Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(186)

Unified Diff: src/gpu/instanced/InstanceProcessor.cpp

Issue 2066993003: Begin instanced rendering for simple shapes (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Rix perf regressions Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/gpu/instanced/InstanceProcessor.h ('k') | src/gpu/instanced/InstancedRendering.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/gpu/instanced/InstanceProcessor.cpp
diff --git a/src/gpu/instanced/InstanceProcessor.cpp b/src/gpu/instanced/InstanceProcessor.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..acad4c1e1b0e446d71de88e1411cd534759bef24
--- /dev/null
+++ b/src/gpu/instanced/InstanceProcessor.cpp
@@ -0,0 +1,2096 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "InstanceProcessor.h"
+
+#include "GrContext.h"
+#include "GrRenderTargetPriv.h"
+#include "GrResourceCache.h"
+#include "GrResourceProvider.h"
+#include "glsl/GrGLSLGeometryProcessor.h"
+#include "glsl/GrGLSLFragmentShaderBuilder.h"
+#include "glsl/GrGLSLProgramBuilder.h"
+#include "glsl/GrGLSLVarying.h"
+
+namespace gr_instanced {
+
+bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& caps,
+ AntialiasMode* lastSupportedAAMode) {
+ if (!glslCaps.canUseAnyFunctionInShader() ||
+ !glslCaps.flatInterpolationSupport() ||
+ !glslCaps.integerSupport() ||
+ 0 == glslCaps.maxVertexSamplers() ||
+ !caps.shaderCaps()->texelBufferSupport() ||
+ caps.maxVertexAttributes() < kNumAttribs) {
+ return false;
+ }
+ if (caps.sampleLocationsSupport() &&
+ glslCaps.sampleVariablesSupport() &&
+ glslCaps.shaderDerivativeSupport()) {
+ if (0 != caps.maxRasterSamples() &&
+ glslCaps.sampleMaskOverrideCoverageSupport()) {
+ *lastSupportedAAMode = AntialiasMode::kMixedSamples;
+ } else {
+ *lastSupportedAAMode = AntialiasMode::kMSAA;
+ }
+ } else {
+ *lastSupportedAAMode = AntialiasMode::kCoverage;
+ }
+ return true;
+}
+
+InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer)
+ : fBatchInfo(batchInfo) {
+ this->initClassID<InstanceProcessor>();
+
+ this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision));
+ this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType));
+ this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType));
+ this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType,
+ kHigh_GrSLPrecision));
+ this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType,
+ kHigh_GrSLPrecision));
+ this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision));
+ this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision));
+
+ GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords);
+ GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs);
+ GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo);
+ GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX);
+ GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY);
+ GR_STATIC_ASSERT(5 == (int)Attrib::kColor);
+ GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect);
+ GR_STATIC_ASSERT(7 == kNumAttribs);
+
+ if (fBatchInfo.fHasParams) {
+ SkASSERT(paramsBuffer);
+ fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag);
+ this->addBufferAccess(&fParamsAccess);
+ }
+
+ if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) {
+ if (!fBatchInfo.isSimpleRects() ||
+ AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) {
+ this->setWillUseSampleLocations();
+ }
+ }
+}
+
+class GLSLInstanceProcessor : public GrGLSLGeometryProcessor {
+public:
+ void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
+
+private:
+ void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {}
+
+ class VertexInputs;
+ class Backend;
+ class BackendNonAA;
+ class BackendCoverage;
+ class BackendMultisample;
+
+ typedef GrGLSLGeometryProcessor INHERITED;
+};
+
+GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps&) const {
+ return new GLSLInstanceProcessor();
+}
+
+class GLSLInstanceProcessor::VertexInputs {
+public:
+ VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder)
+ : fInstProc(instProc),
+ fVertexBuilder(vertexBuilder) {
+ }
+
+ void initParams(const SamplerHandle paramsBuffer) {
+ fParamsBuffer = paramsBuffer;
+ fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask);
+ fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision);
+ fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);",
+ this->attr(Attrib::kInstanceInfo));
+ }
+
+ const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).fName; }
+
+ void fetchNextParam(GrSLType type = kVec4f_GrSLType) const {
+ SkASSERT(fParamsBuffer.isValid());
+ if (type != kVec4f_GrSLType) {
+ fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type));
+ }
+ fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++");
+ if (type != kVec4f_GrSLType) {
+ fVertexBuilder->codeAppend(")");
+ }
+ }
+
+ void skipParams(unsigned n) const {
+ SkASSERT(fParamsBuffer.isValid());
+ fVertexBuilder->codeAppendf("paramsIdx += %u;", n);
+ }
+
+private:
+ const InstanceProcessor& fInstProc;
+ GrGLSLVertexBuilder* fVertexBuilder;
+ SamplerHandle fParamsBuffer;
+};
+
+class GLSLInstanceProcessor::Backend {
+public:
+ static Backend* SK_WARN_UNUSED_RESULT Create(const GrPipeline&, BatchInfo, const VertexInputs&);
+ virtual ~Backend() {}
+
+ void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*);
+ virtual void setupRect(GrGLSLVertexBuilder*) = 0;
+ virtual void setupOval(GrGLSLVertexBuilder*) = 0;
+ void setupRRect(GrGLSLVertexBuilder*);
+
+ void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*);
+ virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0;
+ virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0;
+ void setupInnerRRect(GrGLSLVertexBuilder*);
+
+ const char* outShapeCoords() {
+ return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib::kShapeCoords);
+ }
+
+ void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage,
+ const char* outColor);
+
+protected:
+ Backend(BatchInfo batchInfo, const VertexInputs& inputs)
+ : fBatchInfo(batchInfo),
+ fInputs(inputs),
+ fModifiesCoverage(false),
+ fModifiesColor(false),
+ fNeedsNeighborRadii(false),
+ fColor(kVec4f_GrSLType),
+ fTriangleIsArc(kInt_GrSLType),
+ fArcCoords(kVec2f_GrSLType),
+ fInnerShapeCoords(kVec2f_GrSLType),
+ fInnerRRect(kVec4f_GrSLType),
+ fModifiedShapeCoords(nullptr) {
+ if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) {
+ fModifiedShapeCoords = "adjustedShapeCoords";
+ }
+ }
+
+ virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0;
+ virtual void adjustRRectVertices(GrGLSLVertexBuilder*);
+ virtual void onSetupRRect(GrGLSLVertexBuilder*) {}
+
+ virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0;
+ virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0;
+
+ virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*,
+ const char* outCoverage, const char* outColor) = 0;
+
+ void setupSimpleRadii(GrGLSLVertexBuilder*);
+ void setupNinePatchRadii(GrGLSLVertexBuilder*);
+ void setupComplexRadii(GrGLSLVertexBuilder*);
+
+ const BatchInfo fBatchInfo;
+ const VertexInputs& fInputs;
+ bool fModifiesCoverage;
+ bool fModifiesColor;
+ bool fNeedsNeighborRadii;
+ GrGLSLVertToFrag fColor;
+ GrGLSLVertToFrag fTriangleIsArc;
+ GrGLSLVertToFrag fArcCoords;
+ GrGLSLVertToFrag fInnerShapeCoords;
+ GrGLSLVertToFrag fInnerRRect;
+ const char* fModifiedShapeCoords;
+};
+
+void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
+ const GrPipeline& pipeline = args.fVertBuilder->getProgramBuilder()->pipeline();
+ const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>();
+ GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
+ GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
+ GrGLSLVertexBuilder* v = args.fVertBuilder;
+ GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
+
+ varyingHandler->emitAttributes(ip);
+
+ VertexInputs inputs(ip, v);
+ if (ip.batchInfo().fHasParams) {
+ SkASSERT(1 == ip.numBuffers());
+ inputs.initParams(args.fBufferSamplers[0]);
+ }
+
+ if (!ip.batchInfo().fHasPerspective) {
+ v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);",
+ inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY));
+ } else {
+ v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag);
+ v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));",
+ inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY));
+ v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {",
+ inputs.attr(Attrib::kInstanceInfo));
+ v->codeAppend ( "shapeMatrix[2] = ");
+ inputs.fetchNextParam(kVec3f_GrSLType);
+ v->codeAppend ( ";");
+ v->codeAppend ("}");
+ }
+
+ int usedShapeTypes = 0;
+
+ bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes);
+ if (!hasSingleShapeType) {
+ usedShapeTypes |= ip.batchInfo().fShapeTypes;
+ v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit);
+ v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;",
+ inputs.attr(Attrib::kInstanceInfo));
+ }
+
+ SkAutoTDelete<Backend> backend(Backend::Create(pipeline, ip.batchInfo(), inputs));
+ backend->init(varyingHandler, v);
+
+ if (hasSingleShapeType) {
+ if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) {
+ backend->setupRect(v);
+ } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) {
+ backend->setupOval(v);
+ } else {
+ backend->setupRRect(v);
+ }
+ } else {
+ v->codeAppend ("switch (shapeType) {");
+ if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) {
+ v->codeAppend ("case RECT_SHAPE_TYPE: {");
+ backend->setupRect(v);
+ v->codeAppend ("} break;");
+ }
+ if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) {
+ v->codeAppend ("case OVAL_SHAPE_TYPE: {");
+ backend->setupOval(v);
+ v->codeAppend ("} break;");
+ }
+ if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) {
+ v->codeAppend ("default: {");
+ backend->setupRRect(v);
+ v->codeAppend ("} break;");
+ }
+ v->codeAppend ("}");
+ }
+
+ if (ip.batchInfo().fInnerShapeTypes) {
+ bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes);
+ if (!hasSingleInnerShapeType) {
+ usedShapeTypes |= ip.batchInfo().fInnerShapeTypes;
+ v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMask);
+ v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit);
+ v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> "
+ "INNER_SHAPE_TYPE_BIT);",
+ inputs.attr(Attrib::kInstanceInfo));
+ }
+ // Here we take advantage of the fact that outerRect == localRect in recordDRRect.
