| Index: openssl/crypto/ec/ec2_mult.c
|
| diff --git a/openssl/crypto/ec/ec2_mult.c b/openssl/crypto/ec/ec2_mult.c
|
| deleted file mode 100644
|
| index 26f4a783fcc1efc5f98dd54946bd1556d59cc0c5..0000000000000000000000000000000000000000
|
| --- a/openssl/crypto/ec/ec2_mult.c
|
| +++ /dev/null
|
| @@ -1,390 +0,0 @@
|
| -/* crypto/ec/ec2_mult.c */
|
| -/* ====================================================================
|
| - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
| - *
|
| - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
|
| - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
|
| - * to the OpenSSL project.
|
| - *
|
| - * The ECC Code is licensed pursuant to the OpenSSL open source
|
| - * license provided below.
|
| - *
|
| - * The software is originally written by Sheueling Chang Shantz and
|
| - * Douglas Stebila of Sun Microsystems Laboratories.
|
| - *
|
| - */
|
| -/* ====================================================================
|
| - * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - *
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - *
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in
|
| - * the documentation and/or other materials provided with the
|
| - * distribution.
|
| - *
|
| - * 3. All advertising materials mentioning features or use of this
|
| - * software must display the following acknowledgment:
|
| - * "This product includes software developed by the OpenSSL Project
|
| - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
| - *
|
| - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
| - * endorse or promote products derived from this software without
|
| - * prior written permission. For written permission, please contact
|
| - * openssl-core@openssl.org.
|
| - *
|
| - * 5. Products derived from this software may not be called "OpenSSL"
|
| - * nor may "OpenSSL" appear in their names without prior written
|
| - * permission of the OpenSSL Project.
|
| - *
|
| - * 6. Redistributions of any form whatsoever must retain the following
|
| - * acknowledgment:
|
| - * "This product includes software developed by the OpenSSL Project
|
| - * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
| - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
| - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
| - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
| - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
| - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
| - * OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - * ====================================================================
|
| - *
|
| - * This product includes cryptographic software written by Eric Young
|
| - * (eay@cryptsoft.com). This product includes software written by Tim
|
| - * Hudson (tjh@cryptsoft.com).
|
| - *
|
| - */
|
| -
|
| -#include <openssl/err.h>
|
| -
|
| -#include "ec_lcl.h"
|
| -
|
| -#ifndef OPENSSL_NO_EC2M
|
| -
|
| -
|
| -/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
|
| - * coordinates.
|
| - * Uses algorithm Mdouble in appendix of
|
| - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
| - * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
| - * modified to not require precomputation of c=b^{2^{m-1}}.
|
| - */
|
| -static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
|
| - {
|
| - BIGNUM *t1;
|
| - int ret = 0;
|
| -
|
| - /* Since Mdouble is static we can guarantee that ctx != NULL. */
|
| - BN_CTX_start(ctx);
|
| - t1 = BN_CTX_get(ctx);
|
| - if (t1 == NULL) goto err;
|
| -
|
| - if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
|
| - if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
|
| - if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
|
| - if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
|
| - if (!BN_GF2m_add(x, x, t1)) goto err;
|
| -
|
| - ret = 1;
|
| -
|
| - err:
|
| - BN_CTX_end(ctx);
|
| - return ret;
|
| - }
|
| -
|
| -/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
|
| - * projective coordinates.
