| Index: cc/quads/draw_polygon.cc
|
| diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc
|
| index 9185501843397db93b4613aabf14dd7fc6610182..770d241570bb06755f9321c7794efbfa0460d0ee 100644
|
| --- a/cc/quads/draw_polygon.cc
|
| +++ b/cc/quads/draw_polygon.cc
|
| @@ -8,26 +8,27 @@
|
|
|
| #include <vector>
|
|
|
| -#include "base/memory/ptr_util.h"
|
| #include "cc/output/bsp_compare_result.h"
|
| #include "cc/quads/draw_quad.h"
|
|
|
| namespace {
|
| // This threshold controls how "thick" a plane is. If a point's distance is
|
| -// <= |split_threshold|, then it is considered on the plane for the purpose of
|
| -// polygon splitting.
|
| +// <= |compare_threshold|, then it is considered on the plane. Only when this
|
| +// boundary is crossed do we consider doing splitting.
|
| +static const float compare_threshold = 0.1f;
|
| +// |split_threshold| is lower in this case because we want the points created
|
| +// during splitting to be well within the range of |compare_threshold| for
|
| +// comparison purposes. The splitting operation will produce intersection points
|
| +// that fit within a tighter distance to the splitting plane as a result of this
|
| +// value. By using a value >= |compare_threshold| we run the risk of creating
|
| +// points that SHOULD be intersecting the "thick plane", but actually fail to
|
| +// test positively for it because |split_threshold| allowed them to be outside
|
| +// this range.
|
| +// This is really supposd to be compare_threshold / 2.0f, but that would
|
| +// create another static initializer.
|
| static const float split_threshold = 0.05f;
|
|
|
| static const float normalized_threshold = 0.001f;
|
| -
|
| -void PointInterpolate(const gfx::Point3F& from,
|
| - const gfx::Point3F& to,
|
| - double delta,
|
| - gfx::Point3F* out) {
|
| - out->SetPoint(from.x() + (to.x() - from.x()) * delta,
|
| - from.y() + (to.y() - from.y()) * delta,
|
| - from.z() + (to.z() - from.z()) * delta);
|
| -}
|
| } // namespace
|
|
|
| namespace cc {
|
| @@ -131,6 +132,100 @@
|
| return gfx::DotProduct(point - points_[0], normal_);
|
| }
|
|
|
| +// Checks whether or not shape a lies on the front or back side of b, or
|
| +// whether they should be considered coplanar. If on the back side, we
|
| +// say A_BEFORE_B because it should be drawn in that order.
|
| +// Assumes that layers are split and there are no intersecting planes.
|
| +BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
|
| + const DrawPolygon& b) {
|
| + // Let's make sure that this is normalized. Without this SignedPointDistance
|
| + // will not be right, but putting the check in there will validate it
|
| + // redundantly for each point.
|
| + DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f));
|
| +
|
| + int pos_count = 0;
|
| + int neg_count = 0;
|
| + for (size_t i = 0; i < a.points_.size(); i++) {
|
| + float sign = b.SignedPointDistance(a.points_[i]);
|
| +
|
| + if (sign < -compare_threshold) {
|
| + ++neg_count;
|
| + } else if (sign > compare_threshold) {
|
| + ++pos_count;
|
| + }
|
| +
|
| + if (pos_count && neg_count) {
|
| + return BSP_SPLIT;
|
| + }
|
| + }
|
| +
|
| + if (pos_count) {
|
| + return BSP_FRONT;
|
| + }
|
| + if (neg_count) {
|
| + return BSP_BACK;
|
| + }
|
| +
|
| + double dot = gfx::DotProduct(a.normal_, b.normal_);
|
| + if ((dot >= 0.0f && a.order_index_ >= b.order_index_) ||
|
| + (dot <= 0.0f && a.order_index_ <= b.order_index_)) {
|
| + // The sign of the dot product of the normals along with document order
|
| + // determine which side it goes on, the vertices are ambiguous.
