Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index e642b6327a9b29360db3c09ebc0235b15b3c9f0e..c18e6d106d87a05bdd9ae58e0a88b957214fc6d4 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -538,6 +538,49 @@ double exp(double x) { |
} |
} |
+/* |
+ * Method : |
+ * 1.Reduced x to positive by atanh(-x) = -atanh(x) |
+ * 2.For x>=0.5 |
+ * 1 2x x |
+ * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) |
+ * 2 1 - x 1 - x |
+ * |
+ * For x<0.5 |
+ * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) |
+ * |
+ * Special cases: |
+ * atanh(x) is NaN if |x| > 1 with signal; |
+ * atanh(NaN) is that NaN with no signal; |
+ * atanh(+-1) is +-INF with signal. |
+ * |
+ */ |
+double atanh(double x) { |
+ static const double one = 1.0, huge = 1e300; |
+ static const double zero = 0.0; |
+ |
+ double t; |
+ int32_t hx, ix; |
+ u_int32_t lx; |
+ EXTRACT_WORDS(hx, lx, x); |
+ ix = hx & 0x7fffffff; |
+ if ((ix | ((lx | -static_cast<int32_t>(lx)) >> 31)) > 0x3ff00000) /* |x|>1 */ |
+ return (x - x) / (x - x); |
+ if (ix == 0x3ff00000) return x / zero; |
+ if (ix < 0x3e300000 && (huge + x) > zero) return x; /* x<2**-28 */ |
+ SET_HIGH_WORD(x, ix); |
+ if (ix < 0x3fe00000) { /* x < 0.5 */ |
+ t = x + x; |
+ t = 0.5 * log1p(t + t * x / (one - x)); |
+ } else { |
+ t = 0.5 * log1p((x + x) / (one - x)); |
+ } |
+ if (hx >= 0) |
+ return t; |
+ else |
+ return -t; |
+} |
+ |
/* log(x) |
* Return the logrithm of x |
* |
@@ -831,88 +874,6 @@ double log1p(double x) { |
return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); |
} |
-/* |
- * k_log1p(f): |
- * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. |
- * |
- * The following describes the overall strategy for computing |
- * logarithms in base e. The argument reduction and adding the final |
- * term of the polynomial are done by the caller for increased accuracy |
- * when different bases are used. |
- * |
- * Method : |
- * 1. Argument Reduction: find k and f such that |
- * x = 2^k * (1+f), |
- * where sqrt(2)/2 < 1+f < sqrt(2) . |
- * |
- * 2. Approximation of log(1+f). |
- * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
- * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
- * = 2s + s*R |
- * We use a special Reme algorithm on [0,0.1716] to generate |
- * a polynomial of degree 14 to approximate R The maximum error |
- * of this polynomial approximation is bounded by 2**-58.45. In |
- * other words, |
- * 2 4 6 8 10 12 14 |
- * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
- * (the values of Lg1 to Lg7 are listed in the program) |
- * and |
- * | 2 14 | -58.45 |
- * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
- * | | |
- * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
- * In order to guarantee error in log below 1ulp, we compute log |
- * by |
- * log(1+f) = f - s*(f - R) (if f is not too large) |
- * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
- * |
- * 3. Finally, log(x) = k*ln2 + log(1+f). |
- * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
- * Here ln2 is split into two floating point number: |
- * ln2_hi + ln2_lo, |
- * where n*ln2_hi is always exact for |n| < 2000. |
- * |
- * Special cases: |
- * log(x) is NaN with signal if x < 0 (including -INF) ; |
- * log(+INF) is +INF; log(0) is -INF with signal; |
- * log(NaN) is that NaN with no signal. |
- * |
- * Accuracy: |
- * according to an error analysis, the error is always less than |
- * 1 ulp (unit in the last place). |
- * |
- * Constants: |
- * The hexadecimal values are the intended ones for the following |
- * constants. The decimal values may be used, provided that the |
- * compiler will convert from decimal to binary accurately enough |
- * to produce the hexadecimal values shown. |
- */ |
- |
-static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
- Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
- Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
- Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
- Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
- Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
- Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
- |
-/* |
- * We always inline k_log1p(), since doing so produces a |
- * substantial performance improvement (~40% on amd64). |
- */ |
-static inline double k_log1p(double f) { |
- double hfsq, s, z, R, w, t1, t2; |
