Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(37)

Unified Diff: src/base/ieee754.cc

Issue 2077533002: [builtins] Introduce proper Float64Exp operator. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: REBASE. Import tests from Raymond. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/base/ieee754.cc
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
index 4d11bdafe8b89e26a737a3c332f39fc7d6b45b0f..e642b6327a9b29360db3c09ebc0235b15b3c9f0e 100644
--- a/src/base/ieee754.cc
+++ b/src/base/ieee754.cc
@@ -392,6 +392,152 @@ double atan2(double y, double x) {
}
}
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remes algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + -------
+ * R - r
+ * r*R1(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - R1(r)
+ * where
+ * 2 4 10
+ * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then exp(x) overflow
+ * if x < -7.45133219101941108420e+02 then exp(x) underflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+double exp(double x) {
+ static const double
+ one = 1.0,
+ halF[2] = {0.5, -0.5},
+ o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
+ u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
+ ln2HI[2] = {6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
+ -6.93147180369123816490e-01}, /* 0xbfe62e42, 0xfee00000 */
+ ln2LO[2] = {1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
+ -1.90821492927058770002e-10}, /* 0xbdea39ef, 0x35793c76 */
+ invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+ static volatile double
+ huge = 1.0e+300,
+ twom1000 = 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
+ two1023 = 8.988465674311579539e307; /* 0x1p1023 */
+
+ double y, hi = 0.0, lo = 0.0, c, t, twopk;
+ int32_t k = 0, xsb;
+ u_int32_t hx;
+
+ GET_HIGH_WORD(hx, x);
+ xsb = (hx >> 31) & 1; /* sign bit of x */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out non-finite argument */
+ if (hx >= 0x40862E42) { /* if |x|>=709.78... */
+ if (hx >= 0x7ff00000) {
+ u_int32_t lx;
+ GET_LOW_WORD(lx, x);
+ if (((hx & 0xfffff) | lx) != 0)
+ return x + x; /* NaN */
+ else
+ return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */
+ }
+ if (x > o_threshold) return huge * huge; /* overflow */
+ if (x < u_threshold) return twom1000 * twom1000; /* underflow */
+ }
+
+ /* argument reduction */
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ hi = x - ln2HI[xsb];
+ lo = ln2LO[xsb];
+ k = 1 - xsb - xsb;
+ } else {
+ k = static_cast<int>(invln2 * x + halF[xsb]);
+ t = k;
+ hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */
+ lo = t * ln2LO[0];
+ }
+ STRICT_ASSIGN(double, x, hi - lo);
+ } else if (hx < 0x3e300000) { /* when |x|<2**-28 */
+ if (huge + x > one) return one + x; /* trigger inexact */
+ } else {
+ k = 0;
+ }
+
+ /* x is now in primary range */
+ t = x * x;
+ if (k >= -1021) {
+ INSERT_WORDS(twopk, 0x3ff00000 + (k << 20), 0);
+ } else {
+ INSERT_WORDS(twopk, 0x3ff00000 + ((k + 1000) << 20), 0);
+ }
+ c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ if (k == 0) {
+ return one - ((x * c) / (c - 2.0) - x);
+ } else {
+ y = one - ((lo - (x * c) / (2.0 - c)) - hi);
+ }
+ if (k >= -1021) {
+ if (k == 1024) return y * 2.0 * two1023;
+ return y * twopk;
+ } else {
+ return y * twopk * twom1000;
+ }
+}
+
/* log(x)
* Return the logrithm of x
*
« no previous file with comments | « src/base/ieee754.h ('k') | src/bootstrapper.cc » ('j') | test/unittests/base/ieee754-unittest.cc » ('J')

Powered by Google App Engine
This is Rietveld 408576698