OLD | NEW |
1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm). | 1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm). |
2 // | 2 // |
3 // ==================================================== | 3 // ==================================================== |
4 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 4 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 // | 5 // |
6 // Developed at SunSoft, a Sun Microsystems, Inc. business. | 6 // Developed at SunSoft, a Sun Microsystems, Inc. business. |
7 // Permission to use, copy, modify, and distribute this | 7 // Permission to use, copy, modify, and distribute this |
8 // software is freely granted, provided that this notice | 8 // software is freely granted, provided that this notice |
9 // is preserved. | 9 // is preserved. |
10 // ==================================================== | 10 // ==================================================== |
(...skipping 520 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
531 y = one - ((lo - (x * c) / (2.0 - c)) - hi); | 531 y = one - ((lo - (x * c) / (2.0 - c)) - hi); |
532 } | 532 } |
533 if (k >= -1021) { | 533 if (k >= -1021) { |
534 if (k == 1024) return y * 2.0 * two1023; | 534 if (k == 1024) return y * 2.0 * two1023; |
535 return y * twopk; | 535 return y * twopk; |
536 } else { | 536 } else { |
537 return y * twopk * twom1000; | 537 return y * twopk * twom1000; |
538 } | 538 } |
539 } | 539 } |
540 | 540 |
| 541 /* |
| 542 * Method : |
| 543 * 1.Reduced x to positive by atanh(-x) = -atanh(x) |
| 544 * 2.For x>=0.5 |
| 545 * 1 2x x |
| 546 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) |
| 547 * 2 1 - x 1 - x |
| 548 * |
| 549 * For x<0.5 |
| 550 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) |
| 551 * |
| 552 * Special cases: |
| 553 * atanh(x) is NaN if |x| > 1 with signal; |
| 554 * atanh(NaN) is that NaN with no signal; |
| 555 * atanh(+-1) is +-INF with signal. |
| 556 * |
| 557 */ |
| 558 double atanh(double x) { |
| 559 static const double one = 1.0, huge = 1e300; |
| 560 static const double zero = 0.0; |
| 561 |
| 562 double t; |
| 563 int32_t hx, ix; |
| 564 u_int32_t lx; |
| 565 EXTRACT_WORDS(hx, lx, x); |
| 566 ix = hx & 0x7fffffff; |
| 567 if ((ix | ((lx | -static_cast<int32_t>(lx)) >> 31)) > 0x3ff00000) /* |x|>1 */ |
| 568 return (x - x) / (x - x); |
| 569 if (ix == 0x3ff00000) return x / zero; |
| 570 if (ix < 0x3e300000 && (huge + x) > zero) return x; /* x<2**-28 */ |
| 571 SET_HIGH_WORD(x, ix); |
| 572 if (ix < 0x3fe00000) { /* x < 0.5 */ |
| 573 t = x + x; |
| 574 t = 0.5 * log1p(t + t * x / (one - x)); |
| 575 } else { |
| 576 t = 0.5 * log1p((x + x) / (one - x)); |
| 577 } |
| 578 if (hx >= 0) |
| 579 return t; |
| 580 else |
| 581 return -t; |
| 582 } |
| 583 |
541 /* log(x) | 584 /* log(x) |
542 * Return the logrithm of x | 585 * Return the logrithm of x |
543 * | 586 * |
544 * Method : | 587 * Method : |
545 * 1. Argument Reduction: find k and f such that | 588 * 1. Argument Reduction: find k and f such that |
546 * x = 2^k * (1+f), | 589 * x = 2^k * (1+f), |
547 * where sqrt(2)/2 < 1+f < sqrt(2) . | 590 * where sqrt(2)/2 < 1+f < sqrt(2) . |
548 * | 591 * |
549 * 2. Approximation of log(1+f). | 592 * 2. Approximation of log(1+f). |
550 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | 593 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
(...skipping 273 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
824 s = f / (2.0 + f); | 867 s = f / (2.0 + f); |
825 z = s * s; | 868 z = s * s; |
826 R = z * (Lp1 + | 869 R = z * (Lp1 + |
827 z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); | 870 z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); |
828 if (k == 0) | 871 if (k == 0) |
829 return f - (hfsq - s * (hfsq + R)); | 872 return f - (hfsq - s * (hfsq + R)); |
830 else | 873 else |
831 return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); | 874 return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); |
832 } | 875 } |
833 | 876 |
834 /* | |
835 * k_log1p(f): | |
836 * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. | |
837 * | |
838 * The following describes the overall strategy for computing | |
