (imm == -1) { |
- csinv(rd, rn, zr, cond); |
- } else { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- Mov(temp, operand.immediate()); |
- csel(rd, rn, temp, cond); |
- } |
- } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) { |
- // Unshifted register argument. |
- csel(rd, rn, operand.reg(), cond); |
- } else { |
- // All other arguments. |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- Mov(temp, operand); |
- csel(rd, rn, temp, cond); |
- } |
-} |
- |
- |
-void MacroAssembler::AddSubMacro(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- FlagsUpdate S, |
- AddSubOp op) { |
- if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() && |
- !operand.NeedsRelocation() && (S == LeaveFlags)) { |
- // The instruction would be a nop. Avoid generating useless code. |
- return; |
- } |
- |
- if (operand.NeedsRelocation()) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- LoadRelocated(temp, operand); |
- AddSubMacro(rd, rn, temp, S, op); |
- } else if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) || |
- (rn.IsZero() && !operand.IsShiftedRegister()) || |
- (operand.IsShiftedRegister() && (operand.shift() == ROR))) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- Mov(temp, operand); |
- AddSub(rd, rn, temp, S, op); |
- } else { |
- AddSub(rd, rn, operand, S, op); |
- } |
-} |
- |
- |
-void MacroAssembler::AddSubWithCarryMacro(const Register& rd, |
- const Register& rn, |
- const Operand& operand, |
- FlagsUpdate S, |
- AddSubWithCarryOp op) { |
- ASSERT(rd.SizeInBits() == rn.SizeInBits()); |
- UseScratchRegisterScope temps(this); |
- |
- if (operand.NeedsRelocation()) { |
- Register temp = temps.AcquireX(); |
- LoadRelocated(temp, operand); |
- AddSubWithCarryMacro(rd, rn, temp, S, op); |
- |
- } else if (operand.IsImmediate() || |
- (operand.IsShiftedRegister() && (operand.shift() == ROR))) { |
- // Add/sub with carry (immediate or ROR shifted register.) |
- Register temp = temps.AcquireSameSizeAs(rn); |
- Mov(temp, operand); |
- AddSubWithCarry(rd, rn, temp, S, op); |
- |
- } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { |
- // Add/sub with carry (shifted register). |
- ASSERT(operand.reg().SizeInBits() == rd.SizeInBits()); |
- ASSERT(operand.shift() != ROR); |
- ASSERT(is_uintn(operand.shift_amount(), |
- rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2 |
- : kWRegSizeInBitsLog2)); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); |
- AddSubWithCarry(rd, rn, temp, S, op); |
- |
- } else if (operand.IsExtendedRegister()) { |
- // Add/sub with carry (extended register). |
- ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits()); |
- // Add/sub extended supports a shift <= 4. We want to support exactly the |
- // same modes. |
- ASSERT(operand.shift_amount() <= 4); |
- ASSERT(operand.reg().Is64Bits() || |
- ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
- Register temp = temps.AcquireSameSizeAs(rn); |
- EmitExtendShift(temp, operand.reg(), operand.extend(), |
- operand.shift_amount()); |
- AddSubWithCarry(rd, rn, temp, S, op); |
- |
- } else { |
- // The addressing mode is directly supported by the instruction. |
- AddSubWithCarry(rd, rn, operand, S, op); |
- } |
-} |
- |
- |
-void MacroAssembler::LoadStoreMacro(const CPURegister& rt, |
- const MemOperand& addr, |
- LoadStoreOp op) { |
- int64_t offset = addr.offset(); |
- LSDataSize size = CalcLSDataSize(op); |
- |
- // Check if an immediate offset fits in the immediate field of the |
- // appropriate instruction. If not, emit two instructions to perform |
- // the operation. |
- if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) && |
- !IsImmLSUnscaled(offset)) { |
- // Immediate offset that can't be encoded using unsigned or unscaled |
- // addressing modes. |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireSameSizeAs(addr.base()); |
- Mov(temp, addr.offset()); |
- LoadStore(rt, MemOperand(addr.base(), temp), op); |
- } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) { |
- // Post-index beyond unscaled addressing range. |
- LoadStore(rt, MemOperand(addr.base()), op); |
- add(addr.base(), addr.base(), offset); |
- } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) { |
- // Pre-index beyond unscaled addressing range. |
- add(addr.base(), addr.base(), offset); |
- LoadStore(rt, MemOperand(addr.base()), op); |
- } else { |
- // Encodable in one load/store instruction. |
- LoadStore(rt, addr, op); |
- } |
-} |
- |
- |
-void MacroAssembler::Load(const Register& rt, |
- const MemOperand& addr, |
- Representation r) { |
- ASSERT(!r.IsDouble()); |
- |
- if (r.IsInteger8()) { |
- Ldrsb(rt, addr); |
- } else if (r.IsUInteger8()) { |
- Ldrb(rt, addr); |
- } else if (r.IsInteger16()) { |
- Ldrsh(rt, addr); |
- } else if (r.IsUInteger16()) { |
- Ldrh(rt, addr); |
- } else if (r.IsInteger32()) { |
- Ldr(rt.W(), addr); |
- } else { |
- ASSERT(rt.Is64Bits()); |
- Ldr(rt, addr); |
- } |
-} |
- |
- |
-void MacroAssembler::Store(const Register& rt, |
- const MemOperand& addr, |
- Representation r) { |
- ASSERT(!r.IsDouble()); |
- |
- if (r.IsInteger8() || r.IsUInteger8()) { |
- Strb(rt, addr); |
- } else if (r.IsInteger16() || r.IsUInteger16()) { |
- Strh(rt, addr); |
- } else if (r.IsInteger32()) { |
- Str(rt.W(), addr); |
- } else { |
- ASSERT(rt.Is64Bits()); |
- Str(rt, addr); |
- } |
-} |
- |
- |
-bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch( |
- Label *label, ImmBranchType b_type) { |
- bool need_longer_range = false; |
- // There are two situations in which we care about the offset being out of |
- // range: |
- // - The label is bound but too far away. |
- // - The label is not bound but linked, and the previous branch |
- // instruction in the chain is too far away. |
- if (label->is_bound() || label->is_linked()) { |
- need_longer_range = |
- !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset()); |
- } |
- if (!need_longer_range && !label->is_bound()) { |
- int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type); |
- unresolved_branches_.insert( |
- std::pair<int, FarBranchInfo>(max_reachable_pc, |
- FarBranchInfo(pc_offset(), label))); |
- // Also maintain the next pool check. |
- next_veneer_pool_check_ = |
- Min(next_veneer_pool_check_, |
- max_reachable_pc - kVeneerDistanceCheckMargin); |
- } |
- return need_longer_range; |
-} |
- |
- |
-void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) { |
- ASSERT((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) && |
- (bit == -1 || type >= kBranchTypeFirstUsingBit)); |
- if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { |
- B(static_cast<Condition>(type), label); |
- } else { |
- switch (type) { |
- case always: B(label); break; |
- case never: break; |
- case reg_zero: Cbz(reg, label); break; |
- case reg_not_zero: Cbnz(reg, label); break; |
- case reg_bit_clear: Tbz(reg, bit, label); break; |
- case reg_bit_set: Tbnz(reg, bit, label); break; |
- default: |
- UNREACHABLE(); |
- } |
- } |
-} |
- |
- |
-void MacroAssembler::B(Label* label, Condition cond) { |
- ASSERT(allow_macro_instructions_); |
- ASSERT((cond != al) && (cond != nv)); |
- |
- Label done; |
- bool need_extra_instructions = |
- NeedExtraInstructionsOrRegisterBranch(label, CondBranchType); |
- |
- if (need_extra_instructions) { |
- b(&done, InvertCondition(cond)); |
- B(label); |
- } else { |
- b(label, cond); |
- } |
- bind(&done); |
-} |
- |
- |
-void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) { |
- ASSERT(allow_macro_instructions_); |
- |
- Label done; |
- bool need_extra_instructions = |
- NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); |
- |
- if (need_extra_instructions) { |
- tbz(rt, bit_pos, &done); |
- B(label); |
- } else { |
- tbnz(rt, bit_pos, label); |
- } |
- bind(&done); |
-} |
- |
- |
-void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) { |
- ASSERT(allow_macro_instructions_); |
- |
- Label done; |
- bool need_extra_instructions = |
- NeedExtraInstructionsOrRegisterBranch(label, TestBranchType); |
- |
- if (need_extra_instructions) { |
- tbnz(rt, bit_pos, &done); |
- B(label); |
- } else { |
- tbz(rt, bit_pos, label); |
- } |
- bind(&done); |
-} |
- |
- |
-void MacroAssembler::Cbnz(const Register& rt, Label* label) { |
- ASSERT(allow_macro_instructions_); |
- |
- Label done; |
- bool need_extra_instructions = |
- NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); |
- |
- if (need_extra_instructions) { |
- cbz(rt, &done); |
- B(label); |
- } else { |
- cbnz(rt, label); |
- } |
- bind(&done); |
-} |
- |
- |
-void MacroAssembler::Cbz(const Register& rt, Label* label) { |
- ASSERT(allow_macro_instructions_); |
- |
- Label done; |
- bool need_extra_instructions = |
- NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType); |
- |
- if (need_extra_instructions) { |
- cbnz(rt, &done); |
- B(label); |
- } else { |
- cbz(rt, label); |
- } |
- bind(&done); |
-} |
- |
- |
-// Pseudo-instructions. |
- |
- |
-void MacroAssembler::Abs(const Register& rd, const Register& rm, |
- Label* is_not_representable, |
- Label* is_representable) { |
- ASSERT(allow_macro_instructions_); |
- ASSERT(AreSameSizeAndType(rd, rm)); |
- |
- Cmp(rm, 1); |
- Cneg(rd, rm, lt); |
- |
- // If the comparison sets the v flag, the input was the smallest value |
- // representable by rm, and the mathematical result of abs(rm) is not |
- // representable using two's complement. |
- if ((is_not_representable != NULL) && (is_representable != NULL)) { |
- B(is_not_representable, vs); |
- B(is_representable); |
- } else if (is_not_representable != NULL) { |
- B(is_not_representable, vs); |
- } else if (is_representable != NULL) { |
- B(is_representable, vc); |
- } |
-} |
- |
- |
-// Abstracted stack operations. |
- |
- |
-void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1, |
- const CPURegister& src2, const CPURegister& src3) { |
- ASSERT(AreSameSizeAndType(src0, src1, src2, src3)); |
- |
- int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid(); |
- int size = src0.SizeInBytes(); |
- |
- PrepareForPush(count, size); |
- PushHelper(count, size, src0, src1, src2, src3); |
-} |
- |
- |
-void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1, |
- const CPURegister& src2, const CPURegister& src3, |
- const CPURegister& src4, const CPURegister& src5, |
- const CPURegister& src6, const CPURegister& src7) { |
- ASSERT(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7)); |
- |
- int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid(); |
- int size = src0.SizeInBytes(); |
- |
- PrepareForPush(count, size); |
- PushHelper(4, size, src0, src1, src2, src3); |
- PushHelper(count - 4, size, src4, src5, src6, src7); |
-} |
- |
- |
-void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, |
- const CPURegister& dst2, const CPURegister& dst3) { |
- // It is not valid to pop into the same register more than once in one |
- // instruction, not even into the zero register. |
- ASSERT(!AreAliased(dst0, dst1, dst2, dst3)); |
- ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3)); |
- ASSERT(dst0.IsValid()); |
- |
- int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid(); |
- int size = dst0.SizeInBytes(); |
- |
- PrepareForPop(count, size); |
- PopHelper(count, size, dst0, dst1, dst2, dst3); |
- |
- if (!csp.Is(StackPointer()) && emit_debug_code()) { |
- // It is safe to leave csp where it is when unwinding the JavaScript stack, |
- // but if we keep it matching StackPointer, the simulator can detect memory |
- // accesses in the now-free part of the stack. |
- Mov(csp, StackPointer()); |
- } |
-} |
- |
- |
-void MacroAssembler::PushPopQueue::PushQueued() { |
- if (queued_.empty()) return; |
- |
- masm_->PrepareForPush(size_); |
- |
- int count = queued_.size(); |
- int index = 0; |
- while (index < count) { |
- // PushHelper can only handle registers with the same size and type, and it |
- // can handle only four at a time. Batch them up accordingly. |
- CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg}; |
- int batch_index = 0; |
- do { |
- batch[batch_index++] = queued_[index++]; |
- } while ((batch_index < 4) && (index < count) && |
- batch[0].IsSameSizeAndType(queued_[index])); |
- |
- masm_->PushHelper(batch_index, batch[0].SizeInBytes(), |
- batch[0], batch[1], batch[2], batch[3]); |
- } |
- |
- queued_.clear(); |
-} |
- |
- |
-void MacroAssembler::PushPopQueue::PopQueued() { |
- if (queued_.empty()) return; |
- |
- masm_->PrepareForPop(size_); |
- |
- int count = queued_.size(); |
- int index = 0; |
- while (index < count) { |
- // PopHelper can only handle registers with the same size and type, and it |
- // can handle only four at a time. Batch them up accordingly. |
- CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg}; |
- int batch_index = 0; |
- do { |
- batch[batch_index++] = queued_[index++]; |
- } while ((batch_index < 4) && (index < count) && |
- batch[0].IsSameSizeAndType(queued_[index])); |
- |
- masm_->PopHelper(batch_index, batch[0].SizeInBytes(), |
- batch[0], batch[1], batch[2], batch[3]); |
- } |
- |
- queued_.clear(); |
-} |
- |
- |
-void MacroAssembler::PushCPURegList(CPURegList registers) { |
- int size = registers.RegisterSizeInBytes(); |
- |
- PrepareForPush(registers.Count(), size); |
- // Push up to four registers at a time because if the current stack pointer is |
- // csp and reg_size is 32, registers must be pushed in blocks of four in order |
- // to maintain the 16-byte alignment for csp. |
- while (!registers.IsEmpty()) { |
- int count_before = registers.Count(); |
- const CPURegister& src0 = registers.PopHighestIndex(); |
- const CPURegister& src1 = registers.PopHighestIndex(); |
- const CPURegister& src2 = registers.PopHighestIndex(); |
- const CPURegister& src3 = registers.PopHighestIndex(); |
- int count = count_before - registers.Count(); |
- PushHelper(count, size, src0, src1, src2, src3); |
- } |
-} |
- |
- |
-void MacroAssembler::PopCPURegList(CPURegList registers) { |
- int size = registers.RegisterSizeInBytes(); |
- |
- PrepareForPop(registers.Count(), size); |
- // Pop up to four registers at a time because if the current stack pointer is |
- // csp and reg_size is 32, registers must be pushed in blocks of four in |
- // order to maintain the 16-byte alignment for csp. |
- while (!registers.IsEmpty()) { |
- int count_before = registers.Count(); |
- const CPURegister& dst0 = registers.PopLowestIndex(); |
- const CPURegister& dst1 = registers.PopLowestIndex(); |
- const CPURegister& dst2 = registers.PopLowestIndex(); |
- const CPURegister& dst3 = registers.PopLowestIndex(); |
- int count = count_before - registers.Count(); |
- PopHelper(count, size, dst0, dst1, dst2, dst3); |
- } |
- |
- if (!csp.Is(StackPointer()) && emit_debug_code()) { |
- // It is safe to leave csp where it is when unwinding the JavaScript stack, |
- // but if we keep it matching StackPointer, the simulator can detect memory |
- // accesses in the now-free part of the stack. |
- Mov(csp, StackPointer()); |
- } |
-} |
- |
- |
-void MacroAssembler::PushMultipleTimes(CPURegister src, int count) { |
- int size = src.SizeInBytes(); |
- |
- PrepareForPush(count, size); |
- |
- if (FLAG_optimize_for_size && count > 8) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- |
- Label loop; |
- __ Mov(temp, count / 2); |
- __ Bind(&loop); |
- PushHelper(2, size, src, src, NoReg, NoReg); |
- __ Subs(temp, temp, 1); |
- __ B(ne, &loop); |
- |
- count %= 2; |
- } |
- |
- // Push up to four registers at a time if possible because if the current |
- // stack pointer is csp and the register size is 32, registers must be pushed |
- // in blocks of four in order to maintain the 16-byte alignment for csp. |
- while (count >= 4) { |
- PushHelper(4, size, src, src, src, src); |
- count -= 4; |
- } |
- if (count >= 2) { |
- PushHelper(2, size, src, src, NoReg, NoReg); |
- count -= 2; |
- } |
- if (count == 1) { |
- PushHelper(1, size, src, NoReg, NoReg, NoReg); |
- count -= 1; |
- } |
- ASSERT(count == 0); |
-} |
- |
- |
-void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) { |
- PrepareForPush(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes()))); |
- |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireSameSizeAs(count); |
- |
- if (FLAG_optimize_for_size) { |
- Label loop, done; |
- |
- Subs(temp, count, 1); |
- B(mi, &done); |
- |
- // Push all registers individually, to save code size. |
- Bind(&loop); |
- Subs(temp, temp, 1); |
- PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); |
- B(pl, &loop); |
- |
- Bind(&done); |
- } else { |
- Label loop, leftover2, leftover1, done; |
- |
- Subs(temp, count, 4); |
- B(mi, &leftover2); |
- |
- // Push groups of four first. |
- Bind(&loop); |
- Subs(temp, temp, 4); |
- PushHelper(4, src.SizeInBytes(), src, src, src, src); |
- B(pl, &loop); |
- |
- // Push groups of two. |
- Bind(&leftover2); |
- Tbz(count, 1, &leftover1); |
- PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg); |
- |
- // Push the last one (if required). |
- Bind(&leftover1); |
- Tbz(count, 0, &done); |
- PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg); |
- |
- Bind(&done); |
- } |
-} |
- |
- |
-void MacroAssembler::PushHelper(int count, int size, |
- const CPURegister& src0, |
- const CPURegister& src1, |
- const CPURegister& src2, |
- const CPURegister& src3) { |
- // Ensure that we don't unintentially modify scratch or debug registers. |
- InstructionAccurateScope scope(this); |
- |
- ASSERT(AreSameSizeAndType(src0, src1, src2, src3)); |
- ASSERT(size == src0.SizeInBytes()); |
- |
- // When pushing multiple registers, the store order is chosen such that |
- // Push(a, b) is equivalent to Push(a) followed by Push(b). |
- switch (count) { |
- case 1: |
- ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone()); |
- str(src0, MemOperand(StackPointer(), -1 * size, PreIndex)); |
- break; |
- case 2: |
- ASSERT(src2.IsNone() && src3.IsNone()); |
- stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex)); |
- break; |
- case 3: |
- ASSERT(src3.IsNone()); |
- stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex)); |
- str(src0, MemOperand(StackPointer(), 2 * size)); |
- break; |
- case 4: |
- // Skip over 4 * size, then fill in the gap. This allows four W registers |
- // to be pushed using csp, whilst maintaining 16-byte alignment for csp |
- // at all times. |
- stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex)); |
- stp(src1, src0, MemOperand(StackPointer(), 2 * size)); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void MacroAssembler::PopHelper(int count, int size, |
- const CPURegister& dst0, |
- const CPURegister& dst1, |
- const CPURegister& dst2, |
- const CPURegister& dst3) { |
- // Ensure that we don't unintentially modify scratch or debug registers. |
- InstructionAccurateScope scope(this); |
- |
- ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3)); |
- ASSERT(size == dst0.SizeInBytes()); |
- |
- // When popping multiple registers, the load order is chosen such that |