|
| - * Uses algorithm Madd in appendix of
|
| - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
| - * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
| - */
|
| -static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
|
| - const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
|
| - {
|
| - BIGNUM *t1, *t2;
|
| - int ret = 0;
|
| -
|
| - /* Since Madd is static we can guarantee that ctx != NULL. */
|
| - BN_CTX_start(ctx);
|
| - t1 = BN_CTX_get(ctx);
|
| - t2 = BN_CTX_get(ctx);
|
| - if (t2 == NULL) goto err;
|
| -
|
| - if (!BN_copy(t1, x)) goto err;
|
| - if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
|
| - if (!BN_GF2m_add(z1, z1, x1)) goto err;
|
| - if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
|
| - if (!BN_GF2m_add(x1, x1, t2)) goto err;
|
| -
|
| - ret = 1;
|
| -
|
| - err:
|
| - BN_CTX_end(ctx);
|
| - return ret;
|
| - }
|
| -
|
| -/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
|
| - * using Montgomery point multiplication algorithm Mxy() in appendix of
|
| - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
| - * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
| - * Returns:
|
| - * 0 on error
|
| - * 1 if return value should be the point at infinity
|
| - * 2 otherwise
|
| - */
|
| -static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
|
| - BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
|
| - {
|
| - BIGNUM *t3, *t4, *t5;
|
| - int ret = 0;
|
| -
|
| - if (BN_is_zero(z1))
|
| - {
|
| - BN_zero(x2);
|
| - BN_zero(z2);
|
| - return 1;
|
| - }
|
| -
|
| - if (BN_is_zero(z2))
|
| - {
|
| - if (!BN_copy(x2, x)) return 0;
|
| - if (!BN_GF2m_add(z2, x, y)) return 0;
|
| - return 2;
|
| - }
|
| -
|
| - /* Since Mxy is static we can guarantee that ctx != NULL. */
|
| - BN_CTX_start(ctx);
|
| - t3 = BN_CTX_get(ctx);
|
| - t4 = BN_CTX_get(ctx);
|
| - t5 = BN_CTX_get(ctx);
|
| - if (t5 == NULL) goto err;
|
| -
|
| - if (!BN_one(t5)) goto err;
|
| -
|
| - if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
|
| -
|
| - if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
|
| - if (!BN_GF2m_add(z1, z1, x1)) goto err;
|
| - if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
|
| - if (!BN_GF2m_add(z2, z2, x2)) goto err;
|
| -
|
| - if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
|
| - if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
|
| - if (!BN_GF2m_add(t4, t4, y)) goto err;
|
| - if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
|
| - if (!BN_GF2m_add(t4, t4, z2)) goto err;
|
| -
|
| - if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
|
| - if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
|
| - if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
|
| - if (!BN_GF2m_add(z2, x2, x)) goto err;
|
| -
|
| - if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
|
| - if (!BN_GF2m_add(z2, z2, y)) goto err;
|
| -
|
| - ret = 2;
|
| -
|
| - err:
|
| - BN_CTX_end(ctx);
|
| - return ret;
|
| - }
|
| -
|
| -/* Computes scalar*point and stores the result in r.
|
| - * point can not equal r.
|
| - * Uses algorithm 2P of
|
| - * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
|
| - * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
|
| - */
|
| -static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
| - const EC_POINT *point, BN_CTX *ctx)
|
| - {
|
| - BIGNUM *x1, *x2, *z1, *z2;
|
| - int ret = 0, i;
|
| - BN_ULONG mask,word;
|
| -
|
| - if (r == point)
|
| - {
|
| - ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
|
| - return 0;
|
| - }
|
| -
|
| - /* if result should be point at infinity */
|
| - if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
|
| - EC_POINT_is_at_infinity(group, point))
|
| - {
|
| - return EC_POINT_set_to_infinity(group, r);
|
| - }
|
| -
|
| - /* only support affine coordinates */
|
| - if (!point->Z_is_one) return 0;
|
| -
|
| - /* Since point_multiply is static we can guarantee that ctx != NULL. */
|
| - BN_CTX_start(ctx);
|
| - x1 = BN_CTX_get(ctx);
|
| - z1 = BN_CTX_get(ctx);
|
