| Index: openssl/crypto/bn/bn_sqrt.c
|
| diff --git a/openssl/crypto/bn/bn_sqrt.c b/openssl/crypto/bn/bn_sqrt.c
|
| deleted file mode 100644
|
| index 6beaf9e5e5ddfd6da6942c67b045049a7c979ddb..0000000000000000000000000000000000000000
|
| --- a/openssl/crypto/bn/bn_sqrt.c
|
| +++ /dev/null
|
| @@ -1,393 +0,0 @@
|
| -/* crypto/bn/bn_sqrt.c */
|
| -/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
|
| - * and Bodo Moeller for the OpenSSL project. */
|
| -/* ====================================================================
|
| - * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - *
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - *
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in
|
| - * the documentation and/or other materials provided with the
|
| - * distribution.
|
| - *
|
| - * 3. All advertising materials mentioning features or use of this
|
| - * software must display the following acknowledgment:
|
| - * "This product includes software developed by the OpenSSL Project
|
| - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
| - *
|
| - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
| - * endorse or promote products derived from this software without
|
| - * prior written permission. For written permission, please contact
|
| - * openssl-core@openssl.org.
|
| - *
|
| - * 5. Products derived from this software may not be called "OpenSSL"
|
| - * nor may "OpenSSL" appear in their names without prior written
|
| - * permission of the OpenSSL Project.
|
| - *
|
| - * 6. Redistributions of any form whatsoever must retain the following
|
| - * acknowledgment:
|
| - * "This product includes software developed by the OpenSSL Project
|
| - * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
| - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
| - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
| - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
| - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
| - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
| - * OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - * ====================================================================
|
| - *
|
| - * This product includes cryptographic software written by Eric Young
|
| - * (eay@cryptsoft.com). This product includes software written by Tim
|
| - * Hudson (tjh@cryptsoft.com).
|
| - *
|
| - */
|
| -
|
| -#include "cryptlib.h"
|
| -#include "bn_lcl.h"
|
| -
|
| -
|
| -BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
| -/* Returns 'ret' such that
|
| - * ret^2 == a (mod p),
|
| - * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
|
| - * in Algebraic Computational Number Theory", algorithm 1.5.1).
|
| - * 'p' must be prime!
|
| - */
|
| - {
|
| - BIGNUM *ret = in;
|
| - int err = 1;
|
| - int r;
|
| - BIGNUM *A, *b, *q, *t, *x, *y;
|
| - int e, i, j;
|
| -
|
| - if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
|
| - {
|
| - if (BN_abs_is_word(p, 2))
|
| - {
|
| - if (ret == NULL)
|
| - ret = BN_new();
|
| - if (ret == NULL)
|
| - goto end;
|
| - if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
|
| - {
|
| - if (ret != in)
|
| - BN_free(ret);
|
| - return NULL;
|
| - }
|
| - bn_check_top(ret);
|
| - return ret;
|
| - }
|
| -
|
| - BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
| - return(NULL);
|
| - }
|
| -
|
| - if (BN_is_zero(a) || BN_is_one(a))
|
| - {
|
| - if (ret == NULL)
|
| - ret = BN_new();
|
| - if (ret == NULL)
|
| - goto end;
|
| - if (!BN_set_word(ret, BN_is_one(a)))
|
| - {
|
| - if (ret != in)
|
| - BN_free(ret);
|
| - return NULL;
|
| - }
|
| - bn_check_top(ret);
|
| - return ret;
|
| - }
|
| -
|
| - BN_CTX_start(ctx);
|
| - A = BN_CTX_get(ctx);
|
| - b = BN_CTX_get(ctx);
|
| - q = BN_CTX_get(ctx);
|
| - t = BN_CTX_get(ctx);
|
| - x = BN_CTX_get(ctx);
|
| - y = BN_CTX_get(ctx);
|
| - if (y == NULL) goto end;
|
| -
|
| - if (ret == NULL)
|
| - ret = BN_new();
|
| - if (ret == NULL) goto end;
|
| -
|
| - /* A = a mod p */
|
| - if (!BN_nnmod(A, a, p, ctx)) goto end;
|
| -
|
| - /* now write |p| - 1 as 2^e*q where q is odd */
|
| - e = 1;
|
| - while (!BN_is_bit_set(p, e))
|
| - e++;
|
| - /* we'll set q later (if needed) */
|
| -
|
| - if (e == 1)
|
| - {
|
| - /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
|
| - * modulo (|p|-1)/2, and square roots can be computed
|
| - * directly by modular exponentiation.