- // Pop(a, b) is equivalent to Pop(a) followed by Pop(b). |
- switch (count) { |
- case 1: |
- ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone()); |
- ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex)); |
- break; |
- case 2: |
- ASSERT(dst2.IsNone() && dst3.IsNone()); |
- ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex)); |
- break; |
- case 3: |
- ASSERT(dst3.IsNone()); |
- ldr(dst2, MemOperand(StackPointer(), 2 * size)); |
- ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex)); |
- break; |
- case 4: |
- // Load the higher addresses first, then load the lower addresses and |
- // skip the whole block in the second instruction. This allows four W |
- // registers to be popped using csp, whilst maintaining 16-byte alignment |
- // for csp at all times. |
- ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size)); |
- ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex)); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void MacroAssembler::PrepareForPush(Operand total_size) { |
- // TODO(jbramley): This assertion generates too much code in some debug tests. |
- // AssertStackConsistency(); |
- if (csp.Is(StackPointer())) { |
- // If the current stack pointer is csp, then it must be aligned to 16 bytes |
- // on entry and the total size of the specified registers must also be a |
- // multiple of 16 bytes. |
- if (total_size.IsImmediate()) { |
- ASSERT((total_size.immediate() % 16) == 0); |
- } |
- |
- // Don't check access size for non-immediate sizes. It's difficult to do |
- // well, and it will be caught by hardware (or the simulator) anyway. |
- } else { |
- // Even if the current stack pointer is not the system stack pointer (csp), |
- // the system stack pointer will still be modified in order to comply with |
- // ABI rules about accessing memory below the system stack pointer. |
- BumpSystemStackPointer(total_size); |
- } |
-} |
- |
- |
-void MacroAssembler::PrepareForPop(Operand total_size) { |
- AssertStackConsistency(); |
- if (csp.Is(StackPointer())) { |
- // If the current stack pointer is csp, then it must be aligned to 16 bytes |
- // on entry and the total size of the specified registers must also be a |
- // multiple of 16 bytes. |
- if (total_size.IsImmediate()) { |
- ASSERT((total_size.immediate() % 16) == 0); |
- } |
- |
- // Don't check access size for non-immediate sizes. It's difficult to do |
- // well, and it will be caught by hardware (or the simulator) anyway. |
- } |
-} |
- |
- |
-void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) { |
- if (offset.IsImmediate()) { |
- ASSERT(offset.immediate() >= 0); |
- } else if (emit_debug_code()) { |
- Cmp(xzr, offset); |
- Check(le, kStackAccessBelowStackPointer); |
- } |
- |
- Str(src, MemOperand(StackPointer(), offset)); |
-} |
- |
- |
-void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) { |
- if (offset.IsImmediate()) { |
- ASSERT(offset.immediate() >= 0); |
- } else if (emit_debug_code()) { |
- Cmp(xzr, offset); |
- Check(le, kStackAccessBelowStackPointer); |
- } |
- |
- Ldr(dst, MemOperand(StackPointer(), offset)); |
-} |
- |
- |
-void MacroAssembler::PokePair(const CPURegister& src1, |
- const CPURegister& src2, |
- int offset) { |
- ASSERT(AreSameSizeAndType(src1, src2)); |
- ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0)); |
- Stp(src1, src2, MemOperand(StackPointer(), offset)); |
-} |
- |
- |
-void MacroAssembler::PeekPair(const CPURegister& dst1, |
- const CPURegister& dst2, |
- int offset) { |
- ASSERT(AreSameSizeAndType(dst1, dst2)); |
- ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0)); |
- Ldp(dst1, dst2, MemOperand(StackPointer(), offset)); |
-} |
- |
- |
-void MacroAssembler::PushCalleeSavedRegisters() { |
- // Ensure that the macro-assembler doesn't use any scratch registers. |
- InstructionAccurateScope scope(this); |
- |
- // This method must not be called unless the current stack pointer is the |
- // system stack pointer (csp). |
- ASSERT(csp.Is(StackPointer())); |
- |
- MemOperand tos(csp, -2 * kXRegSize, PreIndex); |
- |
- stp(d14, d15, tos); |
- stp(d12, d13, tos); |
- stp(d10, d11, tos); |
- stp(d8, d9, tos); |
- |
- stp(x29, x30, tos); |
- stp(x27, x28, tos); // x28 = jssp |
- stp(x25, x26, tos); |
- stp(x23, x24, tos); |
- stp(x21, x22, tos); |
- stp(x19, x20, tos); |
-} |
- |
- |
-void MacroAssembler::PopCalleeSavedRegisters() { |
- // Ensure that the macro-assembler doesn't use any scratch registers. |
- InstructionAccurateScope scope(this); |
- |
- // This method must not be called unless the current stack pointer is the |
- // system stack pointer (csp). |
- ASSERT(csp.Is(StackPointer())); |
- |
- MemOperand tos(csp, 2 * kXRegSize, PostIndex); |
- |
- ldp(x19, x20, tos); |
- ldp(x21, x22, tos); |
- ldp(x23, x24, tos); |
- ldp(x25, x26, tos); |
- ldp(x27, x28, tos); // x28 = jssp |
- ldp(x29, x30, tos); |
- |
- ldp(d8, d9, tos); |
- ldp(d10, d11, tos); |
- ldp(d12, d13, tos); |
- ldp(d14, d15, tos); |
-} |
- |
- |
-void MacroAssembler::AssertStackConsistency() { |
- if (emit_debug_code()) { |
- if (csp.Is(StackPointer())) { |
- // We can't check the alignment of csp without using a scratch register |
- // (or clobbering the flags), but the processor (or simulator) will abort |
- // if it is not properly aligned during a load. |
- ldr(xzr, MemOperand(csp, 0)); |
- } else if (FLAG_enable_slow_asserts) { |
- Label ok; |
- // Check that csp <= StackPointer(), preserving all registers and NZCV. |
- sub(StackPointer(), csp, StackPointer()); |
- cbz(StackPointer(), &ok); // Ok if csp == StackPointer(). |
- tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer(). |
- |
- Abort(kTheCurrentStackPointerIsBelowCsp); |
- |
- bind(&ok); |
- // Restore StackPointer(). |
- sub(StackPointer(), csp, StackPointer()); |
- } |
- } |
-} |
- |
- |
-void MacroAssembler::LoadRoot(Register destination, |
- Heap::RootListIndex index) { |
- // TODO(jbramley): Most root values are constants, and can be synthesized |
- // without a load. Refer to the ARM back end for details. |
- Ldr(destination, MemOperand(root, index << kPointerSizeLog2)); |
-} |
- |
- |
-void MacroAssembler::StoreRoot(Register source, |
- Heap::RootListIndex index) { |
- Str(source, MemOperand(root, index << kPointerSizeLog2)); |
-} |
- |
- |
-void MacroAssembler::LoadTrueFalseRoots(Register true_root, |
- Register false_root) { |
- STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex); |
- Ldp(true_root, false_root, |
- MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2)); |
-} |
- |
- |
-void MacroAssembler::LoadHeapObject(Register result, |
- Handle<HeapObject> object) { |
- AllowDeferredHandleDereference using_raw_address; |
- if (isolate()->heap()->InNewSpace(*object)) { |
- Handle<Cell> cell = isolate()->factory()->NewCell(object); |
- Mov(result, Operand(cell)); |
- Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); |
- } else { |
- Mov(result, Operand(object)); |
- } |
-} |
- |
- |
-void MacroAssembler::LoadInstanceDescriptors(Register map, |
- Register descriptors) { |
- Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); |
-} |
- |
- |
-void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { |
- Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); |
- DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); |
-} |
- |
- |
-void MacroAssembler::EnumLengthUntagged(Register dst, Register map) { |
- STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); |
- Ldrsw(dst, UntagSmiFieldMemOperand(map, Map::kBitField3Offset)); |
- And(dst, dst, Map::EnumLengthBits::kMask); |
-} |
- |
- |
-void MacroAssembler::EnumLengthSmi(Register dst, Register map) { |
- STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); |
- Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset)); |
- And(dst, dst, Smi::FromInt(Map::EnumLengthBits::kMask)); |
-} |
- |
- |
-void MacroAssembler::CheckEnumCache(Register object, |
- Register null_value, |
- Register scratch0, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* call_runtime) { |
- ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2, |
- scratch3)); |
- |
- Register empty_fixed_array_value = scratch0; |
- Register current_object = scratch1; |
- |
- LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); |
- Label next, start; |
- |
- Mov(current_object, object); |
- |
- // Check if the enum length field is properly initialized, indicating that |
- // there is an enum cache. |
- Register map = scratch2; |
- Register enum_length = scratch3; |
- Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset)); |
- |
- EnumLengthUntagged(enum_length, map); |
- Cmp(enum_length, kInvalidEnumCacheSentinel); |
- B(eq, call_runtime); |
- |
- B(&start); |
- |
- Bind(&next); |
- Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset)); |
- |
- // For all objects but the receiver, check that the cache is empty. |
- EnumLengthUntagged(enum_length, map); |
- Cbnz(enum_length, call_runtime); |
- |
- Bind(&start); |
- |
- // Check that there are no elements. Register current_object contains the |
- // current JS object we've reached through the prototype chain. |
- Label no_elements; |
- Ldr(current_object, FieldMemOperand(current_object, |
- JSObject::kElementsOffset)); |
- Cmp(current_object, empty_fixed_array_value); |
- B(eq, &no_elements); |
- |
- // Second chance, the object may be using the empty slow element dictionary. |
- CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex); |
- B(ne, call_runtime); |
- |
- Bind(&no_elements); |
- Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset)); |
- Cmp(current_object, null_value); |
- B(ne, &next); |
-} |
- |
- |
-void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver, |
- Register scratch1, |
- Register scratch2, |
- Label* no_memento_found) { |
- ExternalReference new_space_start = |
- ExternalReference::new_space_start(isolate()); |
- ExternalReference new_space_allocation_top = |
- ExternalReference::new_space_allocation_top_address(isolate()); |
- |
- Add(scratch1, receiver, |
- JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag); |
- Cmp(scratch1, new_space_start); |
- B(lt, no_memento_found); |
- |
- Mov(scratch2, new_space_allocation_top); |
- Ldr(scratch2, MemOperand(scratch2)); |
- Cmp(scratch1, scratch2); |
- B(gt, no_memento_found); |
- |
- Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize)); |
- Cmp(scratch1, |
- Operand(isolate()->factory()->allocation_memento_map())); |
-} |
- |
- |
-void MacroAssembler::JumpToHandlerEntry(Register exception, |
- Register object, |
- Register state, |
- Register scratch1, |
- Register scratch2) { |
- // Handler expects argument in x0. |
- ASSERT(exception.Is(x0)); |
- |
- // Compute the handler entry address and jump to it. The handler table is |
- // a fixed array of (smi-tagged) code offsets. |
- Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset)); |
- Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag); |
- STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2); |
- Lsr(scratch2, state, StackHandler::kKindWidth); |
- Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2)); |
- Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag); |
- Add(scratch1, scratch1, Operand::UntagSmi(scratch2)); |
- Br(scratch1); |
-} |
- |
- |
-void MacroAssembler::InNewSpace(Register object, |
- Condition cond, |
- Label* branch) { |
- ASSERT(cond == eq || cond == ne); |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- And(temp, object, ExternalReference::new_space_mask(isolate())); |
- Cmp(temp, ExternalReference::new_space_start(isolate())); |
- B(cond, branch); |
-} |
- |
- |
-void MacroAssembler::Throw(Register value, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4) { |
- // Adjust this code if not the case. |
- STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
- |
- // The handler expects the exception in x0. |
- ASSERT(value.Is(x0)); |
- |
- // Drop the stack pointer to the top of the top handler. |
- ASSERT(jssp.Is(StackPointer())); |
- Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress, |
- isolate()))); |
- Ldr(jssp, MemOperand(scratch1)); |
- // Restore the next handler. |
- Pop(scratch2); |
- Str(scratch2, MemOperand(scratch1)); |
- |
- // Get the code object and state. Restore the context and frame pointer. |
- Register object = scratch1; |
- Register state = scratch2; |
- Pop(object, state, cp, fp); |
- |
- // If the handler is a JS frame, restore the context to the frame. |
- // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp |
- // or cp. |
- Label not_js_frame; |
- Cbz(cp, ¬_js_frame); |
- Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- Bind(¬_js_frame); |
- |
- JumpToHandlerEntry(value, object, state, scratch3, scratch4); |
-} |
- |
- |
-void MacroAssembler::ThrowUncatchable(Register value, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4) { |
- // Adjust this code if not the case. |
- STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
- |
- // The handler expects the exception in x0. |
- ASSERT(value.Is(x0)); |
- |
- // Drop the stack pointer to the top of the top stack handler. |
- ASSERT(jssp.Is(StackPointer())); |
- Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress, |
- isolate()))); |
- Ldr(jssp, MemOperand(scratch1)); |
- |
- // Unwind the handlers until the ENTRY handler is found. |
- Label fetch_next, check_kind; |
- B(&check_kind); |
- Bind(&fetch_next); |
- Peek(jssp, StackHandlerConstants::kNextOffset); |
- |
- Bind(&check_kind); |
- STATIC_ASSERT(StackHandler::JS_ENTRY == 0); |
- Peek(scratch2, StackHandlerConstants::kStateOffset); |
- TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next); |
- |
- // Set the top handler address to next handler past the top ENTRY handler. |
- Pop(scratch2); |
- Str(scratch2, MemOperand(scratch1)); |
- |
- // Get the code object and state. Clear the context and frame pointer (0 was |
- // saved in the handler). |
- Register object = scratch1; |
- Register state = scratch2; |
- Pop(object, state, cp, fp); |
- |
- JumpToHandlerEntry(value, object, state, scratch3, scratch4); |
-} |
- |
- |
-void MacroAssembler::Throw(BailoutReason reason) { |
- Label throw_start; |
- Bind(&throw_start); |
-#ifdef DEBUG |
- const char* msg = GetBailoutReason(reason); |
- RecordComment("Throw message: "); |
- RecordComment((msg != NULL) ? msg : "UNKNOWN"); |
-#endif |
- |
- Mov(x0, Smi::FromInt(reason)); |
- Push(x0); |
- |
- // Disable stub call restrictions to always allow calls to throw. |
- if (!has_frame_) { |
- // We don't actually want to generate a pile of code for this, so just |
- // claim there is a stack frame, without generating one. |
- FrameScope scope(this, StackFrame::NONE); |
- CallRuntime(Runtime::kThrowMessage, 1); |
- } else { |
- CallRuntime(Runtime::kThrowMessage, 1); |
- } |
- // ThrowMessage should not return here. |
- Unreachable(); |
-} |
- |
- |
-void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) { |
- Label ok; |
- B(InvertCondition(cc), &ok); |
- Throw(reason); |
- Bind(&ok); |
-} |
- |
- |
-void MacroAssembler::ThrowIfSmi(const Register& value, BailoutReason reason) { |
- Label ok; |
- JumpIfNotSmi(value, &ok); |
- Throw(reason); |
- Bind(&ok); |
-} |
- |
- |
-void MacroAssembler::SmiAbs(const Register& smi, Label* slow) { |
- ASSERT(smi.Is64Bits()); |
- Abs(smi, smi, slow); |
-} |
- |
- |
-void MacroAssembler::AssertSmi(Register object, BailoutReason reason) { |
- if (emit_debug_code()) { |
- STATIC_ASSERT(kSmiTag == 0); |
- Tst(object, kSmiTagMask); |
- Check(eq, reason); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) { |
- if (emit_debug_code()) { |
- STATIC_ASSERT(kSmiTag == 0); |
- Tst(object, kSmiTagMask); |
- Check(ne, reason); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertName(Register object) { |
- if (emit_debug_code()) { |
- AssertNotSmi(object, kOperandIsASmiAndNotAName); |
- |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- |
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
- CompareInstanceType(temp, temp, LAST_NAME_TYPE); |
- Check(ls, kOperandIsNotAName); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
- Register scratch) { |
- if (emit_debug_code()) { |
- Label done_checking; |
- AssertNotSmi(object); |
- JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking); |
- Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
- CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); |
- Assert(eq, kExpectedUndefinedOrCell); |
- Bind(&done_checking); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertString(Register object) { |
- if (emit_debug_code()) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- STATIC_ASSERT(kSmiTag == 0); |
- Tst(object, kSmiTagMask); |
- Check(ne, kOperandIsASmiAndNotAString); |
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
- CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE); |
- Check(lo, kOperandIsNotAString); |
- } |
-} |
- |
- |
-void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) { |
- ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
- Call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id); |
-} |
- |
- |
-void MacroAssembler::TailCallStub(CodeStub* stub) { |
- Jump(stub->GetCode(isolate()), RelocInfo::CODE_TARGET); |
-} |
- |
- |
-void MacroAssembler::CallRuntime(const Runtime::Function* f, |
- int num_arguments, |
- SaveFPRegsMode save_doubles) { |
- // All arguments must be on the stack before this function is called. |
- // x0 holds the return value after the call. |
- |
- // Check that the number of arguments matches what the function expects. |
- // If f->nargs is -1, the function can accept a variable number of arguments. |
- if (f->nargs >= 0 && f->nargs != num_arguments) { |
- // Illegal operation: drop the stack arguments and return undefined. |
- if (num_arguments > 0) { |
- Drop(num_arguments); |
- } |
- LoadRoot(x0, Heap::kUndefinedValueRootIndex); |
- return; |
- } |
- |
- // Place the necessary arguments. |
- Mov(x0, num_arguments); |
- Mov(x1, ExternalReference(f, isolate())); |
- |
- CEntryStub stub(1, save_doubles); |
- CallStub(&stub); |
-} |
- |
- |
-static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
- return ref0.address() - ref1.address(); |
-} |
- |
- |
-void MacroAssembler::CallApiFunctionAndReturn( |
- Register function_address, |
- ExternalReference thunk_ref, |
- int stack_space, |
- int spill_offset, |
- MemOperand return_value_operand, |
- MemOperand* context_restore_operand) { |
- ASM_LOCATION("CallApiFunctionAndReturn"); |
- ExternalReference next_address = |
- ExternalReference::handle_scope_next_address(isolate()); |
- const int kNextOffset = 0; |
- const int kLimitOffset = AddressOffset( |
- ExternalReference::handle_scope_limit_address(isolate()), |
- next_address); |
- const int kLevelOffset = AddressOffset( |
- ExternalReference::handle_scope_level_address(isolate()), |
- next_address); |
- |
- ASSERT(function_address.is(x1) || function_address.is(x2)); |