+ v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect));
+ v->codeAppend ("vec4 inner = ");
+ inputs.fetchNextParam();
+ v->codeAppend (";");
+ // outer2Inner is a transform from shape coords to inner shape coords:
+ // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw
+ v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, "
+ "outer.xy + outer.zw - inner.xy - inner.zw) / "
+ "(inner.zw - inner.xy).xyxy;");
+ v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inner.zw;",
+ backend->outShapeCoords());
+
+ backend->initInnerShape(varyingHandler, v);
+
+ if (hasSingleInnerShapeType) {
+ if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) {
+ backend->setupInnerRect(v);
+ } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) {
+ backend->setupInnerOval(v);
+ } else {
+ backend->setupInnerRRect(v);
+ }
+ } else {
+ v->codeAppend("switch (innerShapeType) {");
+ if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) {
+ v->codeAppend("case RECT_SHAPE_TYPE: {");
+ backend->setupInnerRect(v);
+ v->codeAppend("} break;");
+ }
+ if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) {
+ v->codeAppend("case OVAL_SHAPE_TYPE: {");
+ backend->setupInnerOval(v);
+ v->codeAppend("} break;");
+ }
+ if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) {
+ v->codeAppend("default: {");
+ backend->setupInnerRRect(v);
+ v->codeAppend("} break;");
+ }
+ v->codeAppend("}");
+ }
+ }
+
+ if (usedShapeTypes & kRect_ShapeFlag) {
+ v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect);
+ }
+ if (usedShapeTypes & kOval_ShapeFlag) {
+ v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval);
+ }
+
+ backend->emitCode(v, f, pipeline.ignoresCoverage() ? nullptr : args.fOutputCoverage,
+ args.fOutputColor);
+
+ const char* localCoords = nullptr;
+ if (ip.batchInfo().fUsesLocalCoords) {
+ localCoords = "localCoords";
+ v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords());
+ v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;",
+ inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLocalRect));
+ }
+ if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) {
+ v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag);
+ v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {",
+ inputs.attr(Attrib::kInstanceInfo));
+ if (!ip.batchInfo().fUsesLocalCoords) {
+ inputs.skipParams(2);
+ } else {
+ v->codeAppendf( "mat2x3 localMatrix;");
+ v->codeAppend ( "localMatrix[0] = ");
+ inputs.fetchNextParam(kVec3f_GrSLType);
+ v->codeAppend ( ";");
+ v->codeAppend ( "localMatrix[1] = ");
+ inputs.fetchNextParam(kVec3f_GrSLType);
+ v->codeAppend ( ";");
+ v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;");
+ }
+ v->codeAppend("}");
+ }
+
+ GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType;
+ v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;",
+ GrGLSLTypeString(positionType), backend->outShapeCoords());
+ gpArgs->fPositionVar.set(positionType, "deviceCoords");
+
+ this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords,
+ args.fTransformsIn, args.fTransformsOut);
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder* v) {
+ if (fModifiedShapeCoords) {
+ v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attrib::kShapeCoords));
+ }
+
+ this->onInit(varyingHandler, v);
+
+ if (!fColor.vsOut()) {
+ varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision);
+ v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor));
+ }
+}
+
+void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) {
+ v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);",
+ fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVertexAttrs));
+ v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;");
+ v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : "");
+ v->codeAppend ("mat2 p = ");
+ fInputs.fetchNextParam(kMat22f_GrSLType);
+ v->codeAppend (";");
+ uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask;
+ if (0 == (types & (types - 1))) {
+ if (kSimpleRRect_ShapeFlag == types) {
+ this->setupSimpleRadii(v);
+ } else if (kNinePatch_ShapeFlag == types) {
+ this->setupNinePatchRadii(v);
+ } else if (kComplexRRect_ShapeFlag == types) {
+ this->setupComplexRadii(v);
+ }
+ } else {
+ v->codeAppend("switch (shapeType) {");
+ if (types & kSimpleRRect_ShapeFlag) {
+ v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpleRRect);
+ v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {");
+ this->setupSimpleRadii(v);
+ v->codeAppend ("} break;");
+ }
+ if (types & kNinePatch_ShapeFlag) {
+ v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatch);
+ v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {");
+ this->setupNinePatchRadii(v);
+ v->codeAppend ("} break;");
+ }
+ if (types & kComplexRRect_ShapeFlag) {
+ v->codeAppend ("default: {");
+ this->setupComplexRadii(v);
+ v->codeAppend ("} break;");
+ }
+ v->codeAppend("}");
+ }
+
+ this->adjustRRectVertices(v);
+
+ if (fArcCoords.vsOut()) {
+ v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;",
+ fArcCoords.vsOut(), fModifiedShapeCoords);
+ }
+ if (fTriangleIsArc.vsOut()) {
+ v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));",
+ fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords));
+ }
+
+ this->onSetupRRect(v);
+}
+
+void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) {
+ if (fNeedsNeighborRadii) {
+ v->codeAppend ("neighborRadii = ");
+ }
+ v->codeAppend("radii = p[0] * 2.0 / p[1];");
+}
+
+void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) {
+ v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);");
+ if (fNeedsNeighborRadii) {
+ v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);");
+ }
+}
+
+void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) {
+ /**
+ * The x and y radii of each arc are stored in separate vectors,
+ * in the following order:
+ *
+ * __x1 _ _ _ x3__
+ *
+ * y1 | | y2
+ *
+ * | |
+ *
+ * y3 |__ _ _ _ __| y4
+ * x2 x4
+ *
+ */
+ v->codeAppend("mat2 p2 = ");
+ fInputs.fetchNextParam(kMat22f_GrSLType);
+ v->codeAppend(";");
+ v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);");
+ if (fNeedsNeighborRadii) {
+ v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], "
+ "p2[1u - corner.y][corner.x]);");
+ }
+}
+
+void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) {
+ // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii.
+ // 0.5 is a special value that indicates the edge of an arc triangle.
+ v->codeAppendf("if (abs(%s.x) == 0.5)"
+ "%s.x = cornerSign.x * (1.0 - radii.x);",
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
+ v->codeAppendf("if (abs(%s.y) == 0.5) "
+ "%s.y = cornerSign.y * (1.0 - radii.y);",
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
+}
+
+void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder* v) {
+ SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag)));
+
+ this->onInitInnerShape(varyingHandler, v);
+
+ if (fInnerShapeCoords.vsOut()) {
+ v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) {
+ v->codeAppend("mat2 innerP = ");
+ fInputs.fetchNextParam(kMat22f_GrSLType);
+ v->codeAppend(";");
+ v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];");
+ this->onSetupInnerRRect(v);
+}
+
+void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f,
+ const char* outCoverage, const char* outColor) {
+ SkASSERT(!fModifiesCoverage || outCoverage);
+ this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr,
+ fModifiesColor ? outColor : nullptr);
+ if (outCoverage && !fModifiesCoverage) {
+ // Even though the subclass doesn't use coverage, we are expected to assign some value.
