Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1159)

Unified Diff: cc/quads/draw_polygon.cc

Issue 2060183003: Revert of Perform BSP polygon splitting and orientation selection in a single step. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « cc/quads/draw_polygon.h ('k') | cc/quads/draw_polygon_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: cc/quads/draw_polygon.cc
diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc
index 9185501843397db93b4613aabf14dd7fc6610182..770d241570bb06755f9321c7794efbfa0460d0ee 100644
--- a/cc/quads/draw_polygon.cc
+++ b/cc/quads/draw_polygon.cc
@@ -8,26 +8,27 @@
#include <vector>
-#include "base/memory/ptr_util.h"
#include "cc/output/bsp_compare_result.h"
#include "cc/quads/draw_quad.h"
namespace {
// This threshold controls how "thick" a plane is. If a point's distance is
-// <= |split_threshold|, then it is considered on the plane for the purpose of
-// polygon splitting.
+// <= |compare_threshold|, then it is considered on the plane. Only when this
+// boundary is crossed do we consider doing splitting.
+static const float compare_threshold = 0.1f;
+// |split_threshold| is lower in this case because we want the points created
+// during splitting to be well within the range of |compare_threshold| for
+// comparison purposes. The splitting operation will produce intersection points
+// that fit within a tighter distance to the splitting plane as a result of this
+// value. By using a value >= |compare_threshold| we run the risk of creating
+// points that SHOULD be intersecting the "thick plane", but actually fail to
+// test positively for it because |split_threshold| allowed them to be outside
+// this range.
+// This is really supposd to be compare_threshold / 2.0f, but that would
+// create another static initializer.
static const float split_threshold = 0.05f;
static const float normalized_threshold = 0.001f;
-
-void PointInterpolate(const gfx::Point3F& from,
- const gfx::Point3F& to,
- double delta,
- gfx::Point3F* out) {
- out->SetPoint(from.x() + (to.x() - from.x()) * delta,
- from.y() + (to.y() - from.y()) * delta,
- from.z() + (to.z() - from.z()) * delta);
-}
} // namespace
namespace cc {
@@ -131,6 +132,100 @@
return gfx::DotProduct(point - points_[0], normal_);
}
+// Checks whether or not shape a lies on the front or back side of b, or
+// whether they should be considered coplanar. If on the back side, we
+// say A_BEFORE_B because it should be drawn in that order.
+// Assumes that layers are split and there are no intersecting planes.
+BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
+ const DrawPolygon& b) {
+ // Let's make sure that this is normalized. Without this SignedPointDistance
+ // will not be right, but putting the check in there will validate it
+ // redundantly for each point.
+ DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f));
+
+ int pos_count = 0;
+ int neg_count = 0;
+ for (size_t i = 0; i < a.points_.size(); i++) {
+ float sign = b.SignedPointDistance(a.points_[i]);
+
+ if (sign < -compare_threshold) {
+ ++neg_count;
+ } else if (sign > compare_threshold) {
+ ++pos_count;
+ }
+
+ if (pos_count && neg_count) {
+ return BSP_SPLIT;
+ }
+ }
+
+ if (pos_count) {
+ return BSP_FRONT;
+ }
+ if (neg_count) {
+ return BSP_BACK;
+ }
+
+ double dot = gfx::DotProduct(a.normal_, b.normal_);
+ if ((dot >= 0.0f && a.order_index_ >= b.order_index_) ||
+ (dot <= 0.0f && a.order_index_ <= b.order_index_)) {
+ // The sign of the dot product of the normals along with document order
+ // determine which side it goes on, the vertices are ambiguous.
+ return BSP_COPLANAR_BACK;
+ }
+
+ return BSP_COPLANAR_FRONT;
+}
+
+static bool LineIntersectPlane(const gfx::Point3F& line_start,
+ const gfx::Point3F& line_end,
+ const gfx::Point3F& plane_origin,
+ const gfx::Vector3dF& plane_normal,
+ gfx::Point3F* intersection,
+ float distance_threshold) {
+ const gfx::Vector3dF line_start_vec(line_start.x(), line_start.y(),
+ line_start.z());
+ const gfx::Vector3dF line_end_vec(line_end.x(), line_end.y(), line_end.z());
+ const gfx::Vector3dF plane_origin_vec(plane_origin.x(), plane_origin.y(),
+ plane_origin.z());
+
+ double plane_d = -gfx::DotProduct(plane_origin_vec, plane_normal);
+
+ double end_distance = gfx::DotProduct(line_end_vec, plane_normal) + plane_d;
+ if (std::abs(end_distance) <= distance_threshold) {
+ // No intersection if |line_end| is within |distance_threshold| of plane.
+ return false;
+ }
+
+ double start_distance =
+ gfx::DotProduct(line_start_vec, plane_normal) + plane_d;
+ if (std::abs(start_distance) <= distance_threshold) {
+ // Intersection at |line_start| if |line_start| is within
+ // |distance_threshold| of plane.
+ intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
+ return true;
+ }
+
+ // If signs differ, we cross the plane.
+ if (start_distance * end_distance < 0.0) {
+ // Plane: P . N + d = 0 [ d = -(plane_normal . plane_origin) ]
+ // Ray: P = P0 + Pd * t [ P0 = line_start, Pd = line_end - line_start ]
+ // Substituting:
+ // (P0 + Pd * t) . N + d = 0
+ // P0 . N + t * Pd . N + d = 0
+ // t = -(P0 . N + d) / Pd . N
+
+ gfx::Vector3dF line_delta = line_end - line_start;
+ double t = -start_distance / gfx::DotProduct(plane_normal, line_delta);
+ intersection->SetPoint(line_start.x() + line_delta.x() * t,
+ line_start.y() + line_delta.y() * t,
+ line_start.z() + line_delta.z() * t);
+
+ return true;
+ }
+ return false;
+}
+
// This function is separate from ApplyTransform because it is often unnecessary
// to transform the normal with the rest of the polygon.
// When drawing these polygons, it is necessary to move them back into layer
@@ -180,140 +275,84 @@
normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
}
-// Split |polygon| based upon |this|, leaving the results in |front| and |back|.
-// If |polygon| is not split by |this|, then move it to either |front| or |back|
-// depending on its orientation relative to |this|. Sets |is_coplanar| to true
-// if |polygon| is actually coplanar with |this| (in which case whether it is
-// front facing or back facing is determined by the dot products of normals, and
-// document order).
-void DrawPolygon::SplitPolygon(std::unique_ptr<DrawPolygon> polygon,
- std::unique_ptr<DrawPolygon>* front,
- std::unique_ptr<DrawPolygon>* back,
- bool* is_coplanar) const {
- DCHECK_GE(normalized_threshold, std::abs(normal_.LengthSquared() - 1.0f));
-
- const size_t num_points = polygon->points_.size();
- const auto next = [num_points](size_t i) {
- return (i + 1) % num_points;
- };
- const auto prev = [num_points](size_t i) {
- return (i + num_points - 1) % num_points;
- };
-
- std::vector<float> vertex_distance;
- size_t pos_count = 0;
- size_t neg_count = 0;
-
- // Compute plane distances for each vertex of polygon.
- vertex_distance.resize(num_points);
- for (size_t i = 0; i < num_points; i++) {
- vertex_distance[i] = SignedPointDistance(polygon->points_[i]);
- if (vertex_distance[i] < -split_threshold) {
- ++neg_count;
- } else if (vertex_distance[i] > split_threshold) {
- ++pos_count;
- } else {
- vertex_distance[i] = 0.0;
- }
- }
-
- // Handle non-splitting cases.
- if (!pos_count && !neg_count) {
- double dot = gfx::DotProduct(normal_, polygon->normal_);
- if ((dot >= 0.0f && polygon->order_index_ >= order_index_) ||
- (dot <= 0.0f && polygon->order_index_ <= order_index_)) {
- *back = std::move(polygon);
- } else {
- *front = std::move(polygon);
- }
- *is_coplanar = true;
- return;
- }
-
- *is_coplanar = false;
- if (!neg_count) {
- *front = std::move(polygon);
- return;
- } else if (!pos_count) {
- *back = std::move(polygon);
- return;
- }
-
- // There should be at most two points that are considered to be on the thick
- // plane. If this is not the case, then the polygon is not convex.
- DCHECK(num_points - pos_count - neg_count <= 2);
-
- // Handle splitting case.
- size_t front_begin;
- size_t back_begin;
- size_t pre_front_begin;
- size_t pre_back_begin;
-
- // Find the first vertex that is part of the front split polygon.
- front_begin = std::find_if(vertex_distance.begin(), vertex_distance.end(),
- [](float val) { return val > 0.0; }) -
- vertex_distance.begin();
- while (vertex_distance[pre_front_begin = prev(front_begin)] > 0.0)
- front_begin = pre_front_begin;
-
- // Find the first vertex that is part of the back split polygon.
- back_begin = std::find_if(vertex_distance.begin(), vertex_distance.end(),
- [](float val) { return val < 0.0; }) -
- vertex_distance.begin();
- while (vertex_distance[pre_back_begin = prev(back_begin)] < 0.0)
- back_begin = pre_back_begin;
-
- DCHECK(vertex_distance[front_begin] > 0.0);
- DCHECK(vertex_distance[pre_front_begin] <= 0.0);
- DCHECK(vertex_distance[back_begin] < 0.0);
- DCHECK(vertex_distance[pre_back_begin] >= 0.0);
-
- gfx::Point3F pre_pos_intersection;
- gfx::Point3F pre_neg_intersection;
-
- // Compute the intersection points. N.B.: If the "pre" vertex is on
- // the thick plane, then the intersection will be at the same point, because
- // we set vertex_distance to 0 in this case.