- |
- Label profiler_disabled; |
- Label end_profiler_check; |
- bool* is_profiling_flag = isolate()->cpu_profiler()->is_profiling_address(); |
- STATIC_ASSERT(sizeof(*is_profiling_flag) == 1); |
- Mov(x10, reinterpret_cast<uintptr_t>(is_profiling_flag)); |
- Ldrb(w10, MemOperand(x10)); |
- Cbz(w10, &profiler_disabled); |
- Mov(x3, thunk_ref); |
- B(&end_profiler_check); |
- |
- Bind(&profiler_disabled); |
- Mov(x3, function_address); |
- Bind(&end_profiler_check); |
- |
- // Save the callee-save registers we are going to use. |
- // TODO(all): Is this necessary? ARM doesn't do it. |
- STATIC_ASSERT(kCallApiFunctionSpillSpace == 4); |
- Poke(x19, (spill_offset + 0) * kXRegSize); |
- Poke(x20, (spill_offset + 1) * kXRegSize); |
- Poke(x21, (spill_offset + 2) * kXRegSize); |
- Poke(x22, (spill_offset + 3) * kXRegSize); |
- |
- // Allocate HandleScope in callee-save registers. |
- // We will need to restore the HandleScope after the call to the API function, |
- // by allocating it in callee-save registers they will be preserved by C code. |
- Register handle_scope_base = x22; |
- Register next_address_reg = x19; |
- Register limit_reg = x20; |
- Register level_reg = w21; |
- |
- Mov(handle_scope_base, next_address); |
- Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); |
- Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); |
- Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
- Add(level_reg, level_reg, 1); |
- Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
- |
- if (FLAG_log_timer_events) { |
- FrameScope frame(this, StackFrame::MANUAL); |
- PushSafepointRegisters(); |
- Mov(x0, ExternalReference::isolate_address(isolate())); |
- CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); |
- PopSafepointRegisters(); |
- } |
- |
- // Native call returns to the DirectCEntry stub which redirects to the |
- // return address pushed on stack (could have moved after GC). |
- // DirectCEntry stub itself is generated early and never moves. |
- DirectCEntryStub stub; |
- stub.GenerateCall(this, x3); |
- |
- if (FLAG_log_timer_events) { |
- FrameScope frame(this, StackFrame::MANUAL); |
- PushSafepointRegisters(); |
- Mov(x0, ExternalReference::isolate_address(isolate())); |
- CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); |
- PopSafepointRegisters(); |
- } |
- |
- Label promote_scheduled_exception; |
- Label exception_handled; |
- Label delete_allocated_handles; |
- Label leave_exit_frame; |
- Label return_value_loaded; |
- |
- // Load value from ReturnValue. |
- Ldr(x0, return_value_operand); |
- Bind(&return_value_loaded); |
- // No more valid handles (the result handle was the last one). Restore |
- // previous handle scope. |
- Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); |
- if (emit_debug_code()) { |
- Ldr(w1, MemOperand(handle_scope_base, kLevelOffset)); |
- Cmp(w1, level_reg); |
- Check(eq, kUnexpectedLevelAfterReturnFromApiCall); |
- } |
- Sub(level_reg, level_reg, 1); |
- Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); |
- Ldr(x1, MemOperand(handle_scope_base, kLimitOffset)); |
- Cmp(limit_reg, x1); |
- B(ne, &delete_allocated_handles); |
- |
- Bind(&leave_exit_frame); |
- // Restore callee-saved registers. |
- Peek(x19, (spill_offset + 0) * kXRegSize); |
- Peek(x20, (spill_offset + 1) * kXRegSize); |
- Peek(x21, (spill_offset + 2) * kXRegSize); |
- Peek(x22, (spill_offset + 3) * kXRegSize); |
- |
- // Check if the function scheduled an exception. |
- Mov(x5, ExternalReference::scheduled_exception_address(isolate())); |
- Ldr(x5, MemOperand(x5)); |
- JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception); |
- Bind(&exception_handled); |
- |
- bool restore_context = context_restore_operand != NULL; |
- if (restore_context) { |
- Ldr(cp, *context_restore_operand); |
- } |
- |
- LeaveExitFrame(false, x1, !restore_context); |
- Drop(stack_space); |
- Ret(); |
- |
- Bind(&promote_scheduled_exception); |
- { |
- FrameScope frame(this, StackFrame::INTERNAL); |
- CallExternalReference( |
- ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0); |
- } |
- B(&exception_handled); |
- |
- // HandleScope limit has changed. Delete allocated extensions. |
- Bind(&delete_allocated_handles); |
- Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); |
- // Save the return value in a callee-save register. |
- Register saved_result = x19; |
- Mov(saved_result, x0); |
- Mov(x0, ExternalReference::isolate_address(isolate())); |
- CallCFunction( |
- ExternalReference::delete_handle_scope_extensions(isolate()), 1); |
- Mov(x0, saved_result); |
- B(&leave_exit_frame); |
-} |
- |
- |
-void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
- int num_arguments) { |
- Mov(x0, num_arguments); |
- Mov(x1, ext); |
- |
- CEntryStub stub(1); |
- CallStub(&stub); |
-} |
- |
- |
-void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { |
- Mov(x1, builtin); |
- CEntryStub stub(1); |
- Jump(stub.GetCode(isolate()), RelocInfo::CODE_TARGET); |
-} |
- |
- |
-void MacroAssembler::GetBuiltinFunction(Register target, |
- Builtins::JavaScript id) { |
- // Load the builtins object into target register. |
- Ldr(target, GlobalObjectMemOperand()); |
- Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); |
- // Load the JavaScript builtin function from the builtins object. |
- Ldr(target, FieldMemOperand(target, |
- JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
-} |
- |
- |
-void MacroAssembler::GetBuiltinEntry(Register target, |
- Register function, |
- Builtins::JavaScript id) { |
- ASSERT(!AreAliased(target, function)); |
- GetBuiltinFunction(function, id); |
- // Load the code entry point from the builtins object. |
- Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
-} |
- |
- |
-void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper) { |
- ASM_LOCATION("MacroAssembler::InvokeBuiltin"); |
- // You can't call a builtin without a valid frame. |
- ASSERT(flag == JUMP_FUNCTION || has_frame()); |
- |
- // Get the builtin entry in x2 and setup the function object in x1. |
- GetBuiltinEntry(x2, x1, id); |
- if (flag == CALL_FUNCTION) { |
- call_wrapper.BeforeCall(CallSize(x2)); |
- Call(x2); |
- call_wrapper.AfterCall(); |
- } else { |
- ASSERT(flag == JUMP_FUNCTION); |
- Jump(x2); |
- } |
-} |
- |
- |
-void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
- int num_arguments, |
- int result_size) { |
- // TODO(1236192): Most runtime routines don't need the number of |
- // arguments passed in because it is constant. At some point we |
- // should remove this need and make the runtime routine entry code |
- // smarter. |
- Mov(x0, num_arguments); |
- JumpToExternalReference(ext); |
-} |
- |
- |
-void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
- int num_arguments, |
- int result_size) { |
- TailCallExternalReference(ExternalReference(fid, isolate()), |
- num_arguments, |
- result_size); |
-} |
- |
- |
-void MacroAssembler::InitializeNewString(Register string, |
- Register length, |
- Heap::RootListIndex map_index, |
- Register scratch1, |
- Register scratch2) { |
- ASSERT(!AreAliased(string, length, scratch1, scratch2)); |
- LoadRoot(scratch2, map_index); |
- SmiTag(scratch1, length); |
- Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); |
- |
- Mov(scratch2, String::kEmptyHashField); |
- Str(scratch1, FieldMemOperand(string, String::kLengthOffset)); |
- Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset)); |
-} |
- |
- |
-int MacroAssembler::ActivationFrameAlignment() { |
-#if V8_HOST_ARCH_A64 |
- // Running on the real platform. Use the alignment as mandated by the local |
- // environment. |
- // Note: This will break if we ever start generating snapshots on one ARM |
- // platform for another ARM platform with a different alignment. |
- return OS::ActivationFrameAlignment(); |
-#else // V8_HOST_ARCH_A64 |
- // If we are using the simulator then we should always align to the expected |
- // alignment. As the simulator is used to generate snapshots we do not know |
- // if the target platform will need alignment, so this is controlled from a |
- // flag. |
- return FLAG_sim_stack_alignment; |
-#endif // V8_HOST_ARCH_A64 |
-} |
- |
- |
-void MacroAssembler::CallCFunction(ExternalReference function, |
- int num_of_reg_args) { |
- CallCFunction(function, num_of_reg_args, 0); |
-} |
- |
- |
-void MacroAssembler::CallCFunction(ExternalReference function, |
- int num_of_reg_args, |
- int num_of_double_args) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- Mov(temp, function); |
- CallCFunction(temp, num_of_reg_args, num_of_double_args); |
-} |
- |
- |
-void MacroAssembler::CallCFunction(Register function, |
- int num_of_reg_args, |
- int num_of_double_args) { |
- ASSERT(has_frame()); |
- // We can pass 8 integer arguments in registers. If we need to pass more than |
- // that, we'll need to implement support for passing them on the stack. |
- ASSERT(num_of_reg_args <= 8); |
- |
- // If we're passing doubles, we're limited to the following prototypes |
- // (defined by ExternalReference::Type): |
- // BUILTIN_COMPARE_CALL: int f(double, double) |
- // BUILTIN_FP_FP_CALL: double f(double, double) |
- // BUILTIN_FP_CALL: double f(double) |
- // BUILTIN_FP_INT_CALL: double f(double, int) |
- if (num_of_double_args > 0) { |
- ASSERT(num_of_reg_args <= 1); |
- ASSERT((num_of_double_args + num_of_reg_args) <= 2); |
- } |
- |
- |
- // If the stack pointer is not csp, we need to derive an aligned csp from the |
- // current stack pointer. |
- const Register old_stack_pointer = StackPointer(); |
- if (!csp.Is(old_stack_pointer)) { |
- AssertStackConsistency(); |
- |
- int sp_alignment = ActivationFrameAlignment(); |
- // The ABI mandates at least 16-byte alignment. |
- ASSERT(sp_alignment >= 16); |
- ASSERT(IsPowerOf2(sp_alignment)); |
- |
- // The current stack pointer is a callee saved register, and is preserved |
- // across the call. |
- ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer)); |
- |
- // Align and synchronize the system stack pointer with jssp. |
- Bic(csp, old_stack_pointer, sp_alignment - 1); |
- SetStackPointer(csp); |
- } |
- |
- // Call directly. The function called cannot cause a GC, or allow preemption, |
- // so the return address in the link register stays correct. |
- Call(function); |
- |
- if (!csp.Is(old_stack_pointer)) { |
- if (emit_debug_code()) { |
- // Because the stack pointer must be aligned on a 16-byte boundary, the |
- // aligned csp can be up to 12 bytes below the jssp. This is the case |
- // where we only pushed one W register on top of an aligned jssp. |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- ASSERT(ActivationFrameAlignment() == 16); |
- Sub(temp, csp, old_stack_pointer); |
- // We want temp <= 0 && temp >= -12. |
- Cmp(temp, 0); |
- Ccmp(temp, -12, NFlag, le); |
- Check(ge, kTheStackWasCorruptedByMacroAssemblerCall); |
- } |
- SetStackPointer(old_stack_pointer); |
- } |
-} |
- |
- |
-void MacroAssembler::Jump(Register target) { |
- Br(target); |
-} |
- |
- |
-void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- Mov(temp, Operand(target, rmode)); |
- Br(temp); |
-} |
- |
- |
-void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) { |
- ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
- Jump(reinterpret_cast<intptr_t>(target), rmode); |
-} |
- |
- |
-void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) { |
- ASSERT(RelocInfo::IsCodeTarget(rmode)); |
- AllowDeferredHandleDereference embedding_raw_address; |
- Jump(reinterpret_cast<intptr_t>(code.location()), rmode); |
-} |
- |
- |
-void MacroAssembler::Call(Register target) { |
- BlockPoolsScope scope(this); |
-#ifdef DEBUG |
- Label start_call; |
- Bind(&start_call); |
-#endif |
- |
- Blr(target); |
- |
-#ifdef DEBUG |
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target)); |
-#endif |
-} |
- |
- |
-void MacroAssembler::Call(Label* target) { |
- BlockPoolsScope scope(this); |
-#ifdef DEBUG |
- Label start_call; |
- Bind(&start_call); |
-#endif |
- |
- Bl(target); |
- |
-#ifdef DEBUG |
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target)); |
-#endif |
-} |
- |
- |
-// MacroAssembler::CallSize is sensitive to changes in this function, as it |
-// requires to know how many instructions are used to branch to the target. |
-void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) { |
- BlockPoolsScope scope(this); |
-#ifdef DEBUG |
- Label start_call; |
- Bind(&start_call); |
-#endif |
- // Statement positions are expected to be recorded when the target |
- // address is loaded. |
- positions_recorder()->WriteRecordedPositions(); |
- |
- // Addresses always have 64 bits, so we shouldn't encounter NONE32. |
- ASSERT(rmode != RelocInfo::NONE32); |
- |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- |
- if (rmode == RelocInfo::NONE64) { |
- uint64_t imm = reinterpret_cast<uint64_t>(target); |
- movz(temp, (imm >> 0) & 0xffff, 0); |
- movk(temp, (imm >> 16) & 0xffff, 16); |
- movk(temp, (imm >> 32) & 0xffff, 32); |
- movk(temp, (imm >> 48) & 0xffff, 48); |
- } else { |
- LoadRelocated(temp, Operand(reinterpret_cast<intptr_t>(target), rmode)); |
- } |
- Blr(temp); |
-#ifdef DEBUG |
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode)); |
-#endif |
-} |
- |
- |
-void MacroAssembler::Call(Handle<Code> code, |
- RelocInfo::Mode rmode, |
- TypeFeedbackId ast_id) { |
-#ifdef DEBUG |
- Label start_call; |
- Bind(&start_call); |
-#endif |
- |
- if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) { |
- SetRecordedAstId(ast_id); |
- rmode = RelocInfo::CODE_TARGET_WITH_ID; |
- } |
- |
- AllowDeferredHandleDereference embedding_raw_address; |
- Call(reinterpret_cast<Address>(code.location()), rmode); |
- |
-#ifdef DEBUG |
- // Check the size of the code generated. |
- AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id)); |
-#endif |
-} |
- |
- |
-int MacroAssembler::CallSize(Register target) { |
- USE(target); |
- return kInstructionSize; |
-} |
- |
- |
-int MacroAssembler::CallSize(Label* target) { |
- USE(target); |
- return kInstructionSize; |
-} |
- |
- |
-int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) { |
- USE(target); |
- |
- // Addresses always have 64 bits, so we shouldn't encounter NONE32. |
- ASSERT(rmode != RelocInfo::NONE32); |
- |
- if (rmode == RelocInfo::NONE64) { |
- return kCallSizeWithoutRelocation; |
- } else { |
- return kCallSizeWithRelocation; |
- } |
-} |
- |
- |
-int MacroAssembler::CallSize(Handle<Code> code, |
- RelocInfo::Mode rmode, |
- TypeFeedbackId ast_id) { |
- USE(code); |
- USE(ast_id); |
- |
- // Addresses always have 64 bits, so we shouldn't encounter NONE32. |
- ASSERT(rmode != RelocInfo::NONE32); |
- |
- if (rmode == RelocInfo::NONE64) { |
- return kCallSizeWithoutRelocation; |
- } else { |
- return kCallSizeWithRelocation; |
- } |
-} |
- |
- |
- |
- |
- |
-void MacroAssembler::JumpForHeapNumber(Register object, |
- Register heap_number_map, |
- Label* on_heap_number, |
- Label* on_not_heap_number) { |
- ASSERT(on_heap_number || on_not_heap_number); |
- AssertNotSmi(object); |
- |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- |
- // Load the HeapNumber map if it is not passed. |
- if (heap_number_map.Is(NoReg)) { |
- heap_number_map = temps.AcquireX(); |
- LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- } else { |
- AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- } |
- |
- ASSERT(!AreAliased(temp, heap_number_map)); |
- |
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
- Cmp(temp, heap_number_map); |
- |
- if (on_heap_number) { |
- B(eq, on_heap_number); |
- } |
- if (on_not_heap_number) { |
- B(ne, on_not_heap_number); |
- } |
-} |
- |
- |
-void MacroAssembler::JumpIfHeapNumber(Register object, |
- Label* on_heap_number, |
- Register heap_number_map) { |
- JumpForHeapNumber(object, |
- heap_number_map, |
- on_heap_number, |
- NULL); |
-} |
- |
- |
-void MacroAssembler::JumpIfNotHeapNumber(Register object, |
- Label* on_not_heap_number, |
- Register heap_number_map) { |
- JumpForHeapNumber(object, |
- heap_number_map, |
- NULL, |
- on_not_heap_number); |
-} |
- |
- |
-void MacroAssembler::LookupNumberStringCache(Register object, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* not_found) { |
- ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3)); |
- |
- // Use of registers. Register result is used as a temporary. |
- Register number_string_cache = result; |
- Register mask = scratch3; |
- |
- // Load the number string cache. |
- LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
- |
- // Make the hash mask from the length of the number string cache. It |
- // contains two elements (number and string) for each cache entry. |
- Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache, |
- FixedArray::kLengthOffset)); |
- Asr(mask, mask, 1); // Divide length by two. |
- Sub(mask, mask, 1); // Make mask. |
- |
- // Calculate the entry in the number string cache. The hash value in the |
- // number string cache for smis is just the smi value, and the hash for |
- // doubles is the xor of the upper and lower words. See |
- // Heap::GetNumberStringCache. |
- Label is_smi; |
- Label load_result_from_cache; |
- |
- JumpIfSmi(object, &is_smi); |
- CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, |
- DONT_DO_SMI_CHECK); |
- |
- STATIC_ASSERT(kDoubleSize == (kWRegSize * 2)); |
- Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag); |
- Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1)); |
- Eor(scratch1, scratch1, scratch2); |
- And(scratch1, scratch1, mask); |
- |
- // Calculate address of entry in string cache: each entry consists of two |
- // pointer sized fields. |
- Add(scratch1, number_string_cache, |
- Operand(scratch1, LSL, kPointerSizeLog2 + 1)); |
- |
- Register probe = mask; |
- Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
- JumpIfSmi(probe, not_found); |
- Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset)); |
- Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset)); |
- Fcmp(d0, d1); |
- B(ne, not_found); |
- B(&load_result_from_cache); |
- |
- Bind(&is_smi); |
- Register scratch = scratch1; |
- And(scratch, mask, Operand::UntagSmi(object)); |
- // Calculate address of entry in string cache: each entry consists |
- // of two pointer sized fields. |
- Add(scratch, number_string_cache, |
- Operand(scratch, LSL, kPointerSizeLog2 + 1)); |
- |
- // Check if the entry is the smi we are looking for. |
- Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
- Cmp(object, probe); |
- B(ne, not_found); |
- |
- // Get the result from the cache. |
- Bind(&load_result_from_cache); |
- Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
- IncrementCounter(isolate()->counters()->number_to_string_native(), 1, |
- scratch1, scratch2); |
-} |
- |
- |
-void MacroAssembler::TryConvertDoubleToInt(Register as_int, |
- FPRegister value, |
- FPRegister scratch_d, |
- Label* on_successful_conversion, |