+ f->codeAppendf("%s = vec4(1);", outCoverage);
+ }
+ if (!fModifiesColor) {
+ // The subclass didn't assign a value to the output color.
+ f->codeAppendf("%s = %s;", outColor, fColor.fsIn());
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+class GLSLInstanceProcessor::BackendNonAA : public Backend {
+public:
+ BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs)
+ : INHERITED(batchInfo, inputs) {
+ if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) {
+ fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage;
+ fModifiesCoverage = !fModifiesColor;
+ }
+ }
+
+private:
+ void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
+ void setupRect(GrGLSLVertexBuilder*) override;
+ void setupOval(GrGLSLVertexBuilder*) override;
+
+ void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
+ void setupInnerRect(GrGLSLVertexBuilder*) override;
+ void setupInnerOval(GrGLSLVertexBuilder*) override;
+ void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
+
+ void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*,
+ const char*) override;
+
+ typedef Backend INHERITED;
+};
+
+void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder*) {
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision);
+ varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision);
+ }
+}
+
+void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) {
+ if (fTriangleIsArc.vsOut()) {
+ v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) {
+ SkASSERT(fArcCoords.vsOut());
+ SkASSERT(fTriangleIsArc.vsOut());
+ v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords());
+ v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
+}
+
+void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder*) {
+ varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision);
+ if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes &&
+ kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
+ varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision);
+ }
+}
+
+void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) {
+ if (fInnerRRect.vsOut()) {
+ v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) {
+ if (fInnerRRect.vsOut()) {
+ v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
+ v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut());
+}
+
+void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*,
+ GrGLSLPPFragmentBuilder* f,
+ const char* outCoverage,
+ const char* outColor) {
+ const char* dropFragment = nullptr;
+ if (!fBatchInfo.fCannotDiscard) {
+ dropFragment = "discard";
+ } else if (fModifiesCoverage) {
+ f->appendPrecisionModifier(kLow_GrSLPrecision);
+ f->codeAppend ("float covered = 1.0;");
+ dropFragment = "covered = 0.0";
+ } else if (fModifiesColor) {
+ f->appendPrecisionModifier(kLow_GrSLPrecision);
+ f->codeAppendf("vec4 color = %s;", fColor.fsIn());
+ dropFragment = "color = vec4(0)";
+ }
+ if (fTriangleIsArc.fsIn()) {
+ SkASSERT(dropFragment);
+ f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;",
+ fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment);
+ }
+ if (fBatchInfo.fInnerShapeTypes) {
+ SkASSERT(dropFragment);
+ f->codeAppendf("// Inner shape.\n");
+ if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;",
+ fInnerShapeCoords.fsIn(), dropFragment);
+ } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;",
+ fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment);
+ } else {
+ f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn());
+ f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;",
+ fInnerShapeCoords.fsIn(), fInnerRRect.fsIn());
+ f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {");
+ f->codeAppendf( "%s;", dropFragment);
+ f->codeAppend ( "} else {");
+ f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;",
+ fInnerRRect.fsIn());
+ f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {");
+ f->codeAppendf( "%s;", dropFragment);
+ f->codeAppend ( "}");
+ f->codeAppend ( "}");
+ f->codeAppend ("}");
+ }
+ }
+ if (fModifiesCoverage) {
+ f->codeAppendf("%s = vec4(covered);", outCoverage);
+ } else if (fModifiesColor) {
+ f->codeAppendf("%s = color;", outColor);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+class GLSLInstanceProcessor::BackendCoverage : public Backend {
+public:
+ BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs)
+ : INHERITED(batchInfo, inputs),
+ fColorTimesRectCoverage(kVec4f_GrSLType),
+ fRectCoverage(kFloat_GrSLType),
+ fEllipseCoords(kVec2f_GrSLType),
+ fEllipseName(kVec2f_GrSLType),
+ fBloatedRadius(kFloat_GrSLType),
+ fDistanceToInnerEdge(kVec2f_GrSLType),
+ fInnerShapeBloatedHalfSize(kVec2f_GrSLType),
+ fInnerEllipseCoords(kVec2f_GrSLType),
+ fInnerEllipseName(kVec2f_GrSLType) {
+ fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kRRect_ShapesMask);
+ fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage &&
+ !fBatchInfo.fInnerShapeTypes;
+ fModifiesCoverage = !fTweakAlphaForCoverage;
+ fModifiesColor = fTweakAlphaForCoverage;
+ fModifiedShapeCoords = "bloatedShapeCoords";
+ }
+
+private:
+ void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
+ void setupRect(GrGLSLVertexBuilder*) override;
+ void setupOval(GrGLSLVertexBuilder*) override;
+ void adjustRRectVertices(GrGLSLVertexBuilder*) override;
+ void onSetupRRect(GrGLSLVertexBuilder*) override;
+
+ void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
+ void setupInnerRect(GrGLSLVertexBuilder*) override;
+ void setupInnerOval(GrGLSLVertexBuilder*) override;
+ void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
+
+ void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage,
+ const char* outColor) override;
+
+ void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor);
+ void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage);
+ void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName,
+ bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative,
+ const char* outCoverage);
+ void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage);
+
+ GrGLSLVertToFrag fColorTimesRectCoverage;
+ GrGLSLVertToFrag fRectCoverage;
+ GrGLSLVertToFrag fEllipseCoords;
+ GrGLSLVertToFrag fEllipseName;
+ GrGLSLVertToFrag fBloatedRadius;
+ GrGLSLVertToFrag fDistanceToInnerEdge;
+ GrGLSLVertToFrag fInnerShapeBloatedHalfSize;
+ GrGLSLVertToFrag fInnerEllipseCoords;
+ GrGLSLVertToFrag fInnerEllipseName;
+ bool fShapeIsCircle;
+ bool fTweakAlphaForCoverage;
+
+ typedef Backend INHERITED;
+};
+
+void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder* v) {
+ v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));");
+ v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), "
+ "length(shapeTransposeMatrix[1]));");
+ v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;");
+ v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attrib::kShapeCoords));
+
+ if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) {
+ if (fTweakAlphaForCoverage) {
+ varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRectCoverage,
+ kLow_GrSLPrecision);
+ if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) {
+ fColor = fColorTimesRectCoverage;
+ }
+ } else {
+ varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSLPrecision);
+ }
+ v->codeAppend("float rectCoverage = 0.0;");
+ }
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision);
+ if (!fShapeIsCircle) {
+ varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_GrSLPrecision);
+ varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision);
+ } else {
+ varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_GrSLPrecision);
+ varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMedium_GrSLPrecision);
+ }
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) {
+ // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs.
+ v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;",
+ fInputs.attr(Attrib::kVertexAttrs));
+ // Here we use the absolute value, because when the rect is thinner than a pixel, this makes it
+ // mark the spot where pixel center is within half a pixel of the *opposite* edge. This,
+ // combined with the "maxCoverage" logic below gives us mathematically correct coverage even for
+ // subpixel rectangles.
+ v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));",
+ fInputs.attr(Attrib::kShapeCoords));
+
+ // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 unless the rect is
+ // narrower than a pixel.
+ v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *"
+ "min(0.5, shapeHalfSize.y);");
+ v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;",
+ fInputs.attr(Attrib::kVertexAttrs));
+
+ if (fTriangleIsArc.vsOut()) {
+ v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) {
+ // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs.
+ v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;",
+ fInputs.attr(Attrib::kVertexAttrs));
+ v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));",
+ fInputs.attr(Attrib::kShapeCoords));
+ v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut());
+ if (fEllipseName.vsOut()) {
+ v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut());
+ }
+ if (fBloatedRadius.vsOut()) {
+ SkASSERT(fShapeIsCircle);
+ v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut());
+ }
+ if (fTriangleIsArc.vsOut()) {
+ v->codeAppendf("%s = int(%s != 0);",
+ fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
+ }
+ if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) {
+ v->codeAppendf("rectCoverage = 1.0;");
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) {
+ // We try to let the AA borders line up with the arc edges on their particular side, but we
+ // can't allow them to get closer than one half pixel to the edge or they might overlap with
+ // their neighboring border.
+ v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));");
+ v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);");
+ // 0.5 is a special value that indicates this vertex is an arc edge.
+ v->codeAppendf("if (abs(%s.x) == 0.5)"
+ "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attrib::kShapeCoords));
+ v->codeAppendf("if (abs(%s.y) == 0.5)"
+ "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attrib::kShapeCoords));
+
+ // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special
+ // value to indicate these points.