|
| + return BSP_COPLANAR_BACK;
|
| + }
|
| +
|
| + return BSP_COPLANAR_FRONT;
|
| +}
|
| +
|
| +static bool LineIntersectPlane(const gfx::Point3F& line_start,
|
| + const gfx::Point3F& line_end,
|
| + const gfx::Point3F& plane_origin,
|
| + const gfx::Vector3dF& plane_normal,
|
| + gfx::Point3F* intersection,
|
| + float distance_threshold) {
|
| + const gfx::Vector3dF line_start_vec(line_start.x(), line_start.y(),
|
| + line_start.z());
|
| + const gfx::Vector3dF line_end_vec(line_end.x(), line_end.y(), line_end.z());
|
| + const gfx::Vector3dF plane_origin_vec(plane_origin.x(), plane_origin.y(),
|
| + plane_origin.z());
|
| +
|
| + double plane_d = -gfx::DotProduct(plane_origin_vec, plane_normal);
|
| +
|
| + double end_distance = gfx::DotProduct(line_end_vec, plane_normal) + plane_d;
|
| + if (std::abs(end_distance) <= distance_threshold) {
|
| + // No intersection if |line_end| is within |distance_threshold| of plane.
|
| + return false;
|
| + }
|
| +
|
| + double start_distance =
|
| + gfx::DotProduct(line_start_vec, plane_normal) + plane_d;
|
| + if (std::abs(start_distance) <= distance_threshold) {
|
| + // Intersection at |line_start| if |line_start| is within
|
| + // |distance_threshold| of plane.
|
| + intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
|
| + return true;
|
| + }
|
| +
|
| + // If signs differ, we cross the plane.
|
| + if (start_distance * end_distance < 0.0) {
|
| + // Plane: P . N + d = 0 [ d = -(plane_normal . plane_origin) ]
|
| + // Ray: P = P0 + Pd * t [ P0 = line_start, Pd = line_end - line_start ]
|
| + // Substituting:
|
| + // (P0 + Pd * t) . N + d = 0
|
| + // P0 . N + t * Pd . N + d = 0
|
| + // t = -(P0 . N + d) / Pd . N
|
| +
|
| + gfx::Vector3dF line_delta = line_end - line_start;
|
| + double t = -start_distance / gfx::DotProduct(plane_normal, line_delta);
|
| + intersection->SetPoint(line_start.x() + line_delta.x() * t,
|
| + line_start.y() + line_delta.y() * t,
|
| + line_start.z() + line_delta.z() * t);
|
| +
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| // This function is separate from ApplyTransform because it is often unnecessary
|
| // to transform the normal with the rest of the polygon.
|
| // When drawing these polygons, it is necessary to move them back into layer
|
| @@ -180,140 +275,84 @@
|
| normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
|
| }
|
|
|
| -// Split |polygon| based upon |this|, leaving the results in |front| and |back|.
|
| -// If |polygon| is not split by |this|, then move it to either |front| or |back|
|
| -// depending on its orientation relative to |this|. Sets |is_coplanar| to true
|
| -// if |polygon| is actually coplanar with |this| (in which case whether it is
|
| -// front facing or back facing is determined by the dot products of normals, and
|
| -// document order).
|
| -void DrawPolygon::SplitPolygon(std::unique_ptr<DrawPolygon> polygon,
|
| - std::unique_ptr<DrawPolygon>* front,
|
| - std::unique_ptr<DrawPolygon>* back,
|
| - bool* is_coplanar) const {
|
| - DCHECK_GE(normalized_threshold, std::abs(normal_.LengthSquared() - 1.0f));
|
| -
|
| - const size_t num_points = polygon->points_.size();
|
| - const auto next = [num_points](size_t i) {
|
| - return (i + 1) % num_points;
|
| - };
|
| - const auto prev = [num_points](size_t i) {
|
| - return (i + num_points - 1) % num_points;
|
| - };
|
| -
|
| - std::vector<float> vertex_distance;
|
| - size_t pos_count = 0;
|
| - size_t neg_count = 0;
|
| -
|
| - // Compute plane distances for each vertex of polygon.
|
| - vertex_distance.resize(num_points);
|
| - for (size_t i = 0; i < num_points; i++) {
|
| - vertex_distance[i] = SignedPointDistance(polygon->points_[i]);
|
| - if (vertex_distance[i] < -split_threshold) {
|
| - ++neg_count;
|
| - } else if (vertex_distance[i] > split_threshold) {
|
| - ++pos_count;
|
| - } else {
|
| - vertex_distance[i] = 0.0;
|
| - }
|
| - }
|
| -
|
| - // Handle non-splitting cases.