839 * logarithms in base e. The argument reduction and adding the final | |
840 * term of the polynomial are done by the caller for increased accuracy | |
841 * when different bases are used. | |
842 * | |
843 * Method : | |
844 * 1. Argument Reduction: find k and f such that | |
845 * x = 2^k * (1+f), | |
846 * where sqrt(2)/2 < 1+f < sqrt(2) . | |
847 * | |
848 * 2. Approximation of log(1+f). | |
849 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | |
850 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., | |
851 * = 2s + s*R | |
852 * We use a special Reme algorithm on [0,0.1716] to generate | |
853 * a polynomial of degree 14 to approximate R The maximum error | |
854 * of this polynomial approximation is bounded by 2**-58.45. In | |
855 * other words, | |
856 * 2 4 6 8 10 12 14 | |
857 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s | |
858 * (the values of Lg1 to Lg7 are listed in the program) | |
859 * and | |
860 * | 2 14 | -58.45 | |
861 * | Lg1*s +...+Lg7*s - R(z) | <= 2 | |
862 * | | | |
863 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | |
864 * In order to guarantee error in log below 1ulp, we compute log | |
865 * by | |
866 * log(1+f) = f - s*(f - R) (if f is not too large) | |
867 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) | |
868 * | |
869 * 3. Finally, log(x) = k*ln2 + log(1+f). | |
870 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | |
871 * Here ln2 is split into two floating point number: | |
872 * ln2_hi + ln2_lo, | |
873 * where n*ln2_hi is always exact for |n| < 2000. | |
874 * | |
875 * Special cases: | |
876 * log(x) is NaN with signal if x < 0 (including -INF) ; | |
877 * log(+INF) is +INF; log(0) is -INF with signal; | |
878 * log(NaN) is that NaN with no signal. | |
879 * | |
880 * Accuracy: | |
881 * according to an error analysis, the error is always less than | |
882 * 1 ulp (unit in the last place). | |
883 * | |
884 * Constants: | |
885 * The hexadecimal values are the intended ones for the following | |
886 * constants. The decimal values may be used, provided that the | |
887 * compiler will convert from decimal to binary accurately enough | |
888 * to produce the hexadecimal values shown. | |
889 */ | |
890 | |
891 static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ | |
892 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ | |
893 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ | |
894 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ | |
895 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ | |
896 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ | |
897 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ | |
898 | |
899 /* | |
900 * We always inline k_log1p(), since doing so produces a | |
901 * substantial performance improvement (~40% on amd64). | |
902 */ | |
903 static inline double k_log1p(double f) { | |
904 double hfsq, s, z, R, w, t1, t2; | |
905 | |
906 s = f / (2.0 + f); | |
907 z = s * s; | |
908 w = z * z; | |
909 t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); | |
910 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); | |
911 R = t2 + t1; | |
912 hfsq = 0.5 * f * f; | |
913 return s * (hfsq + R); | |
914 } | |
915 | |
916 // ES6 draft 09-27-13, section 20.2.2.22. | 877 // ES6 draft 09-27-13, section 20.2.2.22. |
917 // Return the base 2 logarithm of x | 878 // Return the base 2 logarithm of x |
918 // | 879 // |
919 // fdlibm does not have an explicit log2 function, but fdlibm's pow | 880 // fdlibm does not have an explicit log2 function, but fdlibm's pow |
920 // function does implement an accurate log2 function as part of the | 881 // function does implement an accurate log2 function as part of the |
921 // pow implementation. This extracts the core parts of that as a | 882 // pow implementation. This extracts the core parts of that as a |
922 // separate log2 function. | 883 // separate log2 function. |
923 // | 884 // |
924 // Method: | 885 // Method: |
925 // Compute log2(x) in two pieces: | 886 // Compute log2(x) in two pieces: |
(...skipping 93 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1019 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | 980 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