+ v->codeAppendf("if (abs(%s.x) == 0.75) "
+ "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;",
+ fInputs.attr(Attrib::kShapeCoords));
+ v->codeAppendf("if (abs(%s.y) == 0.75) "
+ "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;",
+ fInputs.attr(Attrib::kShapeCoords));
+}
+
+void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) {
+ // The geometry is laid out in such a way that rectCoverage will be 0 and 1 on the vertices, but
+ // we still need to recompute this value because when the rrect gets thinner than one pixel, the
+ // interior edge of the border will necessarily clamp, and we need to match the AA behavior of
+ // the arc segments (i.e. distance from bloated edge only; ignoring the fact that the pixel
+ // actully has less coverage because it's not completely inside the opposite edge.)
+ v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;");
+ v->codeAppend("rectCoverage = min(d.x, d.y);");
+
+ SkASSERT(!fShapeIsCircle);
+ // The AA border does not get closer than one half pixel to the edge of the rect, so to get a
+ // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half
+ // pixel. (We don't worry about the transition on the opposite side when a radius is so large
+ // that the border clamped on that side.)
+ v->codeAppendf("vec2 clampedRadii = max(radii, bloat);");
+ v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(1)) * "
+ "shapeHalfSize;", fEllipseCoords.vsOut());
+ v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);",
+ fEllipseName.vsOut());
+}
+
+void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder* v) {
+ v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;");
+
+ if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords,
+ kMedium_GrSLPrecision);
+ varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName,
+ kMedium_GrSLPrecision);
+ } else {
+ varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge,
+ kMedium_GrSLPrecision);
+ varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize,
+ kMedium_GrSLPrecision);
+ if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
+ varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision);
+ varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName,
+ kMedium_GrSLPrecision);
+ varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision);
+ }
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) {
+ if (fInnerRRect.vsOut()) {
+ // The fragment shader will generalize every inner shape as a round rect. Since this one
+ // is a rect, we simply emit bogus parameters for the round rect (effectively negative
+ // radii) that ensure the fragment shader always takes the "emitRect" codepath.
+ v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2Inner.zw);",
+ fInnerRRect.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) {
+ v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);",
+ fInnerEllipseName.vsOut());
+ if (fInnerEllipseCoords.vsOut()) {
+ v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut());
+ }
+ if (fInnerRRect.vsOut()) {
+ v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
+ // The distance to ellipse formula doesn't work well when the radii are less than half a pixel.
+ v->codeAppend ("innerRadii = max(innerRadii, bloat);");
+ v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * "
+ "innerShapeHalfSize);",
+ fInnerEllipseName.vsOut());
+ v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut());
+}
+
+void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v,
+ GrGLSLPPFragmentBuilder* f,
+ const char* outCoverage,
+ const char* outColor) {
+ if (fColorTimesRectCoverage.vsOut()) {
+ SkASSERT(!fRectCoverage.vsOut());
+ v->codeAppendf("%s = %s * rectCoverage;",
+ fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kColor));
+ }
+ if (fRectCoverage.vsOut()) {
+ SkASSERT(!fColorTimesRectCoverage.vsOut());
+ v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut());
+ }
+
+ SkString coverage("float coverage");
+ if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) {
+ coverage.prependf("lowp ");
+ }
+ if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) {
+ f->codeAppendf("%s;", coverage.c_str());
+ coverage = "coverage";
+ }
+ if (fTriangleIsArc.fsIn()) {
+ f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn());
+ this->emitRect(f, coverage.c_str(), outColor);
+ f->codeAppend ("} else {");
+ if (fShapeIsCircle) {
+ this->emitCircle(f, coverage.c_str());
+ } else {
+ bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes & kOval_ShapeFlag);
+ this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(),
+ true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative,
+ coverage.c_str());
+ }
+ if (fTweakAlphaForCoverage) {
+ f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn());
+ }
+ f->codeAppend ("}");
+ } else {
+ this->emitRect(f, coverage.c_str(), outColor);
+ }
+
+ if (fBatchInfo.fInnerShapeTypes) {
+ f->codeAppendf("// Inner shape.\n");
+ SkString innerCoverageDecl("float innerCoverage");
+ if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) {
+ innerCoverageDecl.prependf("lowp ");
+ }
+ if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(),
+ true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/,
+ innerCoverageDecl.c_str());
+ } else {
+ v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;",
+ fDistanceToInnerEdge.vsOut());
+ v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut());
+
+ if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ this->emitInnerRect(f, innerCoverageDecl.c_str());
+ } else {
+ f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str());
+ f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;",
+ fInnerShapeCoords.fsIn(), fInnerRRect.fsIn());
+ f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {");
+ this->emitInnerRect(f, "innerCoverage");
+ f->codeAppend ("} else {");
+ f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.zw;",
+ fInnerRRect.fsIn());
+ this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(),
+ false /*ellipseCoordsNeedClamp*/,
+ false /*ellipseCoordsMayBeNegative*/, "innerCoverage");
+ f->codeAppend ("}");
+ }
+ }
+ f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCoverage);
+ } else if (!fTweakAlphaForCoverage) {
+ f->codeAppendf("%s = vec4(coverage);", outCoverage);
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f,
+ const char* outCoverage,
+ const char* outColor) {
+ if (fColorTimesRectCoverage.fsIn()) {
+ f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn());
+ } else if (fTweakAlphaForCoverage) {
+ // We are drawing just ovals. The interior rect always has 100% coverage.
+ f->codeAppendf("%s = %s;", outColor, fColor.fsIn());
+ } else if (fRectCoverage.fsIn()) {
+ f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn());
+ } else {
+ f->codeAppendf("%s = 1.0;", outCoverage);
+ }
+}
+
+void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f,
+ const char* outCoverage) {
+ // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects.
+ SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes));
+ f->codeAppendf("float distanceToEdge = %s - length(%s);",
+ fBloatedRadius.fsIn(), fEllipseCoords.fsIn());
+ f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage);
+}
+
+void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f,
+ const char* ellipseCoords,
+ const char* ellipseName,
+ bool ellipseCoordsNeedClamp,
+ bool ellipseCoordsMayBeNegative,
+ const char* outCoverage) {
+ SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp);
+ if (ellipseCoordsNeedClamp) {
+ // This serves two purposes:
+ // - To restrict the arcs of rounded rects to their positive quadrants.
+ // - To avoid inversesqrt(0) in the ellipse formula.
+ if (ellipseCoordsMayBeNegative) {
+ f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", ellipseCoords);
+ } else {
+ f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", ellipseCoords);
+ }
+ ellipseCoords = "ellipseClampedCoords";
+ }
+ // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2.
+ f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName);
+ // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
+ f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords);
+ // gradDot is the squared length of the gradient of the implicit.