|
| - * We have
|
| - * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
|
| - * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
|
| - */
|
| - if (!BN_rshift(q, p, 2)) goto end;
|
| - q->neg = 0;
|
| - if (!BN_add_word(q, 1)) goto end;
|
| - if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
|
| - err = 0;
|
| - goto vrfy;
|
| - }
|
| -
|
| - if (e == 2)
|
| - {
|
| - /* |p| == 5 (mod 8)
|
| - *
|
| - * In this case 2 is always a non-square since
|
| - * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
|
| - * So if a really is a square, then 2*a is a non-square.
|
| - * Thus for
|
| - * b := (2*a)^((|p|-5)/8),
|
| - * i := (2*a)*b^2
|
| - * we have
|
| - * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
|
| - * = (2*a)^((p-1)/2)
|
| - * = -1;
|
| - * so if we set
|
| - * x := a*b*(i-1),
|
| - * then
|
| - * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
|
| - * = a^2 * b^2 * (-2*i)
|
| - * = a*(-i)*(2*a*b^2)
|
| - * = a*(-i)*i
|
| - * = a.
|
| - *
|
| - * (This is due to A.O.L. Atkin,
|
| - * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
|
| - * November 1992.)
|
| - */
|
| -
|
| - /* t := 2*a */
|
| - if (!BN_mod_lshift1_quick(t, A, p)) goto end;
|
| -
|
| - /* b := (2*a)^((|p|-5)/8) */
|
| - if (!BN_rshift(q, p, 3)) goto end;
|
| - q->neg = 0;
|
| - if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
|
| -
|
| - /* y := b^2 */
|
| - if (!BN_mod_sqr(y, b, p, ctx)) goto end;
|
| -
|
| - /* t := (2*a)*b^2 - 1*/
|
| - if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
|
| - if (!BN_sub_word(t, 1)) goto end;
|
| -
|
| - /* x = a*b*t */
|
| - if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
|
| - if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
| -
|
| - if (!BN_copy(ret, x)) goto end;
|
| - err = 0;
|
| - goto vrfy;
|
| - }
|
| -
|
| - /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
|
| - * First, find some y that is not a square. */
|
| - if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
|
| - q->neg = 0;
|
| - i = 2;
|
| - do
|
| - {
|
| - /* For efficiency, try small numbers first;
|
| - * if this fails, try random numbers.
|
| - */
|
| - if (i < 22)
|
| - {
|
| - if (!BN_set_word(y, i)) goto end;
|
| - }
|
| - else
|
| - {
|
| - if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
|
| - if (BN_ucmp(y, p) >= 0)
|
| - {
|
| - if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
|
| - }
|
| - /* now 0 <= y < |p| */
|
| - if (BN_is_zero(y))
|
| - if (!BN_set_word(y, i)) goto end;
|
| - }
|
| -
|
| - r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
|
| - if (r < -1) goto end;
|
| - if (r == 0)
|
| - {
|
| - /* m divides p */
|
| - BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
| - goto end;
|
| - }
|
| - }
|
| - while (r == 1 && ++i < 82);
|
| -
|
| - if (r != -1)
|
| - {
|
| - /* Many rounds and still no non-square -- this is more likely
|
| - * a bug than just bad luck.
|
| - * Even if p is not prime, we should have found some y
|
| - * such that r == -1.