1020 t = static_cast<double>(n); | 981 t = static_cast<double>(n); |
1021 t1 = (((z_h + z_l) + dp_h[k]) + t); | 982 t1 = (((z_h + z_l) + dp_h[k]) + t); |
1022 SET_LOW_WORD(t1, 0); | 983 SET_LOW_WORD(t1, 0); |
1023 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); | 984 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
1024 | 985 |
1025 // t1 + t2 = log2(ax), sum up because we do not care about extra precision. | 986 // t1 + t2 = log2(ax), sum up because we do not care about extra precision. |
1026 return t1 + t2; | 987 return t1 + t2; |
1027 } | 988 } |
1028 | 989 |
1029 /* | |
1030 * Return the base 10 logarithm of x. See e_log.c and k_log.h for most | |
1031 * comments. | |
1032 * | |
1033 * log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2) | |
1034 * in not-quite-routine extra precision. | |
1035 */ | |
1036 double log10Old(double x) { | |
1037 static const double | |
1038 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ | |
1039 ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */ | |
1040 ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */ | |
1041 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ | |
1042 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ | |
1043 | |
1044 static const double zero = 0.0; | |
1045 static volatile double vzero = 0.0; | |
1046 | |
1047 double f, hfsq, hi, lo, r, val_hi, val_lo, w, y, y2; | |
1048 int32_t i, k, hx; | |
1049 u_int32_t lx; | |
1050 | |
1051 EXTRACT_WORDS(hx, lx, x); | |
1052 | |
1053 k = 0; | |
1054 if (hx < 0x00100000) { /* x < 2**-1022 */ | |
1055 if (((hx & 0x7fffffff) | lx) == 0) | |
1056 return -two54 / vzero; /* log(+-0)=-inf */ | |
1057 if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ | |
1058 k -= 54; | |
1059 x *= two54; /* subnormal number, scale up x */ | |
1060 GET_HIGH_WORD(hx, x); | |
1061 } | |
1062 if (hx >= 0x7ff00000) return x + x; | |
1063 if (hx == 0x3ff00000 && lx == 0) return zero; /* log(1) = +0 */ | |
1064 k += (hx >> 20) - 1023; | |
1065 hx &= 0x000fffff; | |
1066 i = (hx + 0x95f64) & 0x100000; | |
1067 SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ | |
1068 k += (i >> 20); | |
1069 y = static_cast<double>(k); | |
1070 f = x - 1.0; | |
1071 hfsq = 0.5 * f * f; | |
1072 r = k_log1p(f); | |
1073 | |
1074 /* See e_log2.c for most details. */ | |
1075 hi = f - hfsq; | |
1076 SET_LOW_WORD(hi, 0); | |
1077 lo = (f - hi) - hfsq + r; | |
1078 val_hi = hi * ivln10hi; | |
1079 y2 = y * log10_2hi; | |
1080 val_lo = y * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi; | |
1081 | |
1082 /* | |
1083 * Extra precision in for adding y*log10_2hi is not strictly needed | |
1084 * since there is no very large cancellation near x = sqrt(2) or | |
1085 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs | |
1086 * with some parallelism and it reduces the error for many args. | |
1087 */ | |
1088 w = y2 + val_hi; | |
1089 val_lo += (y2 - w) + val_hi; | |
1090 val_hi = w; | |
1091 | |
1092 return val_lo + val_hi; | |
1093 } | |
1094 | |
1095 double log10(double x) { | 990 double log10(double x) { |
1096 static const double | 991 static const double |
1097 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ | 992 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
1098 ivln10 = 4.34294481903251816668e-01, | 993 ivln10 = 4.34294481903251816668e-01, |
1099 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ | 994 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
1100 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ | 995 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
1101 | 996 |
1102 static const double zero = 0.0; | 997 static const double zero = 0.0; |
1103 static volatile double vzero = 0.0; | 998 static volatile double vzero = 0.0; |
1104 | 999 |
(...skipping 20 matching lines...) Expand all Loading... |
1125 i = (k & 0x80000000) >> 31; | 1020 i = (k & 0x80000000) >> 31; |
1126 hx = (hx & 0x000fffff) | ((0x3ff - i) << 20); | 1021 hx = (hx & 0x000fffff) | ((0x3ff - i) << 20); |
1127 y = k + i; | 1022 y = k + i; |
1128 SET_HIGH_WORD(x, hx); | 1023 SET_HIGH_WORD(x, hx); |