+ f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);");
+ f->appendPrecisionModifier(kLow_GrSLPrecision);
+ f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);");
+ f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage);
+}
+
+void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f,
+ const char* outCoverage) {
+ f->appendPrecisionModifier(kLow_GrSLPrecision);
+ f->codeAppendf("vec2 c = %s - abs(%s);",
+ fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn());
+ f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage);
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+class GLSLInstanceProcessor::BackendMultisample : public Backend {
+public:
+ BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effectiveSampleCnt)
+ : INHERITED(batchInfo, inputs),
+ fEffectiveSampleCnt(effectiveSampleCnt),
+ fShapeCoords(kVec2f_GrSLType),
+ fShapeInverseMatrix(kMat22f_GrSLType),
+ fFragShapeHalfSpan(kVec2f_GrSLType),
+ fArcTest(kVec2f_GrSLType),
+ fArcInverseMatrix(kMat22f_GrSLType),
+ fFragArcHalfSpan(kVec2f_GrSLType),
+ fEarlyAccept(kInt_GrSLType),
+ fInnerShapeInverseMatrix(kMat22f_GrSLType),
+ fFragInnerShapeHalfSpan(kVec2f_GrSLType) {
+ fRectTrianglesMaySplit = fBatchInfo.fHasPerspective;
+ fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspective;
+ }
+
+private:
+ bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode; }
+
+ void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
+ void setupRect(GrGLSLVertexBuilder*) override;
+ void setupOval(GrGLSLVertexBuilder*) override;
+ void adjustRRectVertices(GrGLSLVertexBuilder*) override;
+ void onSetupRRect(GrGLSLVertexBuilder*) override;
+
+ void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
+ void setupInnerRect(GrGLSLVertexBuilder*) override;
+ void setupInnerOval(GrGLSLVertexBuilder*) override;
+ void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
+
+ void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*,
+ const char*) override;
+
+ struct EmitShapeCoords {
+ const GrGLSLVarying* fVarying;
+ const char* fInverseMatrix;
+ const char* fFragHalfSpan;
+ };
+
+ struct EmitShapeOpts {
+ bool fIsTightGeometry;
+ bool fResolveMixedSamples;
+ bool fInvertCoverage;
+ };
+
+ void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&);
+ void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative,
+ bool clampCoords, const EmitShapeOpts&);
+ void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect,
+ const EmitShapeOpts&);
+ void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx,
+ const char* interpolationMatrix);
+ void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&);
+ void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&,
+ bool maybeSharedEdge = true);
+
+ int fEffectiveSampleCnt;
+ bool fRectTrianglesMaySplit;
+ GrGLSLVertToFrag fShapeCoords;
+ GrGLSLVertToFrag fShapeInverseMatrix;
+ GrGLSLVertToFrag fFragShapeHalfSpan;
+ GrGLSLVertToFrag fArcTest;
+ GrGLSLVertToFrag fArcInverseMatrix;
+ GrGLSLVertToFrag fFragArcHalfSpan;
+ GrGLSLVertToFrag fEarlyAccept;
+ GrGLSLVertToFrag fInnerShapeInverseMatrix;
+ GrGLSLVertToFrag fFragInnerShapeHalfSpan;
+ SkString fSquareFun;
+
+ typedef Backend INHERITED;
+};
+
+void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder* v) {
+ if (!this->isMixedSampled()) {
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc,
+ kHigh_GrSLPrecision);
+ varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision);
+ if (!fBatchInfo.fHasPerspective) {
+ varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix,
+ kHigh_GrSLPrecision);
+ varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan,
+ kHigh_GrSLPrecision);
+ }
+ } else if (!fBatchInfo.fInnerShapeTypes) {
+ return;
+ }
+ } else {
+ varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision);
+ if (!fBatchInfo.fHasPerspective) {
+ varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix,
+ kHigh_GrSLPrecision);
+ varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan,
+ kHigh_GrSLPrecision);
+ }
+ if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) {
+ varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision);
+ varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision);
+ if (!fBatchInfo.fHasPerspective) {
+ varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix,
+ kHigh_GrSLPrecision);
+ varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan,
+ kHigh_GrSLPrecision);
+ }
+ } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) {
+ fArcCoords = fShapeCoords;
+ fArcInverseMatrix = fShapeInverseMatrix;
+ fFragArcHalfSpan = fFragShapeHalfSpan;
+ if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) {
+ varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc,
+ kHigh_GrSLPrecision);
+ }
+ }
+ if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
+ v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1);
+ varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision);
+ }
+ }
+ if (!fBatchInfo.fHasPerspective) {
+ v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));");
+ v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + "
+ "abs(vec4(shapeInverseMatrix).yw);");
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) {
+ if (fShapeCoords.vsOut()) {
+ v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords());
+ }
+ if (fShapeInverseMatrix.vsOut()) {
+ v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut());
+ }
+ if (fFragShapeHalfSpan.vsOut()) {
+ v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut());
+ }
+ if (fArcTest.vsOut()) {
+ // Pick a value that is not > 0.
+ v->codeAppendf("%s = vec2(0);", fArcTest.vsOut());
+ }
+ if (fTriangleIsArc.vsOut()) {
+ v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
+ }
+ if (fEarlyAccept.vsOut()) {
+ v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) {
+ v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords());
+ if (fArcInverseMatrix.vsOut()) {
+ v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords());
+ v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);",
+ fArcInverseMatrix.vsOut());
+ }
+ if (fFragArcHalfSpan.vsOut()) {
+ v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut());
+ }
+ if (fArcTest.vsOut()) {
+ // Pick a value that is > 0.
+ v->codeAppendf("%s = vec2(1);", fArcTest.vsOut());
+ }
+ if (fTriangleIsArc.vsOut()) {
+ if (!this->isMixedSampled()) {
+ v->codeAppendf("%s = %s & 1;",
+ fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
+ } else {
+ v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut());
+ }
+ }
+ if (fEarlyAccept.vsOut()) {
+ v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;",
+ fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) {
+ if (!this->isMixedSampled()) {
+ INHERITED::adjustRRectVertices(v);
+ return;
+ }
+
+ if (!fBatchInfo.fHasPerspective) {
+ // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that
+ // more of the pixels that cross into the arc region are completely inside the shared edges.
+ // We also snap to a regular rect if the radii shrink smaller than a pixel.
+ v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);");
+ v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? "
+ "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);");
+ } else {
+ // TODO: We could still bloat the corner triangle in the perspective case; we would just
+ // need to find the screen-space derivative of shape coords at this particular point.
+ v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;");
+ }
+
+ v->codeAppendf("if (abs(%s.x) == 0.5)"
+ "%s.x = cornerSign.x * (1.0 - cornerSize.x);",
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
+ v->codeAppendf("if (abs(%s.y) == 0.5)"
+ "%s.y = cornerSign.y * (1.0 - cornerSize.y);",
+ fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
+}
+
+void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) {
+ if (fShapeCoords.vsOut()) {
+ v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords());
+ }
+ if (fShapeInverseMatrix.vsOut()) {
+ v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut());
+ }
+ if (fFragShapeHalfSpan.vsOut()) {
+ v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut());
+ }
+ if (fArcInverseMatrix.vsOut()) {
+ v->codeAppend ("vec2 s = cornerSign / radii;");
+ v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);",
+ fArcInverseMatrix.vsOut());
+ }
+ if (fFragArcHalfSpan.vsOut()) {
+ v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));",
+ fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(),
+ fArcInverseMatrix.vsOut());
+ }
+ if (fArcTest.vsOut()) {
+ // The interior triangles are laid out as a fan. fArcTest is both distances from shared
+ // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a
+ // fragment is too close to either shared edge, in which case we point sample the shape as a
+ // rect at that point in order to guarantee the mixed samples discard logic works correctly.
+ v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : "
+ "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);",
+ fArcTest.vsOut(), fModifiedShapeCoords);
+ if (!fBatchInfo.fHasPerspective) {
+ // Shift the point at which distances to edges are measured from the center of the pixel
+ // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel
+ // is completely inside the shared edge. Perspective mode will accomplish this same task
+ // by finding the derivatives in the fragment shader.
+ v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);",
+ fArcTest.vsOut());
+ }
+ }
+ if (fEarlyAccept.vsOut()) {
+ SkASSERT(this->isMixedSampled());
+ v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;",
+ fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords));
+ }
+}
+
+void
+GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVertexBuilder* v) {
+ varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision);
+ if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes &&
+ kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
+ varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision);
+ }
+ if (!fBatchInfo.fHasPerspective) {
+ varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix,
+ kHigh_GrSLPrecision);
+ v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, outer2Inner.y);",
+ fInnerShapeInverseMatrix.vsOut());
+ varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan,
+ kHigh_GrSLPrecision);
+ v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;",
+ fFragInnerShapeHalfSpan.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) {
+ if (fInnerRRect.vsOut()) {
+ // The fragment shader will generalize every inner shape as a round rect. Since this one
+ // is a rect, we simply emit bogus parameters for the round rect (negative radii) that
+ // ensure the fragment shader always takes the "sample as rect" codepath.
+ v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));",
+ fInnerRRect.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) {
+ if (fInnerRRect.vsOut()) {
+ v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut());
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
+ // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel.
+ if (fFragInnerShapeHalfSpan.vsOut()) {
+ v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut());
+ } else {
+ v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));");
+ }
+ v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut());
+}
+
+void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*,
+ GrGLSLPPFragmentBuilder* f,
+ const char*, const char*) {
+ f->define("SAMPLE_COUNT", fEffectiveSampleCnt);
+ if (this->isMixedSampled()) {
+ f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1);
+ f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1));
+ }
+
+ if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes)) {
+ GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHigh_GrSLPrecision);
+ f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun);
+ }
+
+ EmitShapeCoords shapeCoords;
+ shapeCoords.fVarying = &fShapeCoords;
+ shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn();
+ shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn();
+
+ EmitShapeCoords arcCoords;
+ arcCoords.fVarying = &fArcCoords;
+ arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn();
+ arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn();
+ bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kRRect_ShapesMask);
+
+ EmitShapeOpts opts;
+ opts.fIsTightGeometry = true;
+ opts.fResolveMixedSamples = this->isMixedSampled();
+ opts.fInvertCoverage = false;
+
+ if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) {
+ // This determines if the fragment should consider the inner shape in its sample mask.