- PointInterpolate(
- polygon->points_[pre_front_begin], polygon->points_[front_begin],
- -vertex_distance[pre_front_begin] /
- gfx::DotProduct(normal_, polygon->points_[front_begin] -
- polygon->points_[pre_front_begin]),
- &pre_pos_intersection);
- PointInterpolate(
- polygon->points_[pre_back_begin], polygon->points_[back_begin],
- -vertex_distance[pre_back_begin] /
- gfx::DotProduct(normal_, polygon->points_[back_begin] -
- polygon->points_[pre_back_begin]),
- &pre_neg_intersection);
-
- // Build the front and back polygons.
- std::vector<gfx::Point3F> out_points;
-
- out_points.push_back(pre_pos_intersection);
- do {
- out_points.push_back(polygon->points_[front_begin]);
- front_begin = next(front_begin);
- } while (vertex_distance[front_begin] > 0.0);
- out_points.push_back(pre_neg_intersection);
- *front =
- base::MakeUnique<DrawPolygon>(polygon->original_ref_, out_points,
- polygon->normal_, polygon->order_index_);
-
- out_points.clear();
-
- out_points.push_back(pre_neg_intersection);
- do {
- out_points.push_back(polygon->points_[back_begin]);
- back_begin = next(back_begin);
- } while (vertex_distance[back_begin] < 0.0);
- out_points.push_back(pre_pos_intersection);
- *back =
- base::MakeUnique<DrawPolygon>(polygon->original_ref_, out_points,
- polygon->normal_, polygon->order_index_);
-
- DCHECK_GE((*front)->points().size(), 3u);
- DCHECK_GE((*back)->points().size(), 3u);
+bool DrawPolygon::Split(const DrawPolygon& splitter,
+ std::unique_ptr<DrawPolygon>* front,
+ std::unique_ptr<DrawPolygon>* back) {
+ gfx::Point3F intersections[2];
+ std::vector<gfx::Point3F> out_points[2];
+ // vertex_before stores the index of the vertex before its matching
+ // intersection.
+ // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
+ // which resulted in the line/plane intersection giving us intersections[0].
+ size_t vertex_before[2];
+ size_t points_size = points_.size();
+ size_t current_intersection = 0;
+
+ size_t current_vertex = 0;
+ // We will only have two intersection points because we assume all polygons
+ // are convex.
+ while (current_intersection < 2) {
+ if (LineIntersectPlane(points_[(current_vertex % points_size)],
+ points_[(current_vertex + 1) % points_size],
+ splitter.points_[0],
+ splitter.normal_,
+ &intersections[current_intersection],
+ split_threshold)) {
+ vertex_before[current_intersection] = current_vertex % points_size;
+ current_intersection++;
+ // We found both intersection points so we're done already.
+ if (current_intersection == 2) {
+ break;
+ }
+ }
+ if (current_vertex++ > (points_size)) {
+ break;
+ }
+ }
+ DCHECK_EQ(current_intersection, static_cast<size_t>(2));
+
+ // Since we found both the intersection points, we can begin building the
+ // vertex set for both our new polygons.
+ size_t start1 = (vertex_before[0] + 1) % points_size;
+ size_t start2 = (vertex_before[1] + 1) % points_size;
+ size_t points_remaining = points_size;
+
+ // First polygon.
+ out_points[0].push_back(intersections[0]);
+ DCHECK_GE(vertex_before[1], start1);
+ for (size_t i = start1; i <= vertex_before[1]; i++) {
+ out_points[0].push_back(points_[i]);
+ --points_remaining;
+ }
+ out_points[0].push_back(intersections[1]);
+
+ // Second polygon.
+ out_points[1].push_back(intersections[1]);
+ size_t index = start2;
+ for (size_t i = 0; i < points_remaining; i++) {
+ out_points[1].push_back(points_[index % points_size]);
+ ++index;
+ }
+ out_points[1].push_back(intersections[0]);
+
+ // Give both polygons the original splitting polygon's ID, so that they'll
+ // still be sorted properly in co-planar instances.
+ std::unique_ptr<DrawPolygon> poly1(
+ new DrawPolygon(original_ref_, out_points[0], normal_, order_index_));
+ std::unique_ptr<DrawPolygon> poly2(
+ new DrawPolygon(original_ref_, out_points[1], normal_, order_index_));
+
+ DCHECK_GE(poly1->points().size(), 3u);
+ DCHECK_GE(poly2->points().size(), 3u);
+
+ if (SideCompare(*poly1, splitter) == BSP_FRONT) {
+ *front = std::move(poly1);
+ *back = std::move(poly2);
+ } else {
+ *front = std::move(poly2);
+ *back = std::move(poly1);
+ }
+ return true;
}
// This algorithm takes the first vertex in the polygon and uses that as a
« no previous file with comments | « cc/quads/draw_polygon.h ('k') | cc/quads/draw_polygon_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698