- Label* on_failed_conversion) { |
- // Convert to an int and back again, then compare with the original value. |
- Fcvtzs(as_int, value); |
- Scvtf(scratch_d, as_int); |
- Fcmp(value, scratch_d); |
- |
- if (on_successful_conversion) { |
- B(on_successful_conversion, eq); |
- } |
- if (on_failed_conversion) { |
- B(on_failed_conversion, ne); |
- } |
-} |
- |
- |
-void MacroAssembler::TestForMinusZero(DoubleRegister input) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will |
- // cause overflow. |
- Fmov(temp, input); |
- Cmp(temp, 1); |
-} |
- |
- |
-void MacroAssembler::JumpIfMinusZero(DoubleRegister input, |
- Label* on_negative_zero) { |
- TestForMinusZero(input); |
- B(vs, on_negative_zero); |
-} |
- |
- |
-void MacroAssembler::ClampInt32ToUint8(Register output, Register input) { |
- // Clamp the value to [0..255]. |
- Cmp(input.W(), Operand(input.W(), UXTB)); |
- // If input < input & 0xff, it must be < 0, so saturate to 0. |
- Csel(output.W(), wzr, input.W(), lt); |
- // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255. |
- Csel(output.W(), output.W(), 255, le); |
-} |
- |
- |
-void MacroAssembler::ClampInt32ToUint8(Register in_out) { |
- ClampInt32ToUint8(in_out, in_out); |
-} |
- |
- |
-void MacroAssembler::ClampDoubleToUint8(Register output, |
- DoubleRegister input, |
- DoubleRegister dbl_scratch) { |
- // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types: |
- // - Inputs lower than 0 (including -infinity) produce 0. |
- // - Inputs higher than 255 (including +infinity) produce 255. |
- // Also, it seems that PIXEL types use round-to-nearest rather than |
- // round-towards-zero. |
- |
- // Squash +infinity before the conversion, since Fcvtnu will normally |
- // convert it to 0. |
- Fmov(dbl_scratch, 255); |
- Fmin(dbl_scratch, dbl_scratch, input); |
- |
- // Convert double to unsigned integer. Values less than zero become zero. |
- // Values greater than 255 have already been clamped to 255. |
- Fcvtnu(output, dbl_scratch); |
-} |
- |
- |
-void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst, |
- Register src, |
- unsigned count, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4, |
- Register scratch5) { |
- // Untag src and dst into scratch registers. |
- // Copy src->dst in a tight loop. |
- ASSERT(!AreAliased(dst, src, |
- scratch1, scratch2, scratch3, scratch4, scratch5)); |
- ASSERT(count >= 2); |
- |
- const Register& remaining = scratch3; |
- Mov(remaining, count / 2); |
- |
- const Register& dst_untagged = scratch1; |
- const Register& src_untagged = scratch2; |
- Sub(dst_untagged, dst, kHeapObjectTag); |
- Sub(src_untagged, src, kHeapObjectTag); |
- |
- // Copy fields in pairs. |
- Label loop; |
- Bind(&loop); |
- Ldp(scratch4, scratch5, |
- MemOperand(src_untagged, kXRegSize* 2, PostIndex)); |
- Stp(scratch4, scratch5, |
- MemOperand(dst_untagged, kXRegSize* 2, PostIndex)); |
- Sub(remaining, remaining, 1); |
- Cbnz(remaining, &loop); |
- |
- // Handle the leftovers. |
- if (count & 1) { |
- Ldr(scratch4, MemOperand(src_untagged)); |
- Str(scratch4, MemOperand(dst_untagged)); |
- } |
-} |
- |
- |
-void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst, |
- Register src, |
- unsigned count, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Register scratch4) { |
- // Untag src and dst into scratch registers. |
- // Copy src->dst in an unrolled loop. |
- ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4)); |
- |
- const Register& dst_untagged = scratch1; |
- const Register& src_untagged = scratch2; |
- sub(dst_untagged, dst, kHeapObjectTag); |
- sub(src_untagged, src, kHeapObjectTag); |
- |
- // Copy fields in pairs. |
- for (unsigned i = 0; i < count / 2; i++) { |
- Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex)); |
- Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex)); |
- } |
- |
- // Handle the leftovers. |
- if (count & 1) { |
- Ldr(scratch3, MemOperand(src_untagged)); |
- Str(scratch3, MemOperand(dst_untagged)); |
- } |
-} |
- |
- |
-void MacroAssembler::CopyFieldsUnrolledHelper(Register dst, |
- Register src, |
- unsigned count, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3) { |
- // Untag src and dst into scratch registers. |
- // Copy src->dst in an unrolled loop. |
- ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3)); |
- |
- const Register& dst_untagged = scratch1; |
- const Register& src_untagged = scratch2; |
- Sub(dst_untagged, dst, kHeapObjectTag); |
- Sub(src_untagged, src, kHeapObjectTag); |
- |
- // Copy fields one by one. |
- for (unsigned i = 0; i < count; i++) { |
- Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex)); |
- Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex)); |
- } |
-} |
- |
- |
-void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps, |
- unsigned count) { |
- // One of two methods is used: |
- // |
- // For high 'count' values where many scratch registers are available: |
- // Untag src and dst into scratch registers. |
- // Copy src->dst in a tight loop. |
- // |
- // For low 'count' values or where few scratch registers are available: |
- // Untag src and dst into scratch registers. |
- // Copy src->dst in an unrolled loop. |
- // |
- // In both cases, fields are copied in pairs if possible, and left-overs are |
- // handled separately. |
- ASSERT(!AreAliased(dst, src)); |
- ASSERT(!temps.IncludesAliasOf(dst)); |
- ASSERT(!temps.IncludesAliasOf(src)); |
- ASSERT(!temps.IncludesAliasOf(xzr)); |
- |
- if (emit_debug_code()) { |
- Cmp(dst, src); |
- Check(ne, kTheSourceAndDestinationAreTheSame); |
- } |
- |
- // The value of 'count' at which a loop will be generated (if there are |
- // enough scratch registers). |
- static const unsigned kLoopThreshold = 8; |
- |
- UseScratchRegisterScope masm_temps(this); |
- if ((temps.Count() >= 3) && (count >= kLoopThreshold)) { |
- CopyFieldsLoopPairsHelper(dst, src, count, |
- Register(temps.PopLowestIndex()), |
- Register(temps.PopLowestIndex()), |
- Register(temps.PopLowestIndex()), |
- masm_temps.AcquireX(), |
- masm_temps.AcquireX()); |
- } else if (temps.Count() >= 2) { |
- CopyFieldsUnrolledPairsHelper(dst, src, count, |
- Register(temps.PopLowestIndex()), |
- Register(temps.PopLowestIndex()), |
- masm_temps.AcquireX(), |
- masm_temps.AcquireX()); |
- } else if (temps.Count() == 1) { |
- CopyFieldsUnrolledHelper(dst, src, count, |
- Register(temps.PopLowestIndex()), |
- masm_temps.AcquireX(), |
- masm_temps.AcquireX()); |
- } else { |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void MacroAssembler::CopyBytes(Register dst, |
- Register src, |
- Register length, |
- Register scratch, |
- CopyHint hint) { |
- UseScratchRegisterScope temps(this); |
- Register tmp1 = temps.AcquireX(); |
- Register tmp2 = temps.AcquireX(); |
- ASSERT(!AreAliased(src, dst, length, scratch, tmp1, tmp2)); |
- ASSERT(!AreAliased(src, dst, csp)); |
- |
- if (emit_debug_code()) { |
- // Check copy length. |
- Cmp(length, 0); |
- Assert(ge, kUnexpectedNegativeValue); |
- |
- // Check src and dst buffers don't overlap. |
- Add(scratch, src, length); // Calculate end of src buffer. |
- Cmp(scratch, dst); |
- Add(scratch, dst, length); // Calculate end of dst buffer. |
- Ccmp(scratch, src, ZFlag, gt); |
- Assert(le, kCopyBuffersOverlap); |
- } |
- |
- Label short_copy, short_loop, bulk_loop, done; |
- |
- if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) { |
- Register bulk_length = scratch; |
- int pair_size = 2 * kXRegSize; |
- int pair_mask = pair_size - 1; |
- |
- Bic(bulk_length, length, pair_mask); |
- Cbz(bulk_length, &short_copy); |
- Bind(&bulk_loop); |
- Sub(bulk_length, bulk_length, pair_size); |
- Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex)); |
- Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex)); |
- Cbnz(bulk_length, &bulk_loop); |
- |
- And(length, length, pair_mask); |
- } |
- |
- Bind(&short_copy); |
- Cbz(length, &done); |
- Bind(&short_loop); |
- Sub(length, length, 1); |
- Ldrb(tmp1, MemOperand(src, 1, PostIndex)); |
- Strb(tmp1, MemOperand(dst, 1, PostIndex)); |
- Cbnz(length, &short_loop); |
- |
- |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::FillFields(Register dst, |
- Register field_count, |
- Register filler) { |
- ASSERT(!dst.Is(csp)); |
- UseScratchRegisterScope temps(this); |
- Register field_ptr = temps.AcquireX(); |
- Register counter = temps.AcquireX(); |
- Label done; |
- |
- // Decrement count. If the result < zero, count was zero, and there's nothing |
- // to do. If count was one, flags are set to fail the gt condition at the end |
- // of the pairs loop. |
- Subs(counter, field_count, 1); |
- B(lt, &done); |
- |
- // There's at least one field to fill, so do this unconditionally. |
- Str(filler, MemOperand(dst, kPointerSize, PostIndex)); |
- |
- // If the bottom bit of counter is set, there are an even number of fields to |
- // fill, so pull the start pointer back by one field, allowing the pairs loop |
- // to overwrite the field that was stored above. |
- And(field_ptr, counter, 1); |
- Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2)); |
- |
- // Store filler to memory in pairs. |
- Label entry, loop; |
- B(&entry); |
- Bind(&loop); |
- Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex)); |
- Subs(counter, counter, 2); |
- Bind(&entry); |
- B(gt, &loop); |
- |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings( |
- Register first, |
- Register second, |
- Register scratch1, |
- Register scratch2, |
- Label* failure, |
- SmiCheckType smi_check) { |
- |
- if (smi_check == DO_SMI_CHECK) { |
- JumpIfEitherSmi(first, second, failure); |
- } else if (emit_debug_code()) { |
- ASSERT(smi_check == DONT_DO_SMI_CHECK); |
- Label not_smi; |
- JumpIfEitherSmi(first, second, NULL, ¬_smi); |
- |
- // At least one input is a smi, but the flags indicated a smi check wasn't |
- // needed. |
- Abort(kUnexpectedSmi); |
- |
- Bind(¬_smi); |
- } |
- |
- // Test that both first and second are sequential ASCII strings. |
- Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
- Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
- Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
- Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
- |
- JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1, |
- scratch2, |
- scratch1, |
- scratch2, |
- failure); |
-} |
- |
- |
-void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii( |
- Register first, |
- Register second, |
- Register scratch1, |
- Register scratch2, |
- Label* failure) { |
- ASSERT(!AreAliased(scratch1, second)); |
- ASSERT(!AreAliased(scratch1, scratch2)); |
- static const int kFlatAsciiStringMask = |
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
- static const int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
- And(scratch1, first, kFlatAsciiStringMask); |
- And(scratch2, second, kFlatAsciiStringMask); |
- Cmp(scratch1, kFlatAsciiStringTag); |
- Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq); |
- B(ne, failure); |
-} |
- |
- |
-void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
- Register scratch, |
- Label* failure) { |
- const int kFlatAsciiStringMask = |
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
- const int kFlatAsciiStringTag = |
- kStringTag | kOneByteStringTag | kSeqStringTag; |
- And(scratch, type, kFlatAsciiStringMask); |
- Cmp(scratch, kFlatAsciiStringTag); |
- B(ne, failure); |
-} |
- |
- |
-void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
- Register first, |
- Register second, |
- Register scratch1, |
- Register scratch2, |
- Label* failure) { |
- ASSERT(!AreAliased(first, second, scratch1, scratch2)); |
- const int kFlatAsciiStringMask = |
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
- const int kFlatAsciiStringTag = |
- kStringTag | kOneByteStringTag | kSeqStringTag; |
- And(scratch1, first, kFlatAsciiStringMask); |
- And(scratch2, second, kFlatAsciiStringMask); |
- Cmp(scratch1, kFlatAsciiStringTag); |
- Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq); |
- B(ne, failure); |
-} |
- |
- |
-void MacroAssembler::JumpIfNotUniqueName(Register type, |
- Label* not_unique_name) { |
- STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); |
- // if ((type is string && type is internalized) || type == SYMBOL_TYPE) { |
- // continue |
- // } else { |
- // goto not_unique_name |
- // } |
- Tst(type, kIsNotStringMask | kIsNotInternalizedMask); |
- Ccmp(type, SYMBOL_TYPE, ZFlag, ne); |
- B(ne, not_unique_name); |
-} |
- |
- |
-void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
- const ParameterCount& actual, |
- Handle<Code> code_constant, |
- Register code_reg, |
- Label* done, |
- InvokeFlag flag, |
- bool* definitely_mismatches, |
- const CallWrapper& call_wrapper) { |
- bool definitely_matches = false; |
- *definitely_mismatches = false; |
- Label regular_invoke; |
- |
- // Check whether the expected and actual arguments count match. If not, |
- // setup registers according to contract with ArgumentsAdaptorTrampoline: |
- // x0: actual arguments count. |
- // x1: function (passed through to callee). |
- // x2: expected arguments count. |
- |
- // The code below is made a lot easier because the calling code already sets |
- // up actual and expected registers according to the contract if values are |
- // passed in registers. |
- ASSERT(actual.is_immediate() || actual.reg().is(x0)); |
- ASSERT(expected.is_immediate() || expected.reg().is(x2)); |
- ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3)); |
- |
- if (expected.is_immediate()) { |
- ASSERT(actual.is_immediate()); |
- if (expected.immediate() == actual.immediate()) { |
- definitely_matches = true; |
- |
- } else { |
- Mov(x0, actual.immediate()); |
- if (expected.immediate() == |
- SharedFunctionInfo::kDontAdaptArgumentsSentinel) { |
- // Don't worry about adapting arguments for builtins that |
- // don't want that done. Skip adaption code by making it look |
- // like we have a match between expected and actual number of |
- // arguments. |
- definitely_matches = true; |
- } else { |
- *definitely_mismatches = true; |
- // Set up x2 for the argument adaptor. |
- Mov(x2, expected.immediate()); |
- } |
- } |
- |
- } else { // expected is a register. |
- Operand actual_op = actual.is_immediate() ? Operand(actual.immediate()) |
- : Operand(actual.reg()); |
- // If actual == expected perform a regular invocation. |
- Cmp(expected.reg(), actual_op); |
- B(eq, ®ular_invoke); |
- // Otherwise set up x0 for the argument adaptor. |
- Mov(x0, actual_op); |
- } |
- |
- // If the argument counts may mismatch, generate a call to the argument |
- // adaptor. |
- if (!definitely_matches) { |
- if (!code_constant.is_null()) { |
- Mov(x3, Operand(code_constant)); |
- Add(x3, x3, Code::kHeaderSize - kHeapObjectTag); |
- } |
- |
- Handle<Code> adaptor = |
- isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
- if (flag == CALL_FUNCTION) { |
- call_wrapper.BeforeCall(CallSize(adaptor)); |
- Call(adaptor); |
- call_wrapper.AfterCall(); |
- if (!*definitely_mismatches) { |
- // If the arg counts don't match, no extra code is emitted by |
- // MAsm::InvokeCode and we can just fall through. |
- B(done); |
- } |
- } else { |
- Jump(adaptor, RelocInfo::CODE_TARGET); |
- } |
- } |
- Bind(®ular_invoke); |
-} |
- |
- |
-void MacroAssembler::InvokeCode(Register code, |
- const ParameterCount& expected, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper) { |
- // You can't call a function without a valid frame. |
- ASSERT(flag == JUMP_FUNCTION || has_frame()); |
- |
- Label done; |
- |
- bool definitely_mismatches = false; |
- InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag, |
- &definitely_mismatches, call_wrapper); |
- |
- // If we are certain that actual != expected, then we know InvokePrologue will |
- // have handled the call through the argument adaptor mechanism. |
- // The called function expects the call kind in x5. |
- if (!definitely_mismatches) { |
- if (flag == CALL_FUNCTION) { |
- call_wrapper.BeforeCall(CallSize(code)); |
- Call(code); |
- call_wrapper.AfterCall(); |
- } else { |
- ASSERT(flag == JUMP_FUNCTION); |
- Jump(code); |
- } |
- } |
- |
- // Continue here if InvokePrologue does handle the invocation due to |
- // mismatched parameter counts. |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::InvokeFunction(Register function, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper) { |
- // You can't call a function without a valid frame. |
- ASSERT(flag == JUMP_FUNCTION || has_frame()); |
- |
- // Contract with called JS functions requires that function is passed in x1. |
- // (See FullCodeGenerator::Generate().) |
- ASSERT(function.is(x1)); |
- |
- Register expected_reg = x2; |
- Register code_reg = x3; |
- |
- Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); |
- // The number of arguments is stored as an int32_t, and -1 is a marker |
- // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign |
- // extension to correctly handle it. |
- Ldr(expected_reg, FieldMemOperand(function, |
- JSFunction::kSharedFunctionInfoOffset)); |
- Ldrsw(expected_reg, |
- FieldMemOperand(expected_reg, |
- SharedFunctionInfo::kFormalParameterCountOffset)); |
- Ldr(code_reg, |
- FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
- |
- ParameterCount expected(expected_reg); |
- InvokeCode(code_reg, expected, actual, flag, call_wrapper); |
-} |
- |
- |
-void MacroAssembler::InvokeFunction(Register function, |
- const ParameterCount& expected, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper) { |
- // You can't call a function without a valid frame. |
- ASSERT(flag == JUMP_FUNCTION || has_frame()); |
- |
- // Contract with called JS functions requires that function is passed in x1. |
- // (See FullCodeGenerator::Generate().) |
- ASSERT(function.Is(x1)); |
- |
- Register code_reg = x3; |
- |
- // Set up the context. |
- Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset)); |
- |
- // We call indirectly through the code field in the function to |
- // allow recompilation to take effect without changing any of the |
- // call sites. |
- Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); |
- InvokeCode(code_reg, expected, actual, flag, call_wrapper); |
-} |
- |
- |
-void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
- const ParameterCount& expected, |
- const ParameterCount& actual, |
- InvokeFlag flag, |
- const CallWrapper& call_wrapper) { |
- // Contract with called JS functions requires that function is passed in x1. |
- // (See FullCodeGenerator::Generate().) |
- __ LoadObject(x1, function); |
- InvokeFunction(x1, expected, actual, flag, call_wrapper); |
-} |
- |
- |
-void MacroAssembler::TryConvertDoubleToInt64(Register result, |
- DoubleRegister double_input, |
- Label* done) { |
- // Try to convert with an FPU convert instruction. It's trivial to compute |
- // the modulo operation on an integer register so we convert to a 64-bit |
- // integer. |
- // |
- // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) |
- // when the double is out of range. NaNs and infinities will be converted to 0 |
- // (as ECMA-262 requires). |
- Fcvtzs(result.X(), double_input); |
- |
- // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not |
- // representable using a double, so if the result is one of those then we know |
- // that saturation occured, and we need to manually handle the conversion. |
- // |
- // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting |
- // 1 will cause signed overflow. |
- Cmp(result.X(), 1); |
- Ccmp(result.X(), -1, VFlag, vc); |
- |
- B(vc, done); |
-} |
- |
- |
-void MacroAssembler::TruncateDoubleToI(Register result, |
- DoubleRegister double_input) { |
- Label done; |
- ASSERT(jssp.Is(StackPointer())); |
- |
- // Try to convert the double to an int64. If successful, the bottom 32 bits |
- // contain our truncated int32 result. |
- TryConvertDoubleToInt64(result, double_input, &done); |
- |
- // If we fell through then inline version didn't succeed - call stub instead. |
- Push(lr); |
- Push(double_input); // Put input on stack. |
- |
- DoubleToIStub stub(jssp, |
- result, |
- 0, |
- true, // is_truncating |
- true); // skip_fastpath |
- CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber |
- |
- Drop(1, kDoubleSize); // Drop the double input on the stack. |
- Pop(lr); |
- |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::TruncateHeapNumberToI(Register result, |
- Register object) { |
- Label done; |
- ASSERT(!result.is(object)); |
- ASSERT(jssp.Is(StackPointer())); |
- |
- Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); |
- |
- // Try to convert the double to an int64. If successful, the bottom 32 bits |
- // contain our truncated int32 result. |
- TryConvertDoubleToInt64(result, fp_scratch, &done); |
- |
- // If we fell through then inline version didn't succeed - call stub instead. |
- Push(lr); |
- DoubleToIStub stub(object, |
- result, |
- HeapNumber::kValueOffset - kHeapObjectTag, |
- true, // is_truncating |
- true); // skip_fastpath |
- CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber |
- Pop(lr); |
- |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::Prologue(PrologueFrameMode frame_mode) { |
- if (frame_mode == BUILD_STUB_FRAME) { |
- ASSERT(StackPointer().Is(jssp)); |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- __ Mov(temp, Smi::FromInt(StackFrame::STUB)); |
- // Compiled stubs don't age, and so they don't need the predictable code |
- // ageing sequence. |
- __ Push(lr, fp, cp, temp); |
- __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); |
- } else { |
- if (isolate()->IsCodePreAgingActive()) { |
- Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); |
- __ EmitCodeAgeSequence(stub); |
- } else { |
- __ EmitFrameSetupForCodeAgePatching(); |
- } |
- } |
-} |
- |
- |
-void MacroAssembler::EnterFrame(StackFrame::Type type) { |
- ASSERT(jssp.Is(StackPointer())); |
- UseScratchRegisterScope temps(this); |
- Register type_reg = temps.AcquireX(); |
- Register code_reg = temps.AcquireX(); |
- |
- Push(lr, fp, cp); |
- Mov(type_reg, Smi::FromInt(type)); |
- Mov(code_reg, Operand(CodeObject())); |
- Push(type_reg, code_reg); |
- // jssp[4] : lr |
- // jssp[3] : fp |
- // jssp[2] : cp |
- // jssp[1] : type |
- // jssp[0] : code object |
- |
- // Adjust FP to point to saved FP. |
- Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); |
-} |
- |
- |
-void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
- ASSERT(jssp.Is(StackPointer())); |
- // Drop the execution stack down to the frame pointer and restore |
- // the caller frame pointer and return address. |
- Mov(jssp, fp); |
- AssertStackConsistency(); |
- Pop(fp, lr); |
-} |
- |
- |
-void MacroAssembler::ExitFramePreserveFPRegs() { |
- PushCPURegList(kCallerSavedFP); |
-} |
- |
- |
-void MacroAssembler::ExitFrameRestoreFPRegs() { |
- // Read the registers from the stack without popping them. The stack pointer |
- // will be reset as part of the unwinding process. |
- CPURegList saved_fp_regs = kCallerSavedFP; |
- ASSERT(saved_fp_regs.Count() % 2 == 0); |
- |
- int offset = ExitFrameConstants::kLastExitFrameField; |
- while (!saved_fp_regs.IsEmpty()) { |
- const CPURegister& dst0 = saved_fp_regs.PopHighestIndex(); |
- const CPURegister& dst1 = saved_fp_regs.PopHighestIndex(); |
- offset -= 2 * kDRegSize; |
- Ldp(dst1, dst0, MemOperand(fp, offset)); |
- } |
-} |
- |
- |
-void MacroAssembler::EnterExitFrame(bool save_doubles, |
- const Register& scratch, |
- int extra_space) { |
- ASSERT(jssp.Is(StackPointer())); |
- |
- // Set up the new stack frame. |
- Mov(scratch, Operand(CodeObject())); |
- Push(lr, fp); |
- Mov(fp, StackPointer()); |
- Push(xzr, scratch); |
- // fp[8]: CallerPC (lr) |
- // fp -> fp[0]: CallerFP (old fp) |
- // fp[-8]: Space reserved for SPOffset. |
- // jssp -> fp[-16]: CodeObject() |
- STATIC_ASSERT((2 * kPointerSize) == |
- ExitFrameConstants::kCallerSPDisplacement); |
- STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset); |
- STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset); |
- STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset); |
- STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset); |
- |
- // Save the frame pointer and context pointer in the top frame. |
- Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress, |
- isolate()))); |
- Str(fp, MemOperand(scratch)); |
- Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, |
- isolate()))); |
- Str(cp, MemOperand(scratch)); |
- |
- STATIC_ASSERT((-2 * kPointerSize) == |
- ExitFrameConstants::kLastExitFrameField); |
- if (save_doubles) { |
- ExitFramePreserveFPRegs(); |
- } |
- |
- // Reserve space for the return address and for user requested memory. |
- // We do this before aligning to make sure that we end up correctly |
- // aligned with the minimum of wasted space. |
- Claim(extra_space + 1, kXRegSize); |
- // fp[8]: CallerPC (lr) |
- // fp -> fp[0]: CallerFP (old fp) |
- // fp[-8]: Space reserved for SPOffset. |
- // fp[-16]: CodeObject() |
- // fp[-16 - fp_size]: Saved doubles (if save_doubles is true). |
- // jssp[8]: Extra space reserved for caller (if extra_space != 0). |
- // jssp -> jssp[0]: Space reserved for the return address. |
- |
- // Align and synchronize the system stack pointer with jssp. |
- AlignAndSetCSPForFrame(); |
- ASSERT(csp.Is(StackPointer())); |
- |
- // fp[8]: CallerPC (lr) |
- // fp -> fp[0]: CallerFP (old fp) |
- // fp[-8]: Space reserved for SPOffset. |
- // fp[-16]: CodeObject() |
- // fp[-16 - fp_size]: Saved doubles (if save_doubles is true). |
- // csp[8]: Memory reserved for the caller if extra_space != 0. |
- // Alignment padding, if necessary. |
- // csp -> csp[0]: Space reserved for the return address. |
- |
- // ExitFrame::GetStateForFramePointer expects to find the return address at |
- // the memory address immediately below the pointer stored in SPOffset. |
- // It is not safe to derive much else from SPOffset, because the size of the |
- // padding can vary. |
- Add(scratch, csp, kXRegSize); |
- Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
-} |
- |
- |
-// Leave the current exit frame. |
-void MacroAssembler::LeaveExitFrame(bool restore_doubles, |
- const Register& scratch, |
- bool restore_context) { |
- ASSERT(csp.Is(StackPointer())); |
- |
- if (restore_doubles) { |
- ExitFrameRestoreFPRegs(); |
- } |
- |
- // Restore the context pointer from the top frame. |
- if (restore_context) { |
- Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, |
- isolate()))); |
- Ldr(cp, MemOperand(scratch)); |
- } |
- |
- if (emit_debug_code()) { |
- // Also emit debug code to clear the cp in the top frame. |
- Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, |
- isolate()))); |
- Str(xzr, MemOperand(scratch)); |
- } |
- // Clear the frame pointer from the top frame. |
- Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress, |
- isolate()))); |
- Str(xzr, MemOperand(scratch)); |
- |
- // Pop the exit frame. |
- // fp[8]: CallerPC (lr) |
- // fp -> fp[0]: CallerFP (old fp) |
- // fp[...]: The rest of the frame. |
- Mov(jssp, fp); |
- SetStackPointer(jssp); |
- AssertStackConsistency(); |
- Pop(fp, lr); |
-} |
- |
- |
-void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
- Register scratch1, Register scratch2) { |
- if (FLAG_native_code_counters && counter->Enabled()) { |
- Mov(scratch1, value); |
- Mov(scratch2, ExternalReference(counter)); |
- Str(scratch1, MemOperand(scratch2)); |
- } |
-} |
- |
- |
-void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
- Register scratch1, Register scratch2) { |
- ASSERT(value != 0); |
- if (FLAG_native_code_counters && counter->Enabled()) { |
- Mov(scratch2, ExternalReference(counter)); |
- Ldr(scratch1, MemOperand(scratch2)); |
- Add(scratch1, scratch1, value); |
- Str(scratch1, MemOperand(scratch2)); |
- } |
-} |
- |
- |
-void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
- Register scratch1, Register scratch2) { |
- IncrementCounter(counter, -value, scratch1, scratch2); |
-} |
- |
- |
-void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
- if (context_chain_length > 0) { |
- // Move up the chain of contexts to the context containing the slot. |
- Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
- for (int i = 1; i < context_chain_length; i++) { |
- Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
- } |
- } else { |
- // Slot is in the current function context. Move it into the |
- // destination register in case we store into it (the write barrier |
- // cannot be allowed to destroy the context in cp). |
- Mov(dst, cp); |
- } |
-} |
- |
- |
-#ifdef ENABLE_DEBUGGER_SUPPORT |
-void MacroAssembler::DebugBreak() { |
- Mov(x0, 0); |
- Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate())); |
- CEntryStub ces(1); |
- ASSERT(AllowThisStubCall(&ces)); |
- Call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK); |
-} |
-#endif |
- |
- |
-void MacroAssembler::PushTryHandler(StackHandler::Kind kind, |
- int handler_index) { |
- ASSERT(jssp.Is(StackPointer())); |
- // Adjust this code if the asserts don't hold. |
- STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
- STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
- |
- // For the JSEntry handler, we must preserve the live registers x0-x4. |
- // (See JSEntryStub::GenerateBody().) |
- |
- unsigned state = |
- StackHandler::IndexField::encode(handler_index) | |
- StackHandler::KindField::encode(kind); |
- |
- // Set up the code object and the state for pushing. |
- Mov(x10, Operand(CodeObject())); |
- Mov(x11, state); |
- |
- // Push the frame pointer, context, state, and code object. |
- if (kind == StackHandler::JS_ENTRY) { |
- ASSERT(Smi::FromInt(0) == 0); |
- Push(xzr, xzr, x11, x10); |
- } else { |
- Push(fp, cp, x11, x10); |
- } |
- |
- // Link the current handler as the next handler. |
- Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate())); |
- Ldr(x10, MemOperand(x11)); |
- Push(x10); |
- // Set this new handler as the current one. |
- Str(jssp, MemOperand(x11)); |
-} |
- |
- |
-void MacroAssembler::PopTryHandler() { |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- Pop(x10); |
- Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate())); |
- Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes); |
- Str(x10, MemOperand(x11)); |
-} |
- |
- |
-void MacroAssembler::Allocate(int object_size, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required, |
- AllocationFlags flags) { |
- ASSERT(object_size <= Page::kMaxRegularHeapObjectSize); |
- if (!FLAG_inline_new) { |
- if (emit_debug_code()) { |
- // Trash the registers to simulate an allocation failure. |
- // We apply salt to the original zap value to easily spot the values. |
- Mov(result, (kDebugZapValue & ~0xffL) | 0x11L); |
- Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L); |
- Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L); |
- } |
- B(gc_required); |
- return; |
- } |
- |
- UseScratchRegisterScope temps(this); |
- Register scratch3 = temps.AcquireX(); |
- |
- ASSERT(!AreAliased(result, scratch1, scratch2, scratch3)); |
- ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits()); |
- |
- // Make object size into bytes. |
- if ((flags & SIZE_IN_WORDS) != 0) { |
- object_size *= kPointerSize; |
- } |
- ASSERT(0 == (object_size & kObjectAlignmentMask)); |
- |
- // Check relative positions of allocation top and limit addresses. |
- // The values must be adjacent in memory to allow the use of LDP. |
- ExternalReference heap_allocation_top = |
- AllocationUtils::GetAllocationTopReference(isolate(), flags); |
- ExternalReference heap_allocation_limit = |
- AllocationUtils::GetAllocationLimitReference(isolate(), flags); |
- intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address()); |
- intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address()); |
- ASSERT((limit - top) == kPointerSize); |
- |
- // Set up allocation top address and object size registers. |
- Register top_address = scratch1; |
- Register allocation_limit = scratch2; |
- Mov(top_address, Operand(heap_allocation_top)); |
- |
- if ((flags & RESULT_CONTAINS_TOP) == 0) { |
- // Load allocation top into result and the allocation limit. |
- Ldp(result, allocation_limit, MemOperand(top_address)); |
- } else { |
- if (emit_debug_code()) { |
- // Assert that result actually contains top on entry. |
- Ldr(scratch3, MemOperand(top_address)); |
- Cmp(result, scratch3); |
- Check(eq, kUnexpectedAllocationTop); |
- } |
- // Load the allocation limit. 'result' already contains the allocation top. |
- Ldr(allocation_limit, MemOperand(top_address, limit - top)); |
- } |
- |
- // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have |
- // the same alignment on A64. |
- STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); |
- |
- // Calculate new top and bail out if new space is exhausted. |
- Adds(scratch3, result, object_size); |
- B(vs, gc_required); |
- Cmp(scratch3, allocation_limit); |
- B(hi, gc_required); |
- Str(scratch3, MemOperand(top_address)); |
- |
- // Tag the object if requested. |
- if ((flags & TAG_OBJECT) != 0) { |
- Orr(result, result, kHeapObjectTag); |
- } |
-} |
- |
- |
-void MacroAssembler::Allocate(Register object_size, |
- Register result, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required, |
- AllocationFlags flags) { |
- if (!FLAG_inline_new) { |
- if (emit_debug_code()) { |
- // Trash the registers to simulate an allocation failure. |
- // We apply salt to the original zap value to easily spot the values. |
- Mov(result, (kDebugZapValue & ~0xffL) | 0x11L); |
- Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L); |
- Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L); |
- } |
- B(gc_required); |
- return; |
- } |
- |
- UseScratchRegisterScope temps(this); |
- Register scratch3 = temps.AcquireX(); |
- |
- ASSERT(!AreAliased(object_size, result, scratch1, scratch2, scratch3)); |
- ASSERT(object_size.Is64Bits() && result.Is64Bits() && |
- scratch1.Is64Bits() && scratch2.Is64Bits()); |
- |
- // Check relative positions of allocation top and limit addresses. |
- // The values must be adjacent in memory to allow the use of LDP. |
- ExternalReference heap_allocation_top = |
- AllocationUtils::GetAllocationTopReference(isolate(), flags); |
- ExternalReference heap_allocation_limit = |
- AllocationUtils::GetAllocationLimitReference(isolate(), flags); |
- intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address()); |
- intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address()); |
- ASSERT((limit - top) == kPointerSize); |
- |
- // Set up allocation top address and object size registers. |
- Register top_address = scratch1; |
- Register allocation_limit = scratch2; |
- Mov(top_address, heap_allocation_top); |
- |
- if ((flags & RESULT_CONTAINS_TOP) == 0) { |
- // Load allocation top into result and the allocation limit. |
- Ldp(result, allocation_limit, MemOperand(top_address)); |
- } else { |
- if (emit_debug_code()) { |
- // Assert that result actually contains top on entry. |
- Ldr(scratch3, MemOperand(top_address)); |
- Cmp(result, scratch3); |
- Check(eq, kUnexpectedAllocationTop); |
- } |
- // Load the allocation limit. 'result' already contains the allocation top. |
- Ldr(allocation_limit, MemOperand(top_address, limit - top)); |
- } |
- |
- // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have |
- // the same alignment on A64. |
- STATIC_ASSERT(kPointerAlignment == kDoubleAlignment); |
- |
- // Calculate new top and bail out if new space is exhausted |
- if ((flags & SIZE_IN_WORDS) != 0) { |
- Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2)); |
- } else { |
- Adds(scratch3, result, object_size); |
- } |
- |
- if (emit_debug_code()) { |
- Tst(scratch3, kObjectAlignmentMask); |
- Check(eq, kUnalignedAllocationInNewSpace); |
- } |
- |
- B(vs, gc_required); |
- Cmp(scratch3, allocation_limit); |
- B(hi, gc_required); |
- Str(scratch3, MemOperand(top_address)); |
- |
- // Tag the object if requested. |
- if ((flags & TAG_OBJECT) != 0) { |
- Orr(result, result, kHeapObjectTag); |
- } |
-} |
- |
- |
-void MacroAssembler::UndoAllocationInNewSpace(Register object, |
- Register scratch) { |
- ExternalReference new_space_allocation_top = |
- ExternalReference::new_space_allocation_top_address(isolate()); |
- |
- // Make sure the object has no tag before resetting top. |
- Bic(object, object, kHeapObjectTagMask); |
-#ifdef DEBUG |
- // Check that the object un-allocated is below the current top. |
- Mov(scratch, new_space_allocation_top); |
- Ldr(scratch, MemOperand(scratch)); |
- Cmp(object, scratch); |
- Check(lt, kUndoAllocationOfNonAllocatedMemory); |
-#endif |
- // Write the address of the object to un-allocate as the current top. |
- Mov(scratch, new_space_allocation_top); |
- Str(object, MemOperand(scratch)); |
-} |
- |
- |
-void MacroAssembler::AllocateTwoByteString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* gc_required) { |
- ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3)); |
- // Calculate the number of bytes needed for the characters in the string while |
- // observing object alignment. |
- STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
- Add(scratch1, length, length); // Length in bytes, not chars. |
- Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); |
- Bic(scratch1, scratch1, kObjectAlignmentMask); |
- |
- // Allocate two-byte string in new space. |
- Allocate(scratch1, |
- result, |
- scratch2, |
- scratch3, |
- gc_required, |
- TAG_OBJECT); |
- |
- // Set the map, length and hash field. |
- InitializeNewString(result, |
- length, |
- Heap::kStringMapRootIndex, |
- scratch1, |
- scratch2); |
-} |
- |
- |
-void MacroAssembler::AllocateAsciiString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3, |
- Label* gc_required) { |
- ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3)); |