+ // We take the derivative early in case discards may occur before we get to the inner shape.
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);",
+ fInnerShapeCoords.fsIn());
+ }
+
+ if (!this->isMixedSampled()) {
+ SkASSERT(!fArcTest.fsIn());
+ if (fTriangleIsArc.fsIn()) {
+ f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn());
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts);
+
+ f->codeAppend ("}");
+ }
+ } else {
+ const char* arcTest = fArcTest.fsIn();
+ SkASSERT(arcTest);
+ if (fBatchInfo.fHasPerspective) {
+ // The non-perspective version accounts for fwith() in the vertex shader.
+ // We make sure to take the derivative here, before a neighbor pixel may early accept.
+ f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLFeature);
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);",
+ fArcTest.fsIn(), fArcTest.fsIn());
+ arcTest = "arcTest";
+ }
+ const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL";
+ f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept);
+ f->overrideSampleCoverage(earlyAccept);
+ f->codeAppend ("} else {");
+ if (arcTest) {
+ // At this point, if the sample mask is all set it means we are inside an arc triangle.
+ f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || "
+ "all(greaterThan(%s, vec2(0)))) {", arcTest);
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts);
+ f->codeAppend ("} else {");
+ this->emitRect(f, shapeCoords, opts);
+ f->codeAppend ("}");
+ } else if (fTriangleIsArc.fsIn()) {
+ f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn());
+ this->emitRect(f, shapeCoords, opts);
+ f->codeAppend ("} else {");
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts);
+ f->codeAppend ("}");
+ } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) {
+ this->emitArc(f, arcCoords, false, clampArcCoords, opts);
+ } else {
+ SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag);
+ this->emitRect(f, shapeCoords, opts);
+ }
+ f->codeAppend ("}");
+ }
+
+ if (fBatchInfo.fInnerShapeTypes) {
+ f->codeAppendf("// Inner shape.\n");
+
+ EmitShapeCoords innerShapeCoords;
+ innerShapeCoords.fVarying = &fInnerShapeCoords;
+ if (!fBatchInfo.fHasPerspective) {
+ innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn();
+ innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn();
+ }
+
+ EmitShapeOpts innerOpts;
+ innerOpts.fIsTightGeometry = false;
+ innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape.
+ innerOpts.fInvertCoverage = true;
+
+ if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ this->emitArc(f, innerShapeCoords, true, false, innerOpts);
+ } else {
+ f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(),
+ !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan
+ : "fragInnerShapeApproxHalfSpan"); // Above.
+ if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
+ this->emitRect(f, innerShapeCoords, innerOpts);
+ } else {
+ this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts);
+ }
+ f->codeAppend ("}");
+ }
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f,
+ const EmitShapeCoords& coords,
+ const EmitShapeOpts& opts) {
+ // Full MSAA doesn't need to do anything to draw a rect.
+ SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples);
+ if (coords.fFragHalfSpan) {
+ f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {",
+ coords.fVarying->fsIn(), coords.fFragHalfSpan);
+ // The entire pixel is inside the rect.
+ this->acceptOrRejectWholeFragment(f, true, opts);
+ f->codeAppend ("} else ");
+ if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) {
+ f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {",
+ coords.fVarying->fsIn(), coords.fFragHalfSpan);
+ // The pixel falls on an edge of the rectangle and is known to not be on a shared edge.
+ this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false);
+ f->codeAppend ("} else");
+ }
+ f->codeAppend ("{");
+ }
+ f->codeAppend ("int rectMask = 0;");
+ f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {");
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppend ( "vec2 pt = ");
+ this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix);
+ f->codeAppend ( ";");
+ f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);");
+ f->codeAppend ("}");
+ this->acceptCoverageMask(f, "rectMask", opts);
+ if (coords.fFragHalfSpan) {
+ f->codeAppend ("}");
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f,
+ const EmitShapeCoords& coords,
+ bool coordsMayBeNegative, bool clampCoords,
+ const EmitShapeOpts& opts) {
+ if (coords.fFragHalfSpan) {
+ SkString absArcCoords;
+ absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn());
+ if (clampCoords) {
+ f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {",
+ fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
+ } else {
+ f->codeAppendf("if (%s(%s + %s) < 1.0) {",
+ fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
+ }
+ // The entire pixel is inside the arc.
+ this->acceptOrRejectWholeFragment(f, true, opts);
+ f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {",
+ fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
+ // The entire pixel is outside the arc.
+ this->acceptOrRejectWholeFragment(f, false, opts);
+ f->codeAppend ("} else {");
+ }
+ f->codeAppend ( "int arcMask = 0;");
+ f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {");
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppend ( "vec2 pt = ");
+ this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix);
+ f->codeAppend ( ";");
+ if (clampCoords) {
+ SkASSERT(!coordsMayBeNegative);
+ f->codeAppend ( "pt = max(pt, vec2(0));");
+ }
+ f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str());
+ f->codeAppend ( "}");
+ this->acceptCoverageMask(f, "arcMask", opts);
+ if (coords.fFragHalfSpan) {
+ f->codeAppend ("}");
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f,
+ const EmitShapeCoords& coords,
+ const char* rrect,
+ const EmitShapeOpts& opts) {
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), rrect);
+ f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {");
+ this->emitRect(f, coords, opts);
+ f->codeAppend ("} else {");
+ if (coords.fInverseMatrix && coords.fFragHalfSpan) {
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect);
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect);
+ f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str());
+ // The entire pixel is inside the round rect.
+ this->acceptOrRejectWholeFragment(f, true, opts);
+ f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {",
+ fSquareFun.c_str());
+ // The entire pixel is outside the round rect.
+ this->acceptOrRejectWholeFragment(f, false, opts);
+ f->codeAppend ("} else {");
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn());
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);",
+ coords.fInverseMatrix);
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppend ( "int rrectMask = 0;");
+ f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {");
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppend ( "vec2 pt = rrectCoords + ");
+ f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
+ f->codeAppend ( "* innerRRectInverseMatrix;");
+ f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);",
+ fSquareFun.c_str());
+ f->codeAppend ( "}");
+ this->acceptCoverageMask(f, "rrectMask", opts);
+ f->codeAppend ("}");
+ } else {
+ f->codeAppend ("int rrectMask = 0;");
+ f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {");
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppend ( "vec2 shapePt = ");
+ this->interpolateAtSample(f, *coords.fVarying, "i", nullptr);
+ f->codeAppend ( ";");
+ f->appendPrecisionModifier(kHigh_GrSLPrecision);
+ f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;",
+ rrect, rrect);
+ f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str());
+ f->codeAppend ("}");
+ this->acceptCoverageMask(f, "rrectMask", opts);
+ }
+ f->codeAppend ("}");
+}
+
+void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f,
+ const GrGLSLVarying& varying,
+ const char* sampleIdx,
+ const char* interpolationMatrix) {
+ if (interpolationMatrix) {
+ f->codeAppendf("(%s + ", varying.fsIn());
+ f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
+ f->codeAppendf(" * %s)", interpolationMatrix);
+ } else {
+ SkAssertResult(
+ f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature));
+ f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn());
+ f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates);
+ f->codeAppend(")");
+ }
+}
+
+void
+GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f,
+ bool inside,
+ const EmitShapeOpts& opts) {
+ if (inside != opts.fInvertCoverage) { // Accept the entire fragment.
+ if (opts.fResolveMixedSamples) {
+ // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage
+ // to one fragment, and drop all other fragments that may fall on this same pixel. Since
+ // our geometry is water tight and non-overlapping, we can take advantage of the
+ // properties that (1) the incoming sample masks will be disjoint across fragments that
+ // fall on a common pixel, and (2) since the entire fragment is inside the shape, each
+ // sample's corresponding bit will be set in the incoming sample mask of exactly one
+ // fragment.
+ f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {");
+ // Drop this fragment.
+ if (!fBatchInfo.fCannotDiscard) {
+ f->codeAppend("discard;");
+ } else {
+ f->overrideSampleCoverage("0");
+ }
+ f->codeAppend("} else {");
+ // Override the lone surviving fragment to full coverage.
+ f->overrideSampleCoverage("-1");
+ f->codeAppend("}");
+ }
+ } else { // Reject the entire fragment.