1129 SET_LOW_WORD(x, lx); | 1024 SET_LOW_WORD(x, lx); |
1130 | 1025 |
1131 double z = y * log10_2lo + ivln10 * log(x); | 1026 double z = y * log10_2lo + ivln10 * log(x); |
1132 return z + y * log10_2hi; | 1027 return z + y * log10_2hi; |
1133 } | 1028 } |
1134 | 1029 |
| 1030 /* expm1(x) |
| 1031 * Returns exp(x)-1, the exponential of x minus 1. |
| 1032 * |
| 1033 * Method |
| 1034 * 1. Argument reduction: |
| 1035 * Given x, find r and integer k such that |
| 1036 * |
| 1037 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
| 1038 * |
| 1039 * Here a correction term c will be computed to compensate |
| 1040 * the error in r when rounded to a floating-point number. |
| 1041 * |
| 1042 * 2. Approximating expm1(r) by a special rational function on |
| 1043 * the interval [0,0.34658]: |
| 1044 * Since |
| 1045 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
| 1046 * we define R1(r*r) by |
| 1047 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
| 1048 * That is, |
| 1049 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
| 1050 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
| 1051 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
| 1052 * We use a special Reme algorithm on [0,0.347] to generate |
| 1053 * a polynomial of degree 5 in r*r to approximate R1. The |
| 1054 * maximum error of this polynomial approximation is bounded |
| 1055 * by 2**-61. In other words, |
| 1056 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
| 1057 * where Q1 = -1.6666666666666567384E-2, |
| 1058 * Q2 = 3.9682539681370365873E-4, |
| 1059 * Q3 = -9.9206344733435987357E-6, |
| 1060 * Q4 = 2.5051361420808517002E-7, |
| 1061 * Q5 = -6.2843505682382617102E-9; |
| 1062 * z = r*r, |
| 1063 * with error bounded by |
| 1064 * | 5 | -61 |
| 1065 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
| 1066 * | | |
| 1067 * |
| 1068 * expm1(r) = exp(r)-1 is then computed by the following |
| 1069 * specific way which minimize the accumulation rounding error: |
| 1070 * 2 3 |
| 1071 * r r [ 3 - (R1 + R1*r/2) ] |
| 1072 * expm1(r) = r + --- + --- * [--------------------] |
| 1073 * 2 2 [ 6 - r*(3 - R1*r/2) ] |
| 1074 * |
| 1075 * To compensate the error in the argument reduction, we use |
| 1076 * expm1(r+c) = expm1(r) + c + expm1(r)*c |
| 1077 * ~ expm1(r) + c + r*c |
| 1078 * Thus c+r*c will be added in as the correction terms for |
| 1079 * expm1(r+c). Now rearrange the term to avoid optimization |
| 1080 * screw up: |
| 1081 * ( 2 2 ) |
| 1082 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
| 1083 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
| 1084 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
| 1085 * ( ) |
| 1086 * |
| 1087 * = r - E |
| 1088 * 3. Scale back to obtain expm1(x): |
| 1089 * From step 1, we have |
| 1090 * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
| 1091 * = or 2^k*[expm1(r) + (1-2^-k)] |
| 1092 * 4. Implementation notes: |
| 1093 * (A). To save one multiplication, we scale the coefficient Qi |
| 1094 * to Qi*2^i, and replace z by (x^2)/2. |
| 1095 * (B). To achieve maximum accuracy, we compute expm1(x) by |
| 1096 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
| 1097 * (ii) if k=0, return r-E |
| 1098 * (iii) if k=-1, return 0.5*(r-E)-0.5 |
| 1099 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
| 1100 * else return 1.0+2.0*(r-E); |
| 1101 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
| 1102 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
| 1103 * (vii) return 2^k(1-((E+2^-k)-r)) |
| 1104 * |
| 1105 * Special cases: |
| 1106 * expm1(INF) is INF, expm1(NaN) is NaN; |
| 1107 * expm1(-INF) is -1, and |
| 1108 * for finite argument, only expm1(0)=0 is exact. |
| 1109 * |
| 1110 * Accuracy: |
| 1111 * according to an error analysis, the error is always less than |
| 1112 * 1 ulp (unit in the last place). |
| 1113 * |
| 1114 * Misc. info. |
| 1115 * For IEEE double |
| 1116 * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
| 1117 * |
| 1118 * Constants: |
| 1119 * The hexadecimal values are the intended ones for the following |
| 1120 * constants. The decimal values may be used, provided that the |