| - if (z1 == NULL) goto err;
|
| -
|
| - x2 = &r->X;
|
| - z2 = &r->Y;
|
| -
|
| - if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
|
| - if (!BN_one(z1)) goto err; /* z1 = 1 */
|
| - if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
|
| - if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
|
| - if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
|
| -
|
| - /* find top most bit and go one past it */
|
| - i = scalar->top - 1;
|
| - mask = BN_TBIT;
|
| - word = scalar->d[i];
|
| - while (!(word & mask)) mask >>= 1;
|
| - mask >>= 1;
|
| - /* if top most bit was at word break, go to next word */
|
| - if (!mask)
|
| - {
|
| - i--;
|
| - mask = BN_TBIT;
|
| - }
|
| -
|
| - for (; i >= 0; i--)
|
| - {
|
| - word = scalar->d[i];
|
| - while (mask)
|
| - {
|
| - if (word & mask)
|
| - {
|
| - if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err;
|
| - if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;
|
| - }
|
| - else
|
| - {
|
| - if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
|
| - if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
|
| - }
|
| - mask >>= 1;
|
| - }
|
| - mask = BN_TBIT;
|
| - }
|
| -
|
| - /* convert out of "projective" coordinates */
|
| - i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
|
| - if (i == 0) goto err;
|
| - else if (i == 1)
|
| - {
|
| - if (!EC_POINT_set_to_infinity(group, r)) goto err;
|
| - }
|
| - else
|
| - {
|
| - if (!BN_one(&r->Z)) goto err;
|
| - r->Z_is_one = 1;
|
| - }
|
| -
|
| - /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
|
| - BN_set_negative(&r->X, 0);
|
| - BN_set_negative(&r->Y, 0);
|
| -
|
| - ret = 1;
|
| -
|
| - err:
|
| - BN_CTX_end(ctx);
|
| - return ret;
|
| - }
|
| -
|
| -
|
| -/* Computes the sum
|
| - * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
|
| - * gracefully ignoring NULL scalar values.
|
| - */
|
| -int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
|
| - size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
|
| - {
|
| - BN_CTX *new_ctx = NULL;
|
| - int ret = 0;
|
| - size_t i;
|
| - EC_POINT *p=NULL;
|
| - EC_POINT *acc = NULL;
|
| -
|
| - if (ctx == NULL)
|
| - {
|
| - ctx = new_ctx = BN_CTX_new();
|
| - if (ctx == NULL)
|
| - return 0;
|
| - }
|
| -
|
| - /* This implementation is more efficient than the wNAF implementation for 2
|
| - * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points,
|
| - * or if we can perform a fast multiplication based on precomputation.
|
| - */
|
| - if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
|
| - {
|
| - ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
|
| - goto err;
|
| - }
|
| -
|
| - if ((p = EC_POINT_new(group)) == NULL) goto err;
|
| - if ((acc = EC_POINT_new(group)) == NULL) goto err;
|
| -
|
| - if (!EC_POINT_set_to_infinity(group, acc)) goto err;
|
| -
|
| - if (scalar)
|
| - {
|
| - if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
|
| - if (BN_is_negative(scalar))
|
| - if (!group->meth->invert(group, p, ctx)) goto err;
|
| - if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
|
| - }
|
| -
|
| - for (i = 0; i < num; i++)
|
| - {
|
| - if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
|
| - if (BN_is_negative(scalars[i]))
|
| - if (!group->meth->invert(group, p, ctx)) goto err;
|
| - if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
|
| - }
|
| -
|
| - if (!EC_POINT_copy(r, acc)) goto err;
|
| -
|
| - ret = 1;
|
| -
|
| - err:
|
| - if (p) EC_POINT_free(p);
|
| - if (acc) EC_POINT_free(acc);
|
| - if (new_ctx != NULL)
|
| - BN_CTX_free(new_ctx);
|
| - return ret;
|
| - }
|
| -
|
| -
|
| -/* Precomputation for point multiplication: fall back to wNAF methods
|
| - * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
|
| -
|
| -int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
| - {
|
| - return ec_wNAF_precompute_mult(group, ctx);
|
| - }
|
| -
|
| -int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
|
| - {
|
| - return ec_wNAF_have_precompute_mult(group);
|
| - }
|
| -
|
| -#endif
|
|
|