|
| - if (!pos_count && !neg_count) {
|
| - double dot = gfx::DotProduct(normal_, polygon->normal_);
|
| - if ((dot >= 0.0f && polygon->order_index_ >= order_index_) ||
|
| - (dot <= 0.0f && polygon->order_index_ <= order_index_)) {
|
| - *back = std::move(polygon);
|
| - } else {
|
| - *front = std::move(polygon);
|
| - }
|
| - *is_coplanar = true;
|
| - return;
|
| - }
|
| -
|
| - *is_coplanar = false;
|
| - if (!neg_count) {
|
| - *front = std::move(polygon);
|
| - return;
|
| - } else if (!pos_count) {
|
| - *back = std::move(polygon);
|
| - return;
|
| - }
|
| -
|
| - // There should be at most two points that are considered to be on the thick
|
| - // plane. If this is not the case, then the polygon is not convex.
|
| - DCHECK(num_points - pos_count - neg_count <= 2);
|
| -
|
| - // Handle splitting case.
|
| - size_t front_begin;
|
| - size_t back_begin;
|
| - size_t pre_front_begin;
|
| - size_t pre_back_begin;
|
| -
|
| - // Find the first vertex that is part of the front split polygon.
|
| - front_begin = std::find_if(vertex_distance.begin(), vertex_distance.end(),
|
| - [](float val) { return val > 0.0; }) -
|
| - vertex_distance.begin();
|
| - while (vertex_distance[pre_front_begin = prev(front_begin)] > 0.0)
|
| - front_begin = pre_front_begin;
|
| -
|
| - // Find the first vertex that is part of the back split polygon.
|
| - back_begin = std::find_if(vertex_distance.begin(), vertex_distance.end(),
|
| - [](float val) { return val < 0.0; }) -
|
| - vertex_distance.begin();
|
| - while (vertex_distance[pre_back_begin = prev(back_begin)] < 0.0)
|
| - back_begin = pre_back_begin;
|
| -
|
| - DCHECK(vertex_distance[front_begin] > 0.0);
|
| - DCHECK(vertex_distance[pre_front_begin] <= 0.0);
|
| - DCHECK(vertex_distance[back_begin] < 0.0);
|
| - DCHECK(vertex_distance[pre_back_begin] >= 0.0);
|
| -
|
| - gfx::Point3F pre_pos_intersection;
|
| - gfx::Point3F pre_neg_intersection;
|
| -
|
| - // Compute the intersection points. N.B.: If the "pre" vertex is on
|
| - // the thick plane, then the intersection will be at the same point, because
|
| - // we set vertex_distance to 0 in this case.
|
| - PointInterpolate(
|
| - polygon->points_[pre_front_begin], polygon->points_[front_begin],
|
| - -vertex_distance[pre_front_begin] /
|
| - gfx::DotProduct(normal_, polygon->points_[front_begin] -
|
| - polygon->points_[pre_front_begin]),
|
| - &pre_pos_intersection);
|
| - PointInterpolate(
|
| - polygon->points_[pre_back_begin], polygon->points_[back_begin],
|
| - -vertex_distance[pre_back_begin] /
|
| - gfx::DotProduct(normal_, polygon->points_[back_begin] -
|
| - polygon->points_[pre_back_begin]),
|
| - &pre_neg_intersection);
|
| -
|
| - // Build the front and back polygons.