- |
- s = f / (2.0 + f); |
- z = s * s; |
- w = z * z; |
- t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); |
- t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); |
- R = t2 + t1; |
- hfsq = 0.5 * f * f; |
- return s * (hfsq + R); |
-} |
- |
// ES6 draft 09-27-13, section 20.2.2.22. |
// Return the base 2 logarithm of x |
// |
@@ -1026,72 +987,6 @@ double log2(double x) { |
return t1 + t2; |
} |
-/* |
- * Return the base 10 logarithm of x. See e_log.c and k_log.h for most |
- * comments. |
- * |
- * log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2) |
- * in not-quite-routine extra precision. |
- */ |
-double log10Old(double x) { |
- static const double |
- two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
- ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */ |
- ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */ |
- log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
- log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
- |
- static const double zero = 0.0; |
- static volatile double vzero = 0.0; |
- |
- double f, hfsq, hi, lo, r, val_hi, val_lo, w, y, y2; |
- int32_t i, k, hx; |
- u_int32_t lx; |
- |
- EXTRACT_WORDS(hx, lx, x); |
- |
- k = 0; |
- if (hx < 0x00100000) { /* x < 2**-1022 */ |
- if (((hx & 0x7fffffff) | lx) == 0) |
- return -two54 / vzero; /* log(+-0)=-inf */ |
- if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ |
- k -= 54; |
- x *= two54; /* subnormal number, scale up x */ |
- GET_HIGH_WORD(hx, x); |
- } |
- if (hx >= 0x7ff00000) return x + x; |
- if (hx == 0x3ff00000 && lx == 0) return zero; /* log(1) = +0 */ |
- k += (hx >> 20) - 1023; |
- hx &= 0x000fffff; |
- i = (hx + 0x95f64) & 0x100000; |
- SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ |
- k += (i >> 20); |
- y = static_cast<double>(k); |
- f = x - 1.0; |
- hfsq = 0.5 * f * f; |
- r = k_log1p(f); |
- |
- /* See e_log2.c for most details. */ |
- hi = f - hfsq; |
- SET_LOW_WORD(hi, 0); |
- lo = (f - hi) - hfsq + r; |
- val_hi = hi * ivln10hi; |
- y2 = y * log10_2hi; |
- val_lo = y * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi; |
- |
- /* |
- * Extra precision in for adding y*log10_2hi is not strictly needed |
- * since there is no very large cancellation near x = sqrt(2) or |
- * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs |
- * with some parallelism and it reduces the error for many args. |
- */ |
- w = y2 + val_hi; |
- val_lo += (y2 - w) + val_hi; |
- val_hi = w; |
- |
- return val_lo + val_hi; |
-} |
- |
double log10(double x) { |
static const double |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
@@ -1132,6 +1027,305 @@ double log10(double x) { |
return z + y * log10_2hi; |
} |
+/* expm1(x) |
+ * Returns exp(x)-1, the exponential of x minus 1. |
+ * |
+ * Method |
+ * 1. Argument reduction: |
+ * Given x, find r and integer k such that |
+ * |
+ * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
+ * |
+ * Here a correction term c will be computed to compensate |
+ * the error in r when rounded to a floating-point number. |
+ * |
+ * 2. Approximating expm1(r) by a special rational function on |
+ * the interval [0,0.34658]: |
+ * Since |
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
+ * we define R1(r*r) by |
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
+ * That is, |
+ * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
+ * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
+ * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
+ * We use a special Reme algorithm on [0,0.347] to generate |
+ * a polynomial of degree 5 in r*r to approximate R1. The |
+ * maximum error of this polynomial approximation is bounded |
+ * by 2**-61. In other words, |
+ * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
+ * where Q1 = -1.6666666666666567384E-2, |
+ * Q2 = 3.9682539681370365873E-4, |
+ * Q3 = -9.9206344733435987357E-6, |
+ * Q4 = 2.5051361420808517002E-7, |
+ * Q5 = -6.2843505682382617102E-9; |
+ * z = r*r, |
+ * with error bounded by |
+ * | 5 | -61 |
+ * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
+ * | | |
+ * |
+ * expm1(r) = exp(r)-1 is then computed by the following |
+ * specific way which minimize the accumulation rounding error: |
+ * 2 3 |
+ * r r [ 3 - (R1 + R1*r/2) ] |
+ * expm1(r) = r + --- + --- * [--------------------] |
+ * 2 2 [ 6 - r*(3 - R1*r/2) ] |