| 1121 * compiler will convert from decimal to binary accurately enough |
| 1122 * to produce the hexadecimal values shown. |
| 1123 */ |
| 1124 double expm1(double x) { |
| 1125 static const double |
| 1126 one = 1.0, |
| 1127 tiny = 1.0e-300, |
| 1128 o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
| 1129 ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
| 1130 ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
| 1131 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
| 1132 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = |
| 1133 x*x/2: */ |
| 1134 Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
| 1135 Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
| 1136 Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
| 1137 Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
| 1138 Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
| 1139 |
| 1140 static volatile double huge = 1.0e+300; |
| 1141 |
| 1142 double y, hi, lo, c, t, e, hxs, hfx, r1, twopk; |
| 1143 int32_t k, xsb; |
| 1144 u_int32_t hx; |
| 1145 |
| 1146 GET_HIGH_WORD(hx, x); |
| 1147 xsb = hx & 0x80000000; /* sign bit of x */ |
| 1148 hx &= 0x7fffffff; /* high word of |x| */ |
| 1149 |
| 1150 /* filter out huge and non-finite argument */ |
| 1151 if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
| 1152 if (hx >= 0x40862E42) { /* if |x|>=709.78... */ |
| 1153 if (hx >= 0x7ff00000) { |
| 1154 u_int32_t low; |
| 1155 GET_LOW_WORD(low, x); |
| 1156 if (((hx & 0xfffff) | low) != 0) |
| 1157 return x + x; /* NaN */ |
| 1158 else |
| 1159 return (xsb == 0) ? x : -1.0; /* exp(+-inf)={inf,-1} */ |
| 1160 } |
| 1161 if (x > o_threshold) return huge * huge; /* overflow */ |
| 1162 } |
| 1163 if (xsb != 0) { /* x < -56*ln2, return -1.0 with inexact */ |
| 1164 if (x + tiny < 0.0) /* raise inexact */ |
| 1165 return tiny - one; /* return -1 */ |
| 1166 } |
| 1167 } |
| 1168 |
| 1169 /* argument reduction */ |
| 1170 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
| 1171 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
| 1172 if (xsb == 0) { |
| 1173 hi = x - ln2_hi; |
| 1174 lo = ln2_lo; |
| 1175 k = 1; |
| 1176 } else { |
| 1177 hi = x + ln2_hi; |
| 1178 lo = -ln2_lo; |
| 1179 k = -1; |
| 1180 } |
| 1181 } else { |
| 1182 k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5); |
| 1183 t = k; |
| 1184 hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ |
| 1185 lo = t * ln2_lo; |
| 1186 } |
| 1187 STRICT_ASSIGN(double, x, hi - lo); |
| 1188 c = (hi - x) - lo; |
| 1189 } else if (hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
| 1190 t = huge + x; /* return x with inexact flags when x!=0 */ |
| 1191 return x - (t - (huge + x)); |
| 1192 } else { |
| 1193 k = 0; |
| 1194 } |
| 1195 |
| 1196 /* x is now in primary range */ |
| 1197 hfx = 0.5 * x; |
| 1198 hxs = x * hfx; |
| 1199 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); |
| 1200 t = 3.0 - r1 * hfx; |
| 1201 e = hxs * ((r1 - t) / (6.0 - x * t)); |
| 1202 if (k == 0) { |
| 1203 return x - (x * e - hxs); /* c is 0 */ |
| 1204 } else { |
| 1205 INSERT_WORDS(twopk, 0x3ff00000 + (k << 20), 0); /* 2^k */ |
| 1206 e = (x * (e - c) - c); |
| 1207 e -= hxs; |
| 1208 if (k == -1) return 0.5 * (x - e) - 0.5; |
| 1209 if (k == 1) { |
| 1210 if (x < -0.25) |
| 1211 return -2.0 * (e - (x + 0.5)); |
| 1212 else |
| 1213 return one + 2.0 * (x - e); |
| 1214 } |
| 1215 if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ |
| 1216 y = one - (e - x); |
| 1217 // TODO(mvstanton): is this replacement for the hex float |
| 1218 // sufficient? |
| 1219 // if (k == 1024) y = y*2.0*0x1p1023; |
| 1220 if (k == 1024) |
| 1221 y = y * 2.0 * 8.98846567431158e+307; |
| 1222 else |
| 1223 y = y * twopk; |
| 1224 return y - one; |
| 1225 } |
| 1226 t = one; |
| 1227 if (k < 20) { |
| 1228 SET_HIGH_WORD(t, 0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */ |
| 1229 y = t - (e - x); |
| 1230 y = y * twopk; |
| 1231 } else { |
| 1232 SET_HIGH_WORD(t, ((0x3ff - k) << 20)); /* 2^-k */ |
| 1233 y = x - (e + t); |
| 1234 y += one; |
| 1235 y = y * twopk; |
| 1236 } |
| 1237 } |
| 1238 return y; |
| 1239 } |
| 1240 |
| 1241 double cbrt(double x) { |