+ if (!fBatchInfo.fCannotDiscard) {
+ f->codeAppend("discard;");
+ } else if (opts.fResolveMixedSamples) {
+ f->overrideSampleCoverage("0");
+ } else {
+ f->maskSampleCoverage("0");
+ }
+ }
+}
+
+void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f,
+ const char* shapeMask,
+ const EmitShapeOpts& opts,
+ bool maybeSharedEdge) {
+ if (opts.fResolveMixedSamples) {
+ if (maybeSharedEdge) {
+ // This is a mixed sampled fragment, potentially on the outer edge of the shape, with
+ // only partial shape coverage. Override the coverage of one fragment to "shapeMask",
+ // and drop all other fragments that may fall on this same pixel. Since our geometry is
+ // water tight, non-overlapping, and completely contains the shape, this means that each
+ // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one,
+ // and only one, fragment that falls on this same pixel.
+ SkASSERT(!opts.fInvertCoverage);
+ f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask);
+ // Drop this fragment.
+ if (!fBatchInfo.fCannotDiscard) {
+ f->codeAppend ("discard;");
+ } else {
+ f->overrideSampleCoverage("0");
+ }
+ f->codeAppend ("} else {");
+ // Override the coverage of the lone surviving fragment to "shapeMask".
+ f->overrideSampleCoverage(shapeMask);
+ f->codeAppend ("}");
+ } else {
+ f->overrideSampleCoverage(shapeMask);
+ }
+ } else {
+ f->maskSampleCoverage(shapeMask, opts.fInvertCoverage);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+GLSLInstanceProcessor::Backend*
+GLSLInstanceProcessor::Backend::Create(const GrPipeline& pipeline, BatchInfo batchInfo,
+ const VertexInputs& inputs) {
+ switch (batchInfo.fAntialiasMode) {
+ default:
+ SkFAIL("Unexpected antialias mode.");
+ case AntialiasMode::kNone:
+ return new BackendNonAA(batchInfo, inputs);
+ case AntialiasMode::kCoverage:
+ return new BackendCoverage(batchInfo, inputs);
+ case AntialiasMode::kMSAA:
+ case AntialiasMode::kMixedSamples: {
+ const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv();
+ const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil());
+ return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSampleCnt);
+ }
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+const ShapeVertex kVertexData[] = {
+ // Rectangle.
+ {+1, +1, ~0}, /*0*/
+ {-1, +1, ~0}, /*1*/
+ {-1, -1, ~0}, /*2*/
+ {+1, -1, ~0}, /*3*/
+ // The next 4 are for the bordered version.
+ {+1, +1, 0}, /*4*/
+ {-1, +1, 0}, /*5*/
+ {-1, -1, 0}, /*6*/
+ {+1, -1, 0}, /*7*/
+
+ // Octagon that inscribes the unit circle, cut by an interior unit octagon.
+ {+1.000000f, 0.000000f, 0}, /* 8*/
+ {+1.000000f, +0.414214f, ~0}, /* 9*/
+ {+0.707106f, +0.707106f, 0}, /*10*/
+ {+0.414214f, +1.000000f, ~0}, /*11*/
+ { 0.000000f, +1.000000f, 0}, /*12*/
+ {-0.414214f, +1.000000f, ~0}, /*13*/
+ {-0.707106f, +0.707106f, 0}, /*14*/
+ {-1.000000f, +0.414214f, ~0}, /*15*/
+ {-1.000000f, 0.000000f, 0}, /*16*/
+ {-1.000000f, -0.414214f, ~0}, /*17*/
+ {-0.707106f, -0.707106f, 0}, /*18*/
+ {-0.414214f, -1.000000f, ~0}, /*19*/
+ { 0.000000f, -1.000000f, 0}, /*20*/
+ {+0.414214f, -1.000000f, ~0}, /*21*/
+ {+0.707106f, -0.707106f, 0}, /*22*/
+ {+1.000000f, -0.414214f, ~0}, /*23*/
+ // This vertex is for the fanned versions.
+ { 0.000000f, 0.000000f, ~0}, /*24*/
+
+ // Rectangle with disjoint corner segments.
+ {+1.0, +0.5, 0x3}, /*25*/
+ {+1.0, +1.0, 0x3}, /*26*/
+ {+0.5, +1.0, 0x3}, /*27*/
+ {-0.5, +1.0, 0x2}, /*28*/
+ {-1.0, +1.0, 0x2}, /*29*/
+ {-1.0, +0.5, 0x2}, /*30*/
+ {-1.0, -0.5, 0x0}, /*31*/
+ {-1.0, -1.0, 0x0}, /*32*/
+ {-0.5, -1.0, 0x0}, /*33*/
+ {+0.5, -1.0, 0x1}, /*34*/
+ {+1.0, -1.0, 0x1}, /*35*/
+ {+1.0, -0.5, 0x1}, /*36*/
+ // The next 4 are for the fanned version.
+ { 0.0, 0.0, 0x3}, /*37*/
+ { 0.0, 0.0, 0x2}, /*38*/
+ { 0.0, 0.0, 0x0}, /*39*/
+ { 0.0, 0.0, 0x1}, /*40*/
+ // The next 8 are for the bordered version.
+ {+0.75, +0.50, 0x3}, /*41*/
+ {+0.50, +0.75, 0x3}, /*42*/
+ {-0.50, +0.75, 0x2}, /*43*/
+ {-0.75, +0.50, 0x2}, /*44*/
+ {-0.75, -0.50, 0x0}, /*45*/
+ {-0.50, -0.75, 0x0}, /*46*/
+ {+0.50, -0.75, 0x1}, /*47*/
+ {+0.75, -0.50, 0x1}, /*48*/
+
+ // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon.
+ {+1.000000f, +0.000000f, 0}, /*49*/
+ {+1.000000f, +0.198913f, ~0}, /*50*/
+ {+0.923879f, +0.382683f, 0}, /*51*/
+ {+0.847760f, +0.566455f, ~0}, /*52*/
+ {+0.707106f, +0.707106f, 0}, /*53*/
+ {+0.566455f, +0.847760f, ~0}, /*54*/
+ {+0.382683f, +0.923879f, 0}, /*55*/
+ {+0.198913f, +1.000000f, ~0}, /*56*/
+ {+0.000000f, +1.000000f, 0}, /*57*/
+ {-0.198913f, +1.000000f, ~0}, /*58*/
+ {-0.382683f, +0.923879f, 0}, /*59*/
+ {-0.566455f, +0.847760f, ~0}, /*60*/
+ {-0.707106f, +0.707106f, 0}, /*61*/
+ {-0.847760f, +0.566455f, ~0}, /*62*/
+ {-0.923879f, +0.382683f, 0}, /*63*/
+ {-1.000000f, +0.198913f, ~0}, /*64*/
+ {-1.000000f, +0.000000f, 0}, /*65*/
+ {-1.000000f, -0.198913f, ~0}, /*66*/
+ {-0.923879f, -0.382683f, 0}, /*67*/
+ {-0.847760f, -0.566455f, ~0}, /*68*/
+ {-0.707106f, -0.707106f, 0}, /*69*/
+ {-0.566455f, -0.847760f, ~0}, /*70*/
+ {-0.382683f, -0.923879f, 0}, /*71*/
+ {-0.198913f, -1.000000f, ~0}, /*72*/
+ {-0.000000f, -1.000000f, 0}, /*73*/
+ {+0.198913f, -1.000000f, ~0}, /*74*/
+ {+0.382683f, -0.923879f, 0}, /*75*/
+ {+0.566455f, -0.847760f, ~0}, /*76*/
+ {+0.707106f, -0.707106f, 0}, /*77*/
+ {+0.847760f, -0.566455f, ~0}, /*78*/
+ {+0.923879f, -0.382683f, 0}, /*79*/
+ {+1.000000f, -0.198913f, ~0}, /*80*/
+};
+
+const uint8_t kIndexData[] = {
+ // Rectangle.
+ 0, 1, 2,
+ 0, 2, 3,
+
+ // Rectangle with a border.
+ 0, 1, 5,
+ 5, 4, 0,
+ 1, 2, 6,
+ 6, 5, 1,
+ 2, 3, 7,
+ 7, 6, 2,
+ 3, 0, 4,
+ 4, 7, 3,
+ 4, 5, 6,
+ 6, 7, 4,
+
+ // Octagon that inscribes the unit circle, cut by an interior unit octagon.
+ 10, 8, 9,
+ 12, 10, 11,
+ 14, 12, 13,
+ 16, 14, 15,
+ 18, 16, 17,
+ 20, 18, 19,
+ 22, 20, 21,
+ 8, 22, 23,
+ 8, 10, 12,
+ 12, 14, 16,
+ 16, 18, 20,
+ 20, 22, 8,
+ 8, 12, 16,
+ 16, 20, 8,
+
+ // Same octagons, but with the interior arranged as a fan. Used by mixed samples.