+ * |
+ * To compensate the error in the argument reduction, we use |
+ * expm1(r+c) = expm1(r) + c + expm1(r)*c |
+ * ~ expm1(r) + c + r*c |
+ * Thus c+r*c will be added in as the correction terms for |
+ * expm1(r+c). Now rearrange the term to avoid optimization |
+ * screw up: |
+ * ( 2 2 ) |
+ * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
+ * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
+ * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
+ * ( ) |
+ * |
+ * = r - E |
+ * 3. Scale back to obtain expm1(x): |
+ * From step 1, we have |
+ * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
+ * = or 2^k*[expm1(r) + (1-2^-k)] |
+ * 4. Implementation notes: |
+ * (A). To save one multiplication, we scale the coefficient Qi |
+ * to Qi*2^i, and replace z by (x^2)/2. |
+ * (B). To achieve maximum accuracy, we compute expm1(x) by |
+ * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
+ * (ii) if k=0, return r-E |
+ * (iii) if k=-1, return 0.5*(r-E)-0.5 |
+ * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
+ * else return 1.0+2.0*(r-E); |
+ * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
+ * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
+ * (vii) return 2^k(1-((E+2^-k)-r)) |
+ * |
+ * Special cases: |
+ * expm1(INF) is INF, expm1(NaN) is NaN; |
+ * expm1(-INF) is -1, and |
+ * for finite argument, only expm1(0)=0 is exact. |
+ * |
+ * Accuracy: |
+ * according to an error analysis, the error is always less than |
+ * 1 ulp (unit in the last place). |
+ * |
+ * Misc. info. |
+ * For IEEE double |
+ * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
+double expm1(double x) { |
+ static const double |
+ one = 1.0, |
+ tiny = 1.0e-300, |
+ o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
+ ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
+ ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
+ invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
+ /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = |
+ x*x/2: */ |
+ Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
+ Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
+ Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
+ Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
+ Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
+ |
+ static volatile double huge = 1.0e+300; |
+ |
+ double y, hi, lo, c, t, e, hxs, hfx, r1, twopk; |
+ int32_t k, xsb; |
+ u_int32_t hx; |
+ |
+ GET_HIGH_WORD(hx, x); |
+ xsb = hx & 0x80000000; /* sign bit of x */ |
+ hx &= 0x7fffffff; /* high word of |x| */ |
+ |
+ /* filter out huge and non-finite argument */ |
+ if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
+ if (hx >= 0x40862E42) { /* if |x|>=709.78... */ |
+ if (hx >= 0x7ff00000) { |
+ u_int32_t low; |
+ GET_LOW_WORD(low, x); |
+ if (((hx & 0xfffff) | low) != 0) |
+ return x + x; /* NaN */ |
+ else |
+ return (xsb == 0) ? x : -1.0; /* exp(+-inf)={inf,-1} */ |
+ } |
+ if (x > o_threshold) return huge * huge; /* overflow */ |
+ } |
+ if (xsb != 0) { /* x < -56*ln2, return -1.0 with inexact */ |
+ if (x + tiny < 0.0) /* raise inexact */ |
+ return tiny - one; /* return -1 */ |
+ } |
+ } |
+ |
+ /* argument reduction */ |
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
+ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
+ if (xsb == 0) { |
+ hi = x - ln2_hi; |
+ lo = ln2_lo; |
+ k = 1; |
+ } else { |
+ hi = x + ln2_hi; |
+ lo = -ln2_lo; |
+ k = -1; |
+ } |
+ } else { |
+ k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5); |
+ t = k; |
+ hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ |
+ lo = t * ln2_lo; |
+ } |
+ STRICT_ASSIGN(double, x, hi - lo); |
+ c = (hi - x) - lo; |
+ } else if (hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
+ t = huge + x; /* return x with inexact flags when x!=0 */ |
+ return x - (t - (huge + x)); |
+ } else { |
+ k = 0; |
+ } |
+ |
+ /* x is now in primary range */ |
+ hfx = 0.5 * x; |
+ hxs = x * hfx; |
+ r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); |
+ t = 3.0 - r1 * hfx; |
+ e = hxs * ((r1 - t) / (6.0 - x * t)); |
+ if (k == 0) { |
+ return x - (x * e - hxs); /* c is 0 */ |
+ } else { |
+ INSERT_WORDS(twopk, 0x3ff00000 + (k << 20), 0); /* 2^k */ |
+ e = (x * (e - c) - c); |
+ e -= hxs; |
+ if (k == -1) return 0.5 * (x - e) - 0.5; |
+ if (k == 1) { |
+ if (x < -0.25) |
+ return -2.0 * (e - (x + 0.5)); |