| 1242 static const u_int32_t |
| 1243 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */ |
| 1244 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */ |
| 1245 |
| 1246 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */ |
| 1247 static const double P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */ |
| 1248 P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */ |
| 1249 P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */ |
| 1250 P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */ |
| 1251 P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */ |
| 1252 |
| 1253 int32_t hx; |
| 1254 union { |
| 1255 double value; |
| 1256 uint64_t bits; |
| 1257 } u; |
| 1258 double r, s, t = 0.0, w; |
| 1259 u_int32_t sign; |
| 1260 u_int32_t high, low; |
| 1261 |
| 1262 EXTRACT_WORDS(hx, low, x); |
| 1263 sign = hx & 0x80000000; /* sign= sign(x) */ |
| 1264 hx ^= sign; |
| 1265 if (hx >= 0x7ff00000) return (x + x); /* cbrt(NaN,INF) is itself */ |
| 1266 |
| 1267 /* |
| 1268 * Rough cbrt to 5 bits: |
| 1269 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3) |
| 1270 * where e is integral and >= 0, m is real and in [0, 1), and "/" and |
| 1271 * "%" are integer division and modulus with rounding towards minus |
| 1272 * infinity. The RHS is always >= the LHS and has a maximum relative |
| 1273 * error of about 1 in 16. Adding a bias of -0.03306235651 to the |
| 1274 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE |
| 1275 * floating point representation, for finite positive normal values, |
| 1276 * ordinary integer divison of the value in bits magically gives |
| 1277 * almost exactly the RHS of the above provided we first subtract the |
| 1278 * exponent bias (1023 for doubles) and later add it back. We do the |
| 1279 * subtraction virtually to keep e >= 0 so that ordinary integer |
| 1280 * division rounds towards minus infinity; this is also efficient. |
| 1281 */ |
| 1282 if (hx < 0x00100000) { /* zero or subnormal? */ |
| 1283 if ((hx | low) == 0) return (x); /* cbrt(0) is itself */ |
| 1284 SET_HIGH_WORD(t, 0x43500000); /* set t= 2**54 */ |
| 1285 t *= x; |
| 1286 GET_HIGH_WORD(high, t); |
| 1287 INSERT_WORDS(t, sign | ((high & 0x7fffffff) / 3 + B2), 0); |
| 1288 } else { |
| 1289 INSERT_WORDS(t, sign | (hx / 3 + B1), 0); |
| 1290 } |
| 1291 |
| 1292 /* |
| 1293 * New cbrt to 23 bits: |
| 1294 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x) |
| 1295 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r) |
| 1296 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation |
| 1297 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this |
| 1298 * gives us bounds for r = t**3/x. |
| 1299 * |
| 1300 * Try to optimize for parallel evaluation as in k_tanf.c. |
| 1301 */ |
| 1302 r = (t * t) * (t / x); |
| 1303 t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); |
| 1304 |
| 1305 /* |
| 1306 * Round t away from zero to 23 bits (sloppily except for ensuring that |
| 1307 * the result is larger in magnitude than cbrt(x) but not much more than |
| 1308 * 2 23-bit ulps larger). With rounding towards zero, the error bound |
| 1309 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps |
| 1310 * in the rounded t, the infinite-precision error in the Newton |
| 1311 * approximation barely affects third digit in the final error |
| 1312 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps |
| 1313 * before the final error is larger than 0.667 ulps. |
| 1314 */ |
| 1315 u.value = t; |
| 1316 u.bits = (u.bits + 0x80000000) & 0xffffffffc0000000ULL; |
| 1317 t = u.value; |
| 1318 |
| 1319 /* one step Newton iteration to 53 bits with error < 0.667 ulps */ |
| 1320 s = t * t; /* t*t is exact */ |
| 1321 r = x / s; /* error <= 0.5 ulps; |r| < |t| */ |
| 1322 w = t + t; /* t+t is exact */ |
| 1323 r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */ |
| 1324 t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */ |
| 1325 |
| 1326 return (t); |
| 1327 } |
| 1328 |
1135 } // namespace ieee754 | 1329 } // namespace ieee754 |
1136 } // namespace base | 1330 } // namespace base |
1137 } // namespace v8 | 1331 } // namespace v8 |
OLD | NEW |