- // Calculate the number of bytes needed for the characters in the string while |
- // observing object alignment. |
- STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
- STATIC_ASSERT(kCharSize == 1); |
- Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); |
- Bic(scratch1, scratch1, kObjectAlignmentMask); |
- |
- // Allocate ASCII string in new space. |
- Allocate(scratch1, |
- result, |
- scratch2, |
- scratch3, |
- gc_required, |
- TAG_OBJECT); |
- |
- // Set the map, length and hash field. |
- InitializeNewString(result, |
- length, |
- Heap::kAsciiStringMapRootIndex, |
- scratch1, |
- scratch2); |
-} |
- |
- |
-void MacroAssembler::AllocateTwoByteConsString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required) { |
- Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, |
- TAG_OBJECT); |
- |
- InitializeNewString(result, |
- length, |
- Heap::kConsStringMapRootIndex, |
- scratch1, |
- scratch2); |
-} |
- |
- |
-void MacroAssembler::AllocateAsciiConsString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required) { |
- Label allocate_new_space, install_map; |
- AllocationFlags flags = TAG_OBJECT; |
- |
- ExternalReference high_promotion_mode = ExternalReference:: |
- new_space_high_promotion_mode_active_address(isolate()); |
- Mov(scratch1, high_promotion_mode); |
- Ldr(scratch1, MemOperand(scratch1)); |
- Cbz(scratch1, &allocate_new_space); |
- |
- Allocate(ConsString::kSize, |
- result, |
- scratch1, |
- scratch2, |
- gc_required, |
- static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE)); |
- |
- B(&install_map); |
- |
- Bind(&allocate_new_space); |
- Allocate(ConsString::kSize, |
- result, |
- scratch1, |
- scratch2, |
- gc_required, |
- flags); |
- |
- Bind(&install_map); |
- |
- InitializeNewString(result, |
- length, |
- Heap::kConsAsciiStringMapRootIndex, |
- scratch1, |
- scratch2); |
-} |
- |
- |
-void MacroAssembler::AllocateTwoByteSlicedString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required) { |
- ASSERT(!AreAliased(result, length, scratch1, scratch2)); |
- Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, |
- TAG_OBJECT); |
- |
- InitializeNewString(result, |
- length, |
- Heap::kSlicedStringMapRootIndex, |
- scratch1, |
- scratch2); |
-} |
- |
- |
-void MacroAssembler::AllocateAsciiSlicedString(Register result, |
- Register length, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required) { |
- ASSERT(!AreAliased(result, length, scratch1, scratch2)); |
- Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, |
- TAG_OBJECT); |
- |
- InitializeNewString(result, |
- length, |
- Heap::kSlicedAsciiStringMapRootIndex, |
- scratch1, |
- scratch2); |
-} |
- |
- |
-// Allocates a heap number or jumps to the need_gc label if the young space |
-// is full and a scavenge is needed. |
-void MacroAssembler::AllocateHeapNumber(Register result, |
- Label* gc_required, |
- Register scratch1, |
- Register scratch2, |
- Register heap_number_map) { |
- // Allocate an object in the heap for the heap number and tag it as a heap |
- // object. |
- Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, |
- TAG_OBJECT); |
- |
- // Store heap number map in the allocated object. |
- if (heap_number_map.Is(NoReg)) { |
- heap_number_map = scratch1; |
- LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- } |
- AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); |
-} |
- |
- |
-void MacroAssembler::AllocateHeapNumberWithValue(Register result, |
- DoubleRegister value, |
- Label* gc_required, |
- Register scratch1, |
- Register scratch2, |
- Register heap_number_map) { |
- // TODO(all): Check if it would be more efficient to use STP to store both |
- // the map and the value. |
- AllocateHeapNumber(result, gc_required, scratch1, scratch2, heap_number_map); |
- Str(value, FieldMemOperand(result, HeapNumber::kValueOffset)); |
-} |
- |
- |
-void MacroAssembler::JumpIfObjectType(Register object, |
- Register map, |
- Register type_reg, |
- InstanceType type, |
- Label* if_cond_pass, |
- Condition cond) { |
- CompareObjectType(object, map, type_reg, type); |
- B(cond, if_cond_pass); |
-} |
- |
- |
-void MacroAssembler::JumpIfNotObjectType(Register object, |
- Register map, |
- Register type_reg, |
- InstanceType type, |
- Label* if_not_object) { |
- JumpIfObjectType(object, map, type_reg, type, if_not_object, ne); |
-} |
- |
- |
-// Sets condition flags based on comparison, and returns type in type_reg. |
-void MacroAssembler::CompareObjectType(Register object, |
- Register map, |
- Register type_reg, |
- InstanceType type) { |
- Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
- CompareInstanceType(map, type_reg, type); |
-} |
- |
- |
-// Sets condition flags based on comparison, and returns type in type_reg. |
-void MacroAssembler::CompareInstanceType(Register map, |
- Register type_reg, |
- InstanceType type) { |
- Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
- Cmp(type_reg, type); |
-} |
- |
- |
-void MacroAssembler::CompareMap(Register obj, |
- Register scratch, |
- Handle<Map> map) { |
- Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
- CompareMap(scratch, map); |
-} |
- |
- |
-void MacroAssembler::CompareMap(Register obj_map, |
- Handle<Map> map) { |
- Cmp(obj_map, Operand(map)); |
-} |
- |
- |
-void MacroAssembler::CheckMap(Register obj, |
- Register scratch, |
- Handle<Map> map, |
- Label* fail, |
- SmiCheckType smi_check_type) { |
- if (smi_check_type == DO_SMI_CHECK) { |
- JumpIfSmi(obj, fail); |
- } |
- |
- CompareMap(obj, scratch, map); |
- B(ne, fail); |
-} |
- |
- |
-void MacroAssembler::CheckMap(Register obj, |
- Register scratch, |
- Heap::RootListIndex index, |
- Label* fail, |
- SmiCheckType smi_check_type) { |
- if (smi_check_type == DO_SMI_CHECK) { |
- JumpIfSmi(obj, fail); |
- } |
- Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
- JumpIfNotRoot(scratch, index, fail); |
-} |
- |
- |
-void MacroAssembler::CheckMap(Register obj_map, |
- Handle<Map> map, |
- Label* fail, |
- SmiCheckType smi_check_type) { |
- if (smi_check_type == DO_SMI_CHECK) { |
- JumpIfSmi(obj_map, fail); |
- } |
- |
- CompareMap(obj_map, map); |
- B(ne, fail); |
-} |
- |
- |
-void MacroAssembler::DispatchMap(Register obj, |
- Register scratch, |
- Handle<Map> map, |
- Handle<Code> success, |
- SmiCheckType smi_check_type) { |
- Label fail; |
- if (smi_check_type == DO_SMI_CHECK) { |
- JumpIfSmi(obj, &fail); |
- } |
- Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
- Cmp(scratch, Operand(map)); |
- B(ne, &fail); |
- Jump(success, RelocInfo::CODE_TARGET); |
- Bind(&fail); |
-} |
- |
- |
-void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
- Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); |
- Tst(temp, mask); |
-} |
- |
- |
-void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) { |
- // Load the map's "bit field 2". |
- __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset)); |
- // Retrieve elements_kind from bit field 2. |
- __ Ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); |
-} |
- |
- |
-void MacroAssembler::TryGetFunctionPrototype(Register function, |
- Register result, |
- Register scratch, |
- Label* miss, |
- BoundFunctionAction action) { |
- ASSERT(!AreAliased(function, result, scratch)); |
- |
- // Check that the receiver isn't a smi. |
- JumpIfSmi(function, miss); |
- |
- // Check that the function really is a function. Load map into result reg. |
- JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss); |
- |
- if (action == kMissOnBoundFunction) { |
- Register scratch_w = scratch.W(); |
- Ldr(scratch, |
- FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
- // On 64-bit platforms, compiler hints field is not a smi. See definition of |
- // kCompilerHintsOffset in src/objects.h. |
- Ldr(scratch_w, |
- FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); |
- Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss); |
- } |
- |
- // Make sure that the function has an instance prototype. |
- Label non_instance; |
- Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
- Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance); |
- |
- // Get the prototype or initial map from the function. |
- Ldr(result, |
- FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
- |
- // If the prototype or initial map is the hole, don't return it and simply |
- // miss the cache instead. This will allow us to allocate a prototype object |
- // on-demand in the runtime system. |
- JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss); |
- |
- // If the function does not have an initial map, we're done. |
- Label done; |
- JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done); |
- |
- // Get the prototype from the initial map. |
- Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
- B(&done); |
- |
- // Non-instance prototype: fetch prototype from constructor field in initial |
- // map. |
- Bind(&non_instance); |
- Ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); |
- |
- // All done. |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::CompareRoot(const Register& obj, |
- Heap::RootListIndex index) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- ASSERT(!AreAliased(obj, temp)); |
- LoadRoot(temp, index); |
- Cmp(obj, temp); |
-} |
- |
- |
-void MacroAssembler::JumpIfRoot(const Register& obj, |
- Heap::RootListIndex index, |
- Label* if_equal) { |
- CompareRoot(obj, index); |
- B(eq, if_equal); |
-} |
- |
- |
-void MacroAssembler::JumpIfNotRoot(const Register& obj, |
- Heap::RootListIndex index, |
- Label* if_not_equal) { |
- CompareRoot(obj, index); |
- B(ne, if_not_equal); |
-} |
- |
- |
-void MacroAssembler::CompareAndSplit(const Register& lhs, |
- const Operand& rhs, |
- Condition cond, |
- Label* if_true, |
- Label* if_false, |
- Label* fall_through) { |
- if ((if_true == if_false) && (if_false == fall_through)) { |
- // Fall through. |
- } else if (if_true == if_false) { |
- B(if_true); |
- } else if (if_false == fall_through) { |
- CompareAndBranch(lhs, rhs, cond, if_true); |
- } else if (if_true == fall_through) { |
- CompareAndBranch(lhs, rhs, InvertCondition(cond), if_false); |
- } else { |
- CompareAndBranch(lhs, rhs, cond, if_true); |
- B(if_false); |
- } |
-} |
- |
- |
-void MacroAssembler::TestAndSplit(const Register& reg, |
- uint64_t bit_pattern, |
- Label* if_all_clear, |
- Label* if_any_set, |
- Label* fall_through) { |
- if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) { |
- // Fall through. |
- } else if (if_all_clear == if_any_set) { |
- B(if_all_clear); |
- } else if (if_all_clear == fall_through) { |
- TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); |
- } else if (if_any_set == fall_through) { |
- TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear); |
- } else { |
- TestAndBranchIfAnySet(reg, bit_pattern, if_any_set); |
- B(if_all_clear); |
- } |
-} |
- |
- |
-void MacroAssembler::CheckFastElements(Register map, |
- Register scratch, |
- Label* fail) { |
- STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
- STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
- STATIC_ASSERT(FAST_ELEMENTS == 2); |
- STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
- Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
- Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue); |
- B(hi, fail); |
-} |
- |
- |
-void MacroAssembler::CheckFastObjectElements(Register map, |
- Register scratch, |
- Label* fail) { |
- STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
- STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
- STATIC_ASSERT(FAST_ELEMENTS == 2); |
- STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
- Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
- Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); |
- // If cond==ls, set cond=hi, otherwise compare. |
- Ccmp(scratch, |
- Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi); |
- B(hi, fail); |
-} |
- |
- |
-// Note: The ARM version of this clobbers elements_reg, but this version does |
-// not. Some uses of this in A64 assume that elements_reg will be preserved. |
-void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, |
- Register key_reg, |
- Register elements_reg, |
- Register scratch1, |
- FPRegister fpscratch1, |
- FPRegister fpscratch2, |
- Label* fail, |
- int elements_offset) { |
- ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1)); |
- Label store_num; |
- |
- // Speculatively convert the smi to a double - all smis can be exactly |
- // represented as a double. |
- SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag); |
- |
- // If value_reg is a smi, we're done. |
- JumpIfSmi(value_reg, &store_num); |
- |
- // Ensure that the object is a heap number. |
- CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), |
- fail, DONT_DO_SMI_CHECK); |
- |
- Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); |
- Fmov(fpscratch2, FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
- |
- // Check for NaN by comparing the number to itself: NaN comparison will |
- // report unordered, indicated by the overflow flag being set. |
- Fcmp(fpscratch1, fpscratch1); |
- Fcsel(fpscratch1, fpscratch2, fpscratch1, vs); |
- |
- // Store the result. |
- Bind(&store_num); |
- Add(scratch1, elements_reg, |
- Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2)); |
- Str(fpscratch1, |
- FieldMemOperand(scratch1, |
- FixedDoubleArray::kHeaderSize - elements_offset)); |
-} |
- |
- |
-bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { |
- return has_frame_ || !stub->SometimesSetsUpAFrame(); |
-} |
- |
- |
-void MacroAssembler::IndexFromHash(Register hash, Register index) { |
- // If the hash field contains an array index pick it out. The assert checks |
- // that the constants for the maximum number of digits for an array index |
- // cached in the hash field and the number of bits reserved for it does not |
- // conflict. |
- ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
- (1 << String::kArrayIndexValueBits)); |
- // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in |
- // the low kHashShift bits. |
- STATIC_ASSERT(kSmiTag == 0); |
- Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits); |
- SmiTag(index, hash); |
-} |
- |
- |
-void MacroAssembler::EmitSeqStringSetCharCheck( |
- Register string, |
- Register index, |
- SeqStringSetCharCheckIndexType index_type, |
- Register scratch, |
- uint32_t encoding_mask) { |
- ASSERT(!AreAliased(string, index, scratch)); |
- |
- if (index_type == kIndexIsSmi) { |
- AssertSmi(index); |
- } |
- |
- // Check that string is an object. |
- AssertNotSmi(string, kNonObject); |
- |
- // Check that string has an appropriate map. |
- Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); |
- Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
- |
- And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask); |
- Cmp(scratch, encoding_mask); |
- Check(eq, kUnexpectedStringType); |
- |
- Ldr(scratch, FieldMemOperand(string, String::kLengthOffset)); |
- Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch)); |
- Check(lt, kIndexIsTooLarge); |
- |
- ASSERT_EQ(0, Smi::FromInt(0)); |
- Cmp(index, 0); |
- Check(ge, kIndexIsNegative); |
-} |
- |
- |
-void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
- Register scratch1, |
- Register scratch2, |
- Label* miss) { |
- ASSERT(!AreAliased(holder_reg, scratch1, scratch2)); |
- Label same_contexts; |
- |
- // Load current lexical context from the stack frame. |
- Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
- // In debug mode, make sure the lexical context is set. |
-#ifdef DEBUG |
- Cmp(scratch1, 0); |
- Check(ne, kWeShouldNotHaveAnEmptyLexicalContext); |
-#endif |
- |
- // Load the native context of the current context. |
- int offset = |
- Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; |
- Ldr(scratch1, FieldMemOperand(scratch1, offset)); |
- Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset)); |
- |
- // Check the context is a native context. |
- if (emit_debug_code()) { |
- // Read the first word and compare to the global_context_map. |
- Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset)); |
- CompareRoot(scratch2, Heap::kNativeContextMapRootIndex); |
- Check(eq, kExpectedNativeContext); |
- } |
- |
- // Check if both contexts are the same. |
- Ldr(scratch2, FieldMemOperand(holder_reg, |
- JSGlobalProxy::kNativeContextOffset)); |
- Cmp(scratch1, scratch2); |
- B(&same_contexts, eq); |
- |
- // Check the context is a native context. |
- if (emit_debug_code()) { |
- // We're short on scratch registers here, so use holder_reg as a scratch. |
- Push(holder_reg); |
- Register scratch3 = holder_reg; |
- |
- CompareRoot(scratch2, Heap::kNullValueRootIndex); |
- Check(ne, kExpectedNonNullContext); |
- |
- Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset)); |
- CompareRoot(scratch3, Heap::kNativeContextMapRootIndex); |
- Check(eq, kExpectedNativeContext); |
- Pop(holder_reg); |
- } |
- |
- // Check that the security token in the calling global object is |
- // compatible with the security token in the receiving global |
- // object. |
- int token_offset = Context::kHeaderSize + |
- Context::SECURITY_TOKEN_INDEX * kPointerSize; |
- |
- Ldr(scratch1, FieldMemOperand(scratch1, token_offset)); |
- Ldr(scratch2, FieldMemOperand(scratch2, token_offset)); |
- Cmp(scratch1, scratch2); |
- B(miss, ne); |
- |
- Bind(&same_contexts); |
-} |
- |
- |
-// Compute the hash code from the untagged key. This must be kept in sync with |
-// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in |
-// code-stub-hydrogen.cc |
-void MacroAssembler::GetNumberHash(Register key, Register scratch) { |
- ASSERT(!AreAliased(key, scratch)); |
- |
- // Xor original key with a seed. |
- LoadRoot(scratch, Heap::kHashSeedRootIndex); |
- Eor(key, key, Operand::UntagSmi(scratch)); |
- |
- // The algorithm uses 32-bit integer values. |
- key = key.W(); |
- scratch = scratch.W(); |
- |
- // Compute the hash code from the untagged key. This must be kept in sync |
- // with ComputeIntegerHash in utils.h. |
- // |
- // hash = ~hash + (hash <<1 15); |
- Mvn(scratch, key); |
- Add(key, scratch, Operand(key, LSL, 15)); |
- // hash = hash ^ (hash >> 12); |
- Eor(key, key, Operand(key, LSR, 12)); |
- // hash = hash + (hash << 2); |
- Add(key, key, Operand(key, LSL, 2)); |
- // hash = hash ^ (hash >> 4); |
- Eor(key, key, Operand(key, LSR, 4)); |
- // hash = hash * 2057; |
- Mov(scratch, Operand(key, LSL, 11)); |
- Add(key, key, Operand(key, LSL, 3)); |
- Add(key, key, scratch); |
- // hash = hash ^ (hash >> 16); |
- Eor(key, key, Operand(key, LSR, 16)); |
-} |
- |
- |
-void MacroAssembler::LoadFromNumberDictionary(Label* miss, |
- Register elements, |
- Register key, |
- Register result, |
- Register scratch0, |
- Register scratch1, |
- Register scratch2, |
- Register scratch3) { |
- ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3)); |
- |
- Label done; |
- |
- SmiUntag(scratch0, key); |
- GetNumberHash(scratch0, scratch1); |
- |