|
| - std::vector<gfx::Point3F> out_points;
|
| -
|
| - out_points.push_back(pre_pos_intersection);
|
| - do {
|
| - out_points.push_back(polygon->points_[front_begin]);
|
| - front_begin = next(front_begin);
|
| - } while (vertex_distance[front_begin] > 0.0);
|
| - out_points.push_back(pre_neg_intersection);
|
| - *front =
|
| - base::MakeUnique<DrawPolygon>(polygon->original_ref_, out_points,
|
| - polygon->normal_, polygon->order_index_);
|
| -
|
| - out_points.clear();
|
| -
|
| - out_points.push_back(pre_neg_intersection);
|
| - do {
|
| - out_points.push_back(polygon->points_[back_begin]);
|
| - back_begin = next(back_begin);
|
| - } while (vertex_distance[back_begin] < 0.0);
|
| - out_points.push_back(pre_pos_intersection);
|
| - *back =
|
| - base::MakeUnique<DrawPolygon>(polygon->original_ref_, out_points,
|
| - polygon->normal_, polygon->order_index_);
|
| -
|
| - DCHECK_GE((*front)->points().size(), 3u);
|
| - DCHECK_GE((*back)->points().size(), 3u);
|
| +bool DrawPolygon::Split(const DrawPolygon& splitter,
|
| + std::unique_ptr<DrawPolygon>* front,
|
| + std::unique_ptr<DrawPolygon>* back) {
|
| + gfx::Point3F intersections[2];
|
| + std::vector<gfx::Point3F> out_points[2];
|
| + // vertex_before stores the index of the vertex before its matching
|
| + // intersection.
|
| + // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
|
| + // which resulted in the line/plane intersection giving us intersections[0].
|
| + size_t vertex_before[2];
|
| + size_t points_size = points_.size();
|
| + size_t current_intersection = 0;
|
| +
|
| + size_t current_vertex = 0;
|
| + // We will only have two intersection points because we assume all polygons
|
| + // are convex.
|
| + while (current_intersection < 2) {
|
| + if (LineIntersectPlane(points_[(current_vertex % points_size)],
|
| + points_[(current_vertex + 1) % points_size],
|
| + splitter.points_[0],
|
| + splitter.normal_,
|
| + &intersections[current_intersection],
|
| + split_threshold)) {
|
| + vertex_before[current_intersection] = current_vertex % points_size;
|
| + current_intersection++;
|
| + // We found both intersection points so we're done already.
|
| + if (current_intersection == 2) {
|
| + break;
|
| + }
|
| + }
|
| + if (current_vertex++ > (points_size)) {
|
| + break;
|
| + }
|
| + }
|
| + DCHECK_EQ(current_intersection, static_cast<size_t>(2));
|
| +
|
| + // Since we found both the intersection points, we can begin building the
|
| + // vertex set for both our new polygons.
|
| + size_t start1 = (vertex_before[0] + 1) % points_size;
|
| + size_t start2 = (vertex_before[1] + 1) % points_size;
|
| + size_t points_remaining = points_size;
|
| +
|
| + // First polygon.
|
| + out_points[0].push_back(intersections[0]);
|
| + DCHECK_GE(vertex_before[1], start1);
|
| + for (size_t i = start1; i <= vertex_before[1]; i++) {
|
| + out_points[0].push_back(points_[i]);
|
| + --points_remaining;
|
| + }
|
| + out_points[0].push_back(intersections[1]);
|
| +
|
| + // Second polygon.
|
| + out_points[1].push_back(intersections[1]);
|
| + size_t index = start2;
|
| + for (size_t i = 0; i < points_remaining; i++) {
|
| + out_points[1].push_back(points_[index % points_size]);
|
| + ++index;
|
| + }
|
| + out_points[1].push_back(intersections[0]);
|
| +
|
| + // Give both polygons the original splitting polygon's ID, so that they'll
|
| + // still be sorted properly in co-planar instances.
|
| + std::unique_ptr<DrawPolygon> poly1(
|
| + new DrawPolygon(original_ref_, out_points[0], normal_, order_index_));
|
| + std::unique_ptr<DrawPolygon> poly2(
|
| + new DrawPolygon(original_ref_, out_points[1], normal_, order_index_));
|
| +
|
| + DCHECK_GE(poly1->points().size(), 3u);
|
| + DCHECK_GE(poly2->points().size(), 3u);
|
| +
|
| + if (SideCompare(*poly1, splitter) == BSP_FRONT) {
|
| + *front = std::move(poly1);
|
| + *back = std::move(poly2);
|
| + } else {
|
| + *front = std::move(poly2);
|
| + *back = std::move(poly1);
|
| + }
|
| + return true;
|
| }
|
|
|
| // This algorithm takes the first vertex in the polygon and uses that as a
|
|
|