+ 10, 8, 9,
+ 12, 10, 11,
+ 14, 12, 13,
+ 16, 14, 15,
+ 18, 16, 17,
+ 20, 18, 19,
+ 22, 20, 21,
+ 8, 22, 23,
+ 24, 8, 10,
+ 12, 24, 10,
+ 24, 12, 14,
+ 16, 24, 14,
+ 24, 16, 18,
+ 20, 24, 18,
+ 24, 20, 22,
+ 8, 24, 22,
+
+ // Same octagons, but with the inner and outer disjoint. Used by coverage AA.
+ 8, 22, 23,
+ 9, 8, 23,
+ 10, 8, 9,
+ 11, 10, 9,
+ 12, 10, 11,
+ 13, 12, 11,
+ 14, 12, 13,
+ 15, 14, 13,
+ 16, 14, 15,
+ 17, 16, 15,
+ 18, 16, 17,
+ 19, 18, 17,
+ 20, 18, 19,
+ 21, 20, 19,
+ 22, 20, 21,
+ 23, 22, 21,
+ 22, 8, 10,
+ 10, 12, 14,
+ 14, 16, 18,
+ 18, 20, 22,
+ 22, 10, 14,
+ 14, 18, 22,
+
+ // Rectangle with disjoint corner segments.
+ 27, 25, 26,
+ 30, 28, 29,
+ 33, 31, 32,
+ 36, 34, 35,
+ 25, 27, 28,
+ 28, 30, 31,
+ 31, 33, 34,
+ 34, 36, 25,
+ 25, 28, 31,
+ 31, 34, 25,
+
+ // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by
+ // mixed samples.
+ 27, 25, 26,
+ 30, 28, 29,
+ 33, 31, 32,
+ 36, 34, 35,
+ 27, 37, 25,
+ 28, 37, 27,
+ 30, 38, 28,
+ 31, 38, 30,
+ 33, 39, 31,
+ 34, 39, 33,
+ 36, 40, 34,
+ 25, 40, 36,
+
+ // Same rectangle with disjoint corners, with a border as well. Used by coverage AA.
+ 41, 25, 26,
+ 42, 41, 26,
+ 27, 42, 26,
+ 43, 28, 29,
+ 44, 43, 29,
+ 30, 44, 29,
+ 45, 31, 32,
+ 46, 45, 32,
+ 33, 46, 32,
+ 47, 34, 35,
+ 48, 47, 35,
+ 36, 48, 35,
+ 27, 28, 42,
+ 42, 28, 43,
+ 30, 31, 44,
+ 44, 31, 45,
+ 33, 34, 46,
+ 46, 34, 47,
+ 36, 25, 48,
+ 48, 25, 41,
+ 41, 42, 43,
+ 43, 44, 45,
+ 45, 46, 47,
+ 47, 48, 41,
+ 41, 43, 45,
+ 45, 47, 41,
+
+ // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is
+ // sufficiently large.
+ 49, 79, 80,
+ 50, 49, 80,
+ 51, 49, 50,
+ 52, 51, 50,
+ 53, 51, 52,
+ 54, 53, 52,
+ 55, 53, 54,
+ 56, 55, 54,
+ 57, 55, 56,
+ 58, 57, 56,
+ 59, 57, 58,
+ 60, 59, 58,
+ 61, 59, 60,
+ 62, 61, 60,
+ 63, 61, 62,
+ 64, 63, 62,
+ 65, 63, 64,
+ 66, 65, 64,
+ 67, 65, 66,
+ 68, 67, 66,
+ 69, 67, 68,
+ 70, 69, 68,
+ 71, 69, 70,
+ 72, 71, 70,
+ 73, 71, 72,
+ 74, 73, 72,
+ 75, 73, 74,
+ 76, 75, 74,
+ 77, 75, 76,
+ 78, 77, 76,
+ 79, 77, 78,
+ 80, 79, 78,
+ 49, 51, 53,
+ 53, 55, 57,
+ 57, 59, 61,
+ 61, 63, 65,
+ 65, 67, 69,
+ 69, 71, 73,
+ 73, 75, 77,
+ 77, 79, 49,
+ 49, 53, 57,
+ 57, 61, 65,
+ 65, 69, 73,
+ 73, 77, 49,
+ 49, 57, 65,
+ 65, 73, 49,
+};
+
+enum {
+ kRect_FirstIndex = 0,
+ kRect_TriCount = 2,
+
+ kFramedRect_FirstIndex = 6,
+ kFramedRect_TriCount = 10,
+
+ kOctagons_FirstIndex = 36,
+ kOctagons_TriCount = 14,
+
+ kOctagonsFanned_FirstIndex = 78,
+ kOctagonsFanned_TriCount = 16,
+
+ kDisjointOctagons_FirstIndex = 126,
+ kDisjointOctagons_TriCount = 22,
+
+ kCorneredRect_FirstIndex = 192,
+ kCorneredRect_TriCount = 10,
+
+ kCorneredRectFanned_FirstIndex = 222,
+ kCorneredRectFanned_TriCount = 12,
+
+ kCorneredFramedRect_FirstIndex = 258,
+ kCorneredFramedRect_TriCount = 26,
+
+ kDisjoint16Gons_FirstIndex = 336,
+ kDisjoint16Gons_TriCount = 46,
+};
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gShapeVertexBufferKey);
+
+const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) {
+ GR_DEFINE_STATIC_UNIQUE_KEY(gShapeVertexBufferKey);
+ GrResourceCache* cache = gpu->getContext()->getResourceCache();
+ if (GrGpuResource* cached = cache->findAndRefUniqueResource(gShapeVertexBufferKey)) {
+ return static_cast<GrBuffer*>(cached);
+ }
+ if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType,
+ kStatic_GrAccessPattern, kVertexData)) {
+ buffer->resourcePriv().setUniqueKey(gShapeVertexBufferKey);
+ return buffer;
+ }
+ return nullptr;
+}
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gShapeIndexBufferKey);
+
+const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) {
+ GR_DEFINE_STATIC_UNIQUE_KEY(gShapeIndexBufferKey);
+ GrResourceCache* cache = gpu->getContext()->getResourceCache();
+ if (GrGpuResource* cached = cache->findAndRefUniqueResource(gShapeIndexBufferKey)) {
+ return static_cast<GrBuffer*>(cached);
+ }
+ if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType,
+ kStatic_GrAccessPattern, kIndexData)) {
+ buffer->resourcePriv().setUniqueKey(gShapeIndexBufferKey);
+ return buffer;
+ }
+ return nullptr;
+}
+
+IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) {
+ static constexpr IndexRange kRectRanges[kNumAntialiasModes] = {
+ {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone
+ {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage
+ {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA
+ {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples
+ };
+
+ SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
+ return kRectRanges[(int)aa];
+
+ GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
+ GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
+ GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
+ GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
+}
+
+IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRect& devBounds) {
+ if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width() >= 256 * 256) {
+ // This threshold was chosen quasi-scientifically on Tegra X1.
+ return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount};
+ }
+
+ static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = {
+ {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNone
+ {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCoverage
+ {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMSAA
+ {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMixedSamples
+ };
+
+ SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
+ return kOvalRanges[(int)aa];
+
+ GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
+ GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
+ GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
+ GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
+}
+
+IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) {
+ static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = {
+ {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kNone
+ {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, // kCoverage
+ {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kMSAA
+ {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} // kMixedSamples
+ };
+
+ SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
+ return kRRectRanges[(int)aa];
+
+ GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
+ GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
+ GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
+ GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
+}
+
+const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) {
+ switch (range.fStart) {
+ case kRect_FirstIndex: return "basic_rect";
+ case kFramedRect_FirstIndex: return "coverage_rect";
+
+ case kOctagons_FirstIndex: return "basic_oval";
+ case kDisjointOctagons_FirstIndex: return "coverage_oval";
+ case kDisjoint16Gons_FirstIndex: return "coverage_large_oval";
+ case kOctagonsFanned_FirstIndex: return "mixed_samples_oval";
+
+ case kCorneredRect_FirstIndex: return "basic_round_rect";
+ case kCorneredFramedRect_FirstIndex: return "coverage_round_rect";
+ case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect";
+
+ default: return "unknown";
+ }
+}
+
+}
« no previous file with comments | « src/gpu/instanced/InstanceProcessor.h ('k') | src/gpu/instanced/InstancedRendering.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698