|
| - */
|
| - BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
|
| - goto end;
|
| - }
|
| -
|
| - /* Here's our actual 'q': */
|
| - if (!BN_rshift(q, q, e)) goto end;
|
| -
|
| - /* Now that we have some non-square, we can find an element
|
| - * of order 2^e by computing its q'th power. */
|
| - if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
|
| - if (BN_is_one(y))
|
| - {
|
| - BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
| - goto end;
|
| - }
|
| -
|
| - /* Now we know that (if p is indeed prime) there is an integer
|
| - * k, 0 <= k < 2^e, such that
|
| - *
|
| - * a^q * y^k == 1 (mod p).
|
| - *
|
| - * As a^q is a square and y is not, k must be even.
|
| - * q+1 is even, too, so there is an element
|
| - *
|
| - * X := a^((q+1)/2) * y^(k/2),
|
| - *
|
| - * and it satisfies
|
| - *
|
| - * X^2 = a^q * a * y^k
|
| - * = a,
|
| - *
|
| - * so it is the square root that we are looking for.
|
| - */
|
| -
|
| - /* t := (q-1)/2 (note that q is odd) */
|
| - if (!BN_rshift1(t, q)) goto end;
|
| -
|
| - /* x := a^((q-1)/2) */
|
| - if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
|
| - {
|
| - if (!BN_nnmod(t, A, p, ctx)) goto end;
|
| - if (BN_is_zero(t))
|
| - {
|
| - /* special case: a == 0 (mod p) */
|
| - BN_zero(ret);
|
| - err = 0;
|
| - goto end;
|
| - }
|
| - else
|
| - if (!BN_one(x)) goto end;
|
| - }
|
| - else
|
| - {
|
| - if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
|
| - if (BN_is_zero(x))
|
| - {
|
| - /* special case: a == 0 (mod p) */
|
| - BN_zero(ret);
|
| - err = 0;
|
| - goto end;
|
| - }
|
| - }
|
| -
|
| - /* b := a*x^2 (= a^q) */
|
| - if (!BN_mod_sqr(b, x, p, ctx)) goto end;
|
| - if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
|
| -
|
| - /* x := a*x (= a^((q+1)/2)) */
|
| - if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
|
| -
|
| - while (1)
|
| - {
|
| - /* Now b is a^q * y^k for some even k (0 <= k < 2^E
|
| - * where E refers to the original value of e, which we
|
| - * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
|
| - *
|
| - * We have a*b = x^2,
|
| - * y^2^(e-1) = -1,
|
| - * b^2^(e-1) = 1.
|
| - */
|
| -
|
| - if (BN_is_one(b))
|
| - {
|
| - if (!BN_copy(ret, x)) goto end;
|
| - err = 0;
|
| - goto vrfy;
|
| - }
|
| -
|
| -
|
| - /* find smallest i such that b^(2^i) = 1 */
|
| - i = 1;
|
| - if (!BN_mod_sqr(t, b, p, ctx)) goto end;
|
| - while (!BN_is_one(t))
|
| - {
|
| - i++;
|
| - if (i == e)
|
| - {
|
| - BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
| - goto end;
|
| - }
|
| - if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
|
| - }
|
| -
|
| -
|
| - /* t := y^2^(e - i - 1) */
|
| - if (!BN_copy(t, y)) goto end;
|
| - for (j = e - i - 1; j > 0; j--)
|
| - {
|
| - if (!BN_mod_sqr(t, t, p, ctx)) goto end;
|
| - }
|
| - if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
|
| - if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
| - if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
|
| - e = i;
|
| - }
|
| -
|
| - vrfy:
|
| - if (!err)
|
| - {
|
| - /* verify the result -- the input might have been not a square
|
| - * (test added in 0.9.8) */
|
| -
|
| - if (!BN_mod_sqr(x, ret, p, ctx))
|
| - err = 1;
|
| -
|
| - if (!err && 0 != BN_cmp(x, A))
|
| - {
|
| - BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
| - err = 1;
|
| - }
|
| - }
|
| -
|
| - end:
|
| - if (err)
|
| - {
|
| - if (ret != NULL && ret != in)
|
| - {
|
| - BN_clear_free(ret);
|
| - }
|
| - ret = NULL;
|
| - }
|
| - BN_CTX_end(ctx);
|
| - bn_check_top(ret);
|
| - return ret;
|
| - }
|
|
|