+ else |
+ return one + 2.0 * (x - e); |
+ } |
+ if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ |
+ y = one - (e - x); |
+ // TODO(mvstanton): is this replacement for the hex float |
+ // sufficient? |
+ // if (k == 1024) y = y*2.0*0x1p1023; |
+ if (k == 1024) |
+ y = y * 2.0 * 8.98846567431158e+307; |
+ else |
+ y = y * twopk; |
+ return y - one; |
+ } |
+ t = one; |
+ if (k < 20) { |
+ SET_HIGH_WORD(t, 0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */ |
+ y = t - (e - x); |
+ y = y * twopk; |
+ } else { |
+ SET_HIGH_WORD(t, ((0x3ff - k) << 20)); /* 2^-k */ |
+ y = x - (e + t); |
+ y += one; |
+ y = y * twopk; |
+ } |
+ } |
+ return y; |
+} |
+ |
+double cbrt(double x) { |
+ static const u_int32_t |
+ B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */ |
+ B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */ |
+ |
+ /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */ |
+ static const double P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */ |
+ P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */ |
+ P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */ |
+ P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */ |
+ P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */ |
+ |
+ int32_t hx; |
+ union { |
+ double value; |
+ uint64_t bits; |
+ } u; |
+ double r, s, t = 0.0, w; |
+ u_int32_t sign; |
+ u_int32_t high, low; |
+ |
+ EXTRACT_WORDS(hx, low, x); |
+ sign = hx & 0x80000000; /* sign= sign(x) */ |
+ hx ^= sign; |
+ if (hx >= 0x7ff00000) return (x + x); /* cbrt(NaN,INF) is itself */ |
+ |
+ /* |
+ * Rough cbrt to 5 bits: |
+ * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3) |
+ * where e is integral and >= 0, m is real and in [0, 1), and "/" and |
+ * "%" are integer division and modulus with rounding towards minus |
+ * infinity. The RHS is always >= the LHS and has a maximum relative |
+ * error of about 1 in 16. Adding a bias of -0.03306235651 to the |
+ * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE |
+ * floating point representation, for finite positive normal values, |
+ * ordinary integer divison of the value in bits magically gives |
+ * almost exactly the RHS of the above provided we first subtract the |
+ * exponent bias (1023 for doubles) and later add it back. We do the |
+ * subtraction virtually to keep e >= 0 so that ordinary integer |
+ * division rounds towards minus infinity; this is also efficient. |
+ */ |
+ if (hx < 0x00100000) { /* zero or subnormal? */ |
+ if ((hx | low) == 0) return (x); /* cbrt(0) is itself */ |
+ SET_HIGH_WORD(t, 0x43500000); /* set t= 2**54 */ |
+ t *= x; |
+ GET_HIGH_WORD(high, t); |
+ INSERT_WORDS(t, sign | ((high & 0x7fffffff) / 3 + B2), 0); |
+ } else { |
+ INSERT_WORDS(t, sign | (hx / 3 + B1), 0); |
+ } |
+ |
+ /* |
+ * New cbrt to 23 bits: |
+ * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x) |
+ * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r) |
+ * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation |
+ * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this |
+ * gives us bounds for r = t**3/x. |
+ * |
+ * Try to optimize for parallel evaluation as in k_tanf.c. |
+ */ |
+ r = (t * t) * (t / x); |
+ t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); |
+ |
+ /* |
+ * Round t away from zero to 23 bits (sloppily except for ensuring that |
+ * the result is larger in magnitude than cbrt(x) but not much more than |
+ * 2 23-bit ulps larger). With rounding towards zero, the error bound |
+ * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps |
+ * in the rounded t, the infinite-precision error in the Newton |
+ * approximation barely affects third digit in the final error |
+ * 0.667; the error in the rounded t can be up to about 3 23-bit ulps |
+ * before the final error is larger than 0.667 ulps. |
+ */ |
+ u.value = t; |
+ u.bits = (u.bits + 0x80000000) & 0xffffffffc0000000ULL; |
+ t = u.value; |
+ |
+ /* one step Newton iteration to 53 bits with error < 0.667 ulps */ |
+ s = t * t; /* t*t is exact */ |
+ r = x / s; /* error <= 0.5 ulps; |r| < |t| */ |
+ w = t + t; /* t+t is exact */ |
+ r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */ |
+ t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */ |
+ |
+ return (t); |
+} |
+ |
} // namespace ieee754 |
} // namespace base |
} // namespace v8 |