- // Compute the capacity mask. |
- Ldrsw(scratch1, |
- UntagSmiFieldMemOperand(elements, |
- SeededNumberDictionary::kCapacityOffset)); |
- Sub(scratch1, scratch1, 1); |
- |
- // Generate an unrolled loop that performs a few probes before giving up. |
- for (int i = 0; i < kNumberDictionaryProbes; i++) { |
- // Compute the masked index: (hash + i + i * i) & mask. |
- if (i > 0) { |
- Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i)); |
- } else { |
- Mov(scratch2, scratch0); |
- } |
- And(scratch2, scratch2, scratch1); |
- |
- // Scale the index by multiplying by the element size. |
- ASSERT(SeededNumberDictionary::kEntrySize == 3); |
- Add(scratch2, scratch2, Operand(scratch2, LSL, 1)); |
- |
- // Check if the key is identical to the name. |
- Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2)); |
- Ldr(scratch3, |
- FieldMemOperand(scratch2, |
- SeededNumberDictionary::kElementsStartOffset)); |
- Cmp(key, scratch3); |
- if (i != (kNumberDictionaryProbes - 1)) { |
- B(eq, &done); |
- } else { |
- B(ne, miss); |
- } |
- } |
- |
- Bind(&done); |
- // Check that the value is a normal property. |
- const int kDetailsOffset = |
- SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
- Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset)); |
- TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss); |
- |
- // Get the value at the masked, scaled index and return. |
- const int kValueOffset = |
- SeededNumberDictionary::kElementsStartOffset + kPointerSize; |
- Ldr(result, FieldMemOperand(scratch2, kValueOffset)); |
-} |
- |
- |
-void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. |
- Register address, |
- Register scratch1, |
- SaveFPRegsMode fp_mode, |
- RememberedSetFinalAction and_then) { |
- ASSERT(!AreAliased(object, address, scratch1)); |
- Label done, store_buffer_overflow; |
- if (emit_debug_code()) { |
- Label ok; |
- JumpIfNotInNewSpace(object, &ok); |
- Abort(kRememberedSetPointerInNewSpace); |
- bind(&ok); |
- } |
- UseScratchRegisterScope temps(this); |
- Register scratch2 = temps.AcquireX(); |
- |
- // Load store buffer top. |
- Mov(scratch2, ExternalReference::store_buffer_top(isolate())); |
- Ldr(scratch1, MemOperand(scratch2)); |
- // Store pointer to buffer and increment buffer top. |
- Str(address, MemOperand(scratch1, kPointerSize, PostIndex)); |
- // Write back new top of buffer. |
- Str(scratch1, MemOperand(scratch2)); |
- // Call stub on end of buffer. |
- // Check for end of buffer. |
- ASSERT(StoreBuffer::kStoreBufferOverflowBit == |
- (1 << (14 + kPointerSizeLog2))); |
- if (and_then == kFallThroughAtEnd) { |
- Tbz(scratch1, (14 + kPointerSizeLog2), &done); |
- } else { |
- ASSERT(and_then == kReturnAtEnd); |
- Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow); |
- Ret(); |
- } |
- |
- Bind(&store_buffer_overflow); |
- Push(lr); |
- StoreBufferOverflowStub store_buffer_overflow_stub = |
- StoreBufferOverflowStub(fp_mode); |
- CallStub(&store_buffer_overflow_stub); |
- Pop(lr); |
- |
- Bind(&done); |
- if (and_then == kReturnAtEnd) { |
- Ret(); |
- } |
-} |
- |
- |
-void MacroAssembler::PopSafepointRegisters() { |
- const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
- PopXRegList(kSafepointSavedRegisters); |
- Drop(num_unsaved); |
-} |
- |
- |
-void MacroAssembler::PushSafepointRegisters() { |
- // Safepoints expect a block of kNumSafepointRegisters values on the stack, so |
- // adjust the stack for unsaved registers. |
- const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
- ASSERT(num_unsaved >= 0); |
- Claim(num_unsaved); |
- PushXRegList(kSafepointSavedRegisters); |
-} |
- |
- |
-void MacroAssembler::PushSafepointFPRegisters() { |
- PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, |
- FPRegister::kAllocatableFPRegisters)); |
-} |
- |
- |
-void MacroAssembler::PopSafepointFPRegisters() { |
- PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, |
- FPRegister::kAllocatableFPRegisters)); |
-} |
- |
- |
-int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
- // Make sure the safepoint registers list is what we expect. |
- ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff); |
- |
- // Safepoint registers are stored contiguously on the stack, but not all the |
- // registers are saved. The following registers are excluded: |
- // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of |
- // the macro assembler. |
- // - x28 (jssp) because JS stack pointer doesn't need to be included in |
- // safepoint registers. |
- // - x31 (csp) because the system stack pointer doesn't need to be included |
- // in safepoint registers. |
- // |
- // This function implements the mapping of register code to index into the |
- // safepoint register slots. |
- if ((reg_code >= 0) && (reg_code <= 15)) { |
- return reg_code; |
- } else if ((reg_code >= 18) && (reg_code <= 27)) { |
- // Skip ip0 and ip1. |
- return reg_code - 2; |
- } else if ((reg_code == 29) || (reg_code == 30)) { |
- // Also skip jssp. |
- return reg_code - 3; |
- } else { |
- // This register has no safepoint register slot. |
- UNREACHABLE(); |
- return -1; |
- } |
-} |
- |
- |
-void MacroAssembler::CheckPageFlagSet(const Register& object, |
- const Register& scratch, |
- int mask, |
- Label* if_any_set) { |
- And(scratch, object, ~Page::kPageAlignmentMask); |
- Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
- TestAndBranchIfAnySet(scratch, mask, if_any_set); |
-} |
- |
- |
-void MacroAssembler::CheckPageFlagClear(const Register& object, |
- const Register& scratch, |
- int mask, |
- Label* if_all_clear) { |
- And(scratch, object, ~Page::kPageAlignmentMask); |
- Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
- TestAndBranchIfAllClear(scratch, mask, if_all_clear); |
-} |
- |
- |
-void MacroAssembler::RecordWriteField( |
- Register object, |
- int offset, |
- Register value, |
- Register scratch, |
- LinkRegisterStatus lr_status, |
- SaveFPRegsMode save_fp, |
- RememberedSetAction remembered_set_action, |
- SmiCheck smi_check) { |
- // First, check if a write barrier is even needed. The tests below |
- // catch stores of Smis. |
- Label done; |
- |
- // Skip the barrier if writing a smi. |
- if (smi_check == INLINE_SMI_CHECK) { |
- JumpIfSmi(value, &done); |
- } |
- |
- // Although the object register is tagged, the offset is relative to the start |
- // of the object, so offset must be a multiple of kPointerSize. |
- ASSERT(IsAligned(offset, kPointerSize)); |
- |
- Add(scratch, object, offset - kHeapObjectTag); |
- if (emit_debug_code()) { |
- Label ok; |
- Tst(scratch, (1 << kPointerSizeLog2) - 1); |
- B(eq, &ok); |
- Abort(kUnalignedCellInWriteBarrier); |
- Bind(&ok); |
- } |
- |
- RecordWrite(object, |
- scratch, |
- value, |
- lr_status, |
- save_fp, |
- remembered_set_action, |
- OMIT_SMI_CHECK); |
- |
- Bind(&done); |
- |
- // Clobber clobbered input registers when running with the debug-code flag |
- // turned on to provoke errors. |
- if (emit_debug_code()) { |
- Mov(value, Operand(BitCast<int64_t>(kZapValue + 4))); |
- Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8))); |
- } |
-} |
- |
- |
-// Will clobber: object, address, value. |
-// If lr_status is kLRHasBeenSaved, lr will also be clobbered. |
-// |
-// The register 'object' contains a heap object pointer. The heap object tag is |
-// shifted away. |
-void MacroAssembler::RecordWrite(Register object, |
- Register address, |
- Register value, |
- LinkRegisterStatus lr_status, |
- SaveFPRegsMode fp_mode, |
- RememberedSetAction remembered_set_action, |
- SmiCheck smi_check) { |
- ASM_LOCATION("MacroAssembler::RecordWrite"); |
- ASSERT(!AreAliased(object, value)); |
- |
- if (emit_debug_code()) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- |
- Ldr(temp, MemOperand(address)); |
- Cmp(temp, value); |
- Check(eq, kWrongAddressOrValuePassedToRecordWrite); |
- } |
- |
- // Count number of write barriers in generated code. |
- isolate()->counters()->write_barriers_static()->Increment(); |
- // TODO(mstarzinger): Dynamic counter missing. |
- |
- // First, check if a write barrier is even needed. The tests below |
- // catch stores of smis and stores into the young generation. |
- Label done; |
- |
- if (smi_check == INLINE_SMI_CHECK) { |
- ASSERT_EQ(0, kSmiTag); |
- JumpIfSmi(value, &done); |
- } |
- |
- CheckPageFlagClear(value, |
- value, // Used as scratch. |
- MemoryChunk::kPointersToHereAreInterestingMask, |
- &done); |
- CheckPageFlagClear(object, |
- value, // Used as scratch. |
- MemoryChunk::kPointersFromHereAreInterestingMask, |
- &done); |
- |
- // Record the actual write. |
- if (lr_status == kLRHasNotBeenSaved) { |
- Push(lr); |
- } |
- RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); |
- CallStub(&stub); |
- if (lr_status == kLRHasNotBeenSaved) { |
- Pop(lr); |
- } |
- |
- Bind(&done); |
- |
- // Clobber clobbered registers when running with the debug-code flag |
- // turned on to provoke errors. |
- if (emit_debug_code()) { |
- Mov(address, Operand(BitCast<int64_t>(kZapValue + 12))); |
- Mov(value, Operand(BitCast<int64_t>(kZapValue + 16))); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertHasValidColor(const Register& reg) { |
- if (emit_debug_code()) { |
- // The bit sequence is backward. The first character in the string |
- // represents the least significant bit. |
- ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); |
- |
- Label color_is_valid; |
- Tbnz(reg, 0, &color_is_valid); |
- Tbz(reg, 1, &color_is_valid); |
- Abort(kUnexpectedColorFound); |
- Bind(&color_is_valid); |
- } |
-} |
- |
- |
-void MacroAssembler::GetMarkBits(Register addr_reg, |
- Register bitmap_reg, |
- Register shift_reg) { |
- ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg)); |
- ASSERT(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits()); |
- // addr_reg is divided into fields: |
- // |63 page base 20|19 high 8|7 shift 3|2 0| |
- // 'high' gives the index of the cell holding color bits for the object. |
- // 'shift' gives the offset in the cell for this object's color. |
- const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits); |
- Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask); |
- Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2)); |
- // bitmap_reg: |
- // |63 page base 20|19 zeros 15|14 high 3|2 0| |
- Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); |
-} |
- |
- |
-void MacroAssembler::HasColor(Register object, |
- Register bitmap_scratch, |
- Register shift_scratch, |
- Label* has_color, |
- int first_bit, |
- int second_bit) { |
- // See mark-compact.h for color definitions. |
- ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch)); |
- |
- GetMarkBits(object, bitmap_scratch, shift_scratch); |
- Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
- // Shift the bitmap down to get the color of the object in bits [1:0]. |
- Lsr(bitmap_scratch, bitmap_scratch, shift_scratch); |
- |
- AssertHasValidColor(bitmap_scratch); |
- |
- // These bit sequences are backwards. The first character in the string |
- // represents the least significant bit. |
- ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
- ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
- ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
- |
- // Check for the color. |
- if (first_bit == 0) { |
- // Checking for white. |
- ASSERT(second_bit == 0); |
- // We only need to test the first bit. |
- Tbz(bitmap_scratch, 0, has_color); |
- } else { |
- Label other_color; |
- // Checking for grey or black. |
- Tbz(bitmap_scratch, 0, &other_color); |
- if (second_bit == 0) { |
- Tbz(bitmap_scratch, 1, has_color); |
- } else { |
- Tbnz(bitmap_scratch, 1, has_color); |
- } |
- Bind(&other_color); |
- } |
- |
- // Fall through if it does not have the right color. |
-} |
- |
- |
-void MacroAssembler::CheckMapDeprecated(Handle<Map> map, |
- Register scratch, |
- Label* if_deprecated) { |
- if (map->CanBeDeprecated()) { |
- Mov(scratch, Operand(map)); |
- Ldrsw(scratch, UntagSmiFieldMemOperand(scratch, Map::kBitField3Offset)); |
- TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated); |
- } |
-} |
- |
- |
-void MacroAssembler::JumpIfBlack(Register object, |
- Register scratch0, |
- Register scratch1, |
- Label* on_black) { |
- ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
- HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. |
-} |
- |
- |
-void MacroAssembler::JumpIfDictionaryInPrototypeChain( |
- Register object, |
- Register scratch0, |
- Register scratch1, |
- Label* found) { |
- ASSERT(!AreAliased(object, scratch0, scratch1)); |
- Factory* factory = isolate()->factory(); |
- Register current = scratch0; |
- Label loop_again; |
- |
- // Scratch contains elements pointer. |
- Mov(current, object); |
- |
- // Loop based on the map going up the prototype chain. |
- Bind(&loop_again); |
- Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset)); |
- Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); |
- Ubfx(scratch1, scratch1, Map::kElementsKindShift, Map::kElementsKindBitCount); |
- CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found); |
- Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset)); |
- CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again); |
-} |
- |
- |
-void MacroAssembler::GetRelocatedValueLocation(Register ldr_location, |
- Register result) { |
- ASSERT(!result.Is(ldr_location)); |
- const uint32_t kLdrLitOffset_lsb = 5; |
- const uint32_t kLdrLitOffset_width = 19; |
- Ldr(result, MemOperand(ldr_location)); |
- if (emit_debug_code()) { |
- And(result, result, LoadLiteralFMask); |
- Cmp(result, LoadLiteralFixed); |
- Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral); |
- // The instruction was clobbered. Reload it. |
- Ldr(result, MemOperand(ldr_location)); |
- } |
- Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width); |
- Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2)); |
-} |
- |
- |
-void MacroAssembler::EnsureNotWhite( |
- Register value, |
- Register bitmap_scratch, |
- Register shift_scratch, |
- Register load_scratch, |
- Register length_scratch, |
- Label* value_is_white_and_not_data) { |
- ASSERT(!AreAliased( |
- value, bitmap_scratch, shift_scratch, load_scratch, length_scratch)); |
- |
- // These bit sequences are backwards. The first character in the string |
- // represents the least significant bit. |
- ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
- ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
- ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
- |
- GetMarkBits(value, bitmap_scratch, shift_scratch); |
- Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
- Lsr(load_scratch, load_scratch, shift_scratch); |
- |
- AssertHasValidColor(load_scratch); |
- |
- // If the value is black or grey we don't need to do anything. |
- // Since both black and grey have a 1 in the first position and white does |
- // not have a 1 there we only need to check one bit. |
- Label done; |
- Tbnz(load_scratch, 0, &done); |
- |
- // Value is white. We check whether it is data that doesn't need scanning. |
- Register map = load_scratch; // Holds map while checking type. |
- Label is_data_object; |
- |
- // Check for heap-number. |
- Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
- Mov(length_scratch, HeapNumber::kSize); |
- JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object); |
- |
- // Check for strings. |
- ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
- ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
- // If it's a string and it's not a cons string then it's an object containing |
- // no GC pointers. |
- Register instance_type = load_scratch; |
- Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
- TestAndBranchIfAnySet(instance_type, |
- kIsIndirectStringMask | kIsNotStringMask, |
- value_is_white_and_not_data); |
- |
- // It's a non-indirect (non-cons and non-slice) string. |
- // If it's external, the length is just ExternalString::kSize. |
- // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). |
- // External strings are the only ones with the kExternalStringTag bit |
- // set. |
- ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); |
- ASSERT_EQ(0, kConsStringTag & kExternalStringTag); |
- Mov(length_scratch, ExternalString::kSize); |
- TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object); |
- |
- // Sequential string, either ASCII or UC16. |
- // For ASCII (char-size of 1) we shift the smi tag away to get the length. |
- // For UC16 (char-size of 2) we just leave the smi tag in place, thereby |
- // getting the length multiplied by 2. |
- ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4); |
- Ldrsw(length_scratch, UntagSmiFieldMemOperand(value, |
- String::kLengthOffset)); |
- Tst(instance_type, kStringEncodingMask); |
- Cset(load_scratch, eq); |
- Lsl(length_scratch, length_scratch, load_scratch); |
- Add(length_scratch, |
- length_scratch, |
- SeqString::kHeaderSize + kObjectAlignmentMask); |
- Bic(length_scratch, length_scratch, kObjectAlignmentMask); |
- |
- Bind(&is_data_object); |
- // Value is a data object, and it is white. Mark it black. Since we know |
- // that the object is white we can make it black by flipping one bit. |
- Register mask = shift_scratch; |
- Mov(load_scratch, 1); |
- Lsl(mask, load_scratch, shift_scratch); |
- |
- Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
- Orr(load_scratch, load_scratch, mask); |
- Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
- |
- Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask); |
- Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
- Add(load_scratch, load_scratch, length_scratch); |
- Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
- |
- Bind(&done); |
-} |
- |
- |
-void MacroAssembler::Assert(Condition cond, BailoutReason reason) { |
- if (emit_debug_code()) { |
- Check(cond, reason); |
- } |
-} |
- |
- |
- |
-void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) { |
- if (emit_debug_code()) { |
- CheckRegisterIsClear(reg, reason); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertRegisterIsRoot(Register reg, |
- Heap::RootListIndex index, |
- BailoutReason reason) { |
- if (emit_debug_code()) { |
- CompareRoot(reg, index); |
- Check(eq, reason); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertFastElements(Register elements) { |
- if (emit_debug_code()) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- Label ok; |
- Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset)); |
- JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok); |
- JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok); |
- JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok); |
- Abort(kJSObjectWithFastElementsMapHasSlowElements); |
- Bind(&ok); |
- } |
-} |
- |
- |
-void MacroAssembler::AssertIsString(const Register& object) { |
- if (emit_debug_code()) { |
- UseScratchRegisterScope temps(this); |
- Register temp = temps.AcquireX(); |
- STATIC_ASSERT(kSmiTag == 0); |
- Tst(object, kSmiTagMask); |
- Check(ne, kOperandIsNotAString); |
- Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); |
- CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE); |
- Check(lo, kOperandIsNotAString); |
- } |
-} |
- |
- |
-void MacroAssembler::Check(Condition cond, BailoutReason reason) { |
- Label ok; |
- B(cond, &ok); |
- Abort(reason); |
- // Will not return here. |
- Bind(&ok); |
-} |
- |
- |
-void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) { |
- Label ok; |
- Cbz(reg, &ok); |
- Abort(reason); |
- // Will not return here. |
- Bind(&ok); |
-} |
- |
- |
-void MacroAssembler::Abort(BailoutReason reason) { |
-#ifdef DEBUG |
- RecordComment("Abort message: "); |
- RecordComment(GetBailoutReason(reason)); |
- |
- if (FLAG_trap_on_abort) { |
- Brk(0); |
- return; |
- } |
-#endif |
- |
- // Abort is used in some contexts where csp is the stack pointer. In order to |
- // simplify the CallRuntime code, make sure that jssp is the stack pointer. |
- // There is no risk of register corruption here because Abort doesn't return. |
- Register old_stack_pointer = StackPointer(); |
- SetStackPointer(jssp); |
- Mov(jssp, old_stack_pointer); |
- |
- // We need some scratch registers for the MacroAssembler, so make sure we have |
- // some. This is safe here because Abort never returns. |
- RegList old_tmp_list = TmpList()->list(); |
- TmpList()->Combine(ip0); |
- TmpList()->Combine(ip1); |
- |
- if (use_real_aborts()) { |
- // Avoid infinite recursion; Push contains some assertions that use Abort. |
- NoUseRealAbortsScope no_real_aborts(this); |
- |
- Mov(x0, Smi::FromInt(reason)); |
- Push(x0); |
- |
- if (!has_frame_) { |
- // We don't actually want to generate a pile of code for this, so just |
- // claim there is a stack frame, without generating one. |
- FrameScope scope(this, StackFrame::NONE); |
- CallRuntime(Runtime::kAbort, 1); |
- } else { |
- CallRuntime(Runtime::kAbort, 1); |
- } |
- } else { |
- // Load the string to pass to Printf. |
- Label msg_address; |
- Adr(x0, &msg_address); |
- |
- // Call Printf directly to report the error. |
- CallPrintf(); |
- |
- // We need a way to stop execution on both the simulator and real hardware, |
- // and Unreachable() is the best option. |
- Unreachable(); |
- |
- // Emit the message string directly in the instruction stream. |
- { |
- BlockPoolsScope scope(this); |
- Bind(&msg_address); |
- EmitStringData(GetBailoutReason(reason)); |
- } |
- } |
- |
- SetStackPointer(old_stack_pointer); |
- TmpList()->set_list(old_tmp_list); |
-} |
- |
- |
-void MacroAssembler::LoadTransitionedArrayMapConditional( |
- ElementsKind expected_kind, |
- ElementsKind transitioned_kind, |
- Register map_in_out, |
- Register scratch1, |
- Register scratch2, |
- Label* no_map_match) { |
- // Load the global or builtins object from the current context. |
- Ldr(scratch1, GlobalObjectMemOperand()); |
- Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset)); |
- |
- // Check that the function's map is the same as the expected cached map. |
- Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX)); |
- size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize; |
- Ldr(scratch2, FieldMemOperand(scratch1, offset)); |
- Cmp(map_in_out, scratch2); |
- B(ne, no_map_match); |
- |
- // Use the transitioned cached map. |
- offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize; |
- Ldr(map_in_out, FieldMemOperand(scratch1, offset)); |
-} |
- |
- |
-void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
- // Load the global or builtins object from the current context. |
- Ldr(function, GlobalObjectMemOperand()); |
- // Load the native context from the global or builtins object. |
- Ldr(function, FieldMemOperand(function, |
- GlobalObject::kNativeContextOffset)); |
- // Load the function from the native context. |
- Ldr(function, ContextMemOperand(function, index)); |
-} |
- |
- |
-void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
- Register map, |
- Register scratch) { |
- // Load the initial map. The global functions all have initial maps. |
- Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
- if (emit_debug_code()) { |
- Label ok, fail; |
- CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); |
- B(&ok); |
- Bind(&fail); |
- Abort(kGlobalFunctionsMustHaveInitialMap); |
- Bind(&ok); |
- } |
-} |
- |
- |
-// This is the main Printf implementation. All other Printf variants call |
-// PrintfNoPreserve after setting up one or more PreserveRegisterScopes. |
-void MacroAssembler::PrintfNoPreserve(const char * format, |
- const CPURegister& arg0, |
- const CPURegister& arg1, |
- const CPURegister& arg2, |
- const CPURegister& arg3) { |
- // We cannot handle a caller-saved stack pointer. It doesn't make much sense |
- // in most cases anyway, so this restriction shouldn't be too serious. |
- ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer())); |
- |
- // Make sure that the macro assembler doesn't try to use any of our arguments |
- // as scratch registers. |
- ASSERT(!TmpList()->IncludesAliasOf(arg0, arg1, arg2, arg3)); |
- ASSERT(!FPTmpList()->IncludesAliasOf(arg0, arg1, arg2, arg3)); |
- |
- // We cannot print the stack pointer because it is typically used to preserve |
- // caller-saved registers (using other Printf variants which depend on this |
- // helper). |
- ASSERT(!AreAliased(arg0, StackPointer())); |
- ASSERT(!AreAliased(arg1, StackPointer())); |
- ASSERT(!AreAliased(arg2, StackPointer())); |
- ASSERT(!AreAliased(arg3, StackPointer())); |
- |
- static const int kMaxArgCount = 4; |
- // Assume that we have the maximum number of arguments until we know |
- // otherwise. |
- int arg_count = kMaxArgCount; |
- |
- // The provided arguments. |
- CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3}; |
- |
- // The PCS registers where the arguments need to end up. |
- CPURegister pcs[kMaxArgCount] = {NoCPUReg, NoCPUReg, NoCPUReg, NoCPUReg}; |
- |
- // Promote FP arguments to doubles, and integer arguments to X registers. |
- // Note that FP and integer arguments cannot be mixed, but we'll check |
- // AreSameSizeAndType once we've processed these promotions. |
- for (int i = 0; i < kMaxArgCount; i++) { |
- if (args[i].IsRegister()) { |
- // Note that we use x1 onwards, because x0 will hold the format string. |
- pcs[i] = Register::XRegFromCode(i + 1); |
- // For simplicity, we handle all integer arguments as X registers. An X |
- // register argument takes the same space as a W register argument in the |
- // PCS anyway. The only limitation is that we must explicitly clear the |
- // top word for W register arguments as the callee will expect it to be |
- // clear. |
- if (!args[i].Is64Bits()) { |
- const Register& as_x = args[i].X(); |
- And(as_x, as_x, 0x00000000ffffffff); |
- args[i] = as_x; |
- } |
- } else if (args[i].IsFPRegister()) { |
- pcs[i] = FPRegister::DRegFromCode(i); |
- // C and C++ varargs functions (such as printf) implicitly promote float |
- // arguments to doubles. |
- if (!args[i].Is64Bits()) { |
- FPRegister s(args[i]); |
- const FPRegister& as_d = args[i].D(); |
- Fcvt(as_d, s); |
- args[i] = as_d; |
- } |
- } else { |
- // This is the first empty (NoCPUReg) argument, so use it to set the |
- // argument count and bail out. |
- arg_count = i; |
- break; |
- } |
- } |
- ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount)); |
- // Check that every remaining argument is NoCPUReg. |
- for (int i = arg_count; i < kMaxArgCount; i++) { |
- ASSERT(args[i].IsNone()); |
- } |
- ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1], |
- args[2], args[3], |
- pcs[0], pcs[1], |
- pcs[2], pcs[3])); |
- |
- // Move the arguments into the appropriate PCS registers. |
- // |
- // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is |
- // surprisingly complicated. |
- // |
- // * For even numbers of registers, we push the arguments and then pop them |
- // into their final registers. This maintains 16-byte stack alignment in |
- // case csp is the stack pointer, since we're only handling X or D |
- // registers at this point. |
- // |
- // * For odd numbers of registers, we push and pop all but one register in |
- // the same way, but the left-over register is moved directly, since we |
- // can always safely move one register without clobbering any source. |
- if (arg_count >= 4) { |
- Push(args[3], args[2], args[1], args[0]); |
- } else if (arg_count >= 2) { |
- Push(args[1], args[0]); |
- } |
- |
- if ((arg_count % 2) != 0) { |
- // Move the left-over register directly. |
- const CPURegister& leftover_arg = args[arg_count - 1]; |
- const CPURegister& leftover_pcs = pcs[arg_count - 1]; |
- if (leftover_arg.IsRegister()) { |
- Mov(Register(leftover_pcs), Register(leftover_arg)); |
- } else { |
- Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg)); |
- } |
- } |
- |
- if (arg_count >= 4) { |
- Pop(pcs[0], pcs[1], pcs[2], pcs[3]); |
- } else if (arg_count >= 2) { |
- Pop(pcs[0], pcs[1]); |
- } |
- |
- // Load the format string into x0, as per the procedure-call standard. |
- // |
- // To make the code as portable as possible, the format string is encoded |
- // directly in the instruction stream. It might be cleaner to encode it in a |
- // literal pool, but since Printf is usually used for debugging, it is |
- // beneficial for it to be minimally dependent on other features. |
- Label format_address; |
- Adr(x0, &format_address); |
- |
- // Emit the format string directly in the instruction stream. |
- { BlockPoolsScope scope(this); |
- Label after_data; |
- B(&after_data); |
- Bind(&format_address); |
- EmitStringData(format); |
- Unreachable(); |
- Bind(&after_data); |
- } |
- |
- // We don't pass any arguments on the stack, but we still need to align the C |
- // stack pointer to a 16-byte boundary for PCS compliance. |
- if (!csp.Is(StackPointer())) { |
- Bic(csp, StackPointer(), 0xf); |
- } |
- |
- CallPrintf(pcs[0].type()); |
-} |
- |
- |
-void MacroAssembler::CallPrintf(CPURegister::RegisterType type) { |
- // A call to printf needs special handling for the simulator, since the system |
- // printf function will use a different instruction set and the procedure-call |
- // standard will not be compatible. |
-#ifdef USE_SIMULATOR |
- { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize); |
- hlt(kImmExceptionIsPrintf); |
- dc32(type); |
- } |
-#else |
- Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE); |
-#endif |
-} |
- |
- |
-void MacroAssembler::Printf(const char * format, |
- const CPURegister& arg0, |
- const CPURegister& arg1, |
- const CPURegister& arg2, |
- const CPURegister& arg3) { |
- // Printf is expected to preserve all registers, so make sure that none are |
- // available as scratch registers until we've preserved them. |
- RegList old_tmp_list = TmpList()->list(); |
- RegList old_fp_tmp_list = FPTmpList()->list(); |
- TmpList()->set_list(0); |
- FPTmpList()->set_list(0); |
- |
- // Preserve all caller-saved registers as well as NZCV. |
- // If csp is the stack pointer, PushCPURegList asserts that the size of each |
- // list is a multiple of 16 bytes. |
- PushCPURegList(kCallerSaved); |
- PushCPURegList(kCallerSavedFP); |
- |
- // We can use caller-saved registers as scratch values (except for argN). |
- CPURegList tmp_list = kCallerSaved; |
- CPURegList fp_tmp_list = kCallerSavedFP; |
- tmp_list.Remove(arg0, arg1, arg2, arg3); |
- fp_tmp_list.Remove(arg0, arg1, arg2, arg3); |
- TmpList()->set_list(tmp_list.list()); |
- FPTmpList()->set_list(fp_tmp_list.list()); |
- |
- // Preserve NZCV. |
- { UseScratchRegisterScope temps(this); |
- Register tmp = temps.AcquireX(); |
- Mrs(tmp, NZCV); |
- Push(tmp, xzr); |
- } |
- |
- PrintfNoPreserve(format, arg0, arg1, arg2, arg3); |
- |
- { UseScratchRegisterScope temps(this); |
- Register tmp = temps.AcquireX(); |
- Pop(xzr, tmp); |
- Msr(NZCV, tmp); |
- } |
- |
- PopCPURegList(kCallerSavedFP); |
- PopCPURegList(kCallerSaved); |
- |
- TmpList()->set_list(old_tmp_list); |
- FPTmpList()->set_list(old_fp_tmp_list); |
-} |
- |
- |
-void MacroAssembler::EmitFrameSetupForCodeAgePatching() { |
- // TODO(jbramley): Other architectures use the internal memcpy to copy the |
- // sequence. If this is a performance bottleneck, we should consider caching |
- // the sequence and copying it in the same way. |
- InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize); |
- ASSERT(jssp.Is(StackPointer())); |
- EmitFrameSetupForCodeAgePatching(this); |
-} |
- |
- |
- |
-void MacroAssembler::EmitCodeAgeSequence(Code* stub) { |
- InstructionAccurateScope scope(this, kCodeAgeSequenceSize / kInstructionSize); |
- ASSERT(jssp.Is(StackPointer())); |
- EmitCodeAgeSequence(this, stub); |
-} |
- |
- |
-#undef __ |
-#define __ assm-> |
- |
- |
-void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) { |
- Label start; |
- __ bind(&start); |
- |
- // We can do this sequence using four instructions, but the code ageing |
- // sequence that patches it needs five, so we use the extra space to try to |
- // simplify some addressing modes and remove some dependencies (compared to |
- // using two stp instructions with write-back). |
- __ sub(jssp, jssp, 4 * kXRegSize); |
- __ sub(csp, csp, 4 * kXRegSize); |
- __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize)); |
- __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize)); |
- __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); |
- |
- __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize); |
-} |
- |
- |
-void MacroAssembler::EmitCodeAgeSequence(Assembler * assm, |
- Code * stub) { |
- Label start; |
- __ bind(&start); |
- // When the stub is called, the sequence is replaced with the young sequence |
- // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the |
- // stub jumps to &start, stored in x0. The young sequence does not call the |
- // stub so there is no infinite loop here. |
- // |
- // A branch (br) is used rather than a call (blr) because this code replaces |
- // the frame setup code that would normally preserve lr. |
- __ LoadLiteral(ip0, kCodeAgeStubEntryOffset); |
- __ adr(x0, &start); |
- __ br(ip0); |
- // IsCodeAgeSequence in codegen-a64.cc assumes that the code generated up |
- // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences. |
- __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset); |
- if (stub) { |
- __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start())); |
- __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeSequenceSize); |
- } |
-} |
- |
- |
-bool MacroAssembler::IsYoungSequence(byte* sequence) { |
- // Generate a young sequence to compare with. |
- const int length = kCodeAgeSequenceSize / kInstructionSize; |
- static bool initialized = false; |
- static byte young[kCodeAgeSequenceSize]; |
- if (!initialized) { |
- PatchingAssembler patcher(young, length); |
- // The young sequence is the frame setup code for FUNCTION code types. It is |
- // generated by FullCodeGenerator::Generate. |
- MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher); |
- initialized = true; |
- } |
- |
- bool is_young = (memcmp(sequence, young, kCodeAgeSequenceSize) == 0); |
- ASSERT(is_young || IsCodeAgeSequence(sequence)); |
- return is_young; |
-} |
- |
- |
-#ifdef DEBUG |
-bool MacroAssembler::IsCodeAgeSequence(byte* sequence) { |
- // The old sequence varies depending on the code age. However, the code up |
- // until kCodeAgeStubEntryOffset does not change, so we can check that part to |
- // get a reasonable level of verification. |
- const int length = kCodeAgeStubEntryOffset / kInstructionSize; |
- static bool initialized = false; |
- static byte old[kCodeAgeStubEntryOffset]; |
- if (!initialized) { |
- PatchingAssembler patcher(old, length); |
- MacroAssembler::EmitCodeAgeSequence(&patcher, NULL); |
- initialized = true; |
- } |
- return memcmp(sequence, old, kCodeAgeStubEntryOffset) == 0; |
-} |
-#endif |
- |
- |
-void MacroAssembler::TruncatingDiv(Register result, |
- Register dividend, |
- int32_t divisor) { |
- ASSERT(!AreAliased(result, dividend)); |
- ASSERT(result.Is32Bits() && dividend.Is32Bits()); |
- MultiplierAndShift ms(divisor); |
- Mov(result, ms.multiplier()); |
- Smull(result.X(), dividend, result); |
- Asr(result.X(), result.X(), 32); |
- if (divisor > 0 && ms.multiplier() < 0) Add(result, result, dividend); |
- if (divisor < 0 && ms.multiplier() > 0) Sub(result, result, dividend); |
- if (ms.shift() > 0) Asr(result, result, ms.shift()); |
- Add(result, result, Operand(dividend, LSR, 31)); |
-} |
- |
- |
-#undef __ |
- |
- |
-UseScratchRegisterScope::~UseScratchRegisterScope() { |
- available_->set_list(old_available_); |
- availablefp_->set_list(old_availablefp_); |
-} |
- |
- |
-Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) { |
- int code = AcquireNextAvailable(available_).code(); |
- return Register::Create(code, reg.SizeInBits()); |
-} |
- |
- |
-FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) { |
- int code = AcquireNextAvailable(availablefp_).code(); |
- return FPRegister::Create(code, reg.SizeInBits()); |
-} |
- |
- |
-CPURegister UseScratchRegisterScope::AcquireNextAvailable( |
- CPURegList* available) { |
- CHECK(!available->IsEmpty()); |
- CPURegister result = available->PopLowestIndex(); |
- ASSERT(!AreAliased(result, xzr, csp)); |
- return result; |
-} |
- |
- |
-#define __ masm-> |
- |
- |
-void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg, |
- const Label* smi_check) { |
- Assembler::BlockPoolsScope scope(masm); |
- if (reg.IsValid()) { |
- ASSERT(smi_check->is_bound()); |
- ASSERT(reg.Is64Bits()); |
- |
- // Encode the register (x0-x30) in the lowest 5 bits, then the offset to |
- // 'check' in the other bits. The possible offset is limited in that we |
- // use BitField to pack the data, and the underlying data type is a |
- // uint32_t. |
- uint32_t delta = __ InstructionsGeneratedSince(smi_check); |
- __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta)); |
- } else { |
- ASSERT(!smi_check->is_bound()); |
- |
- // An offset of 0 indicates that there is no patch site. |
- __ InlineData(0); |
- } |
-} |
- |
- |
-InlineSmiCheckInfo::InlineSmiCheckInfo(Address info) |
- : reg_(NoReg), smi_check_(NULL) { |
- InstructionSequence* inline_data = InstructionSequence::At(info); |
- ASSERT(inline_data->IsInlineData()); |
- if (inline_data->IsInlineData()) { |
- uint64_t payload = inline_data->InlineData(); |
- // We use BitField to decode the payload, and BitField can only handle |
- // 32-bit values. |
- ASSERT(is_uint32(payload)); |
- if (payload != 0) { |
- int reg_code = RegisterBits::decode(payload); |
- reg_ = Register::XRegFromCode(reg_code); |
- uint64_t smi_check_delta = DeltaBits::decode(payload); |
- ASSERT(smi_check_delta != 0); |
- smi_check_ = inline_data->preceding(smi_check_delta); |
- } |
- } |
-} |
- |
- |
-#undef __ |
- |
- |
-} } // namespace v8::internal |
- |
-#endif // V8_TARGET_ARCH_A64 |