Index: src/snapshot/serialize.cc |
diff --git a/src/snapshot/serialize.cc b/src/snapshot/serialize.cc |
deleted file mode 100644 |
index 429d59a8ac86efbde12a020d6689fead36755ad5..0000000000000000000000000000000000000000 |
--- a/src/snapshot/serialize.cc |
+++ /dev/null |
@@ -1,2536 +0,0 @@ |
-// Copyright 2012 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/v8.h" |
- |
-#include "src/accessors.h" |
-#include "src/api.h" |
-#include "src/base/platform/platform.h" |
-#include "src/bootstrapper.h" |
-#include "src/code-stubs.h" |
-#include "src/cpu-profiler.h" |
-#include "src/deoptimizer.h" |
-#include "src/execution.h" |
-#include "src/global-handles.h" |
-#include "src/ic/ic.h" |
-#include "src/ic/stub-cache.h" |
-#include "src/objects.h" |
-#include "src/parser.h" |
-#include "src/runtime/runtime.h" |
-#include "src/snapshot/natives.h" |
-#include "src/snapshot/serialize.h" |
-#include "src/snapshot/snapshot.h" |
-#include "src/snapshot/snapshot-source-sink.h" |
-#include "src/v8threads.h" |
-#include "src/version.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
- |
-// ----------------------------------------------------------------------------- |
-// Coding of external references. |
- |
- |
-ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { |
- ExternalReferenceTable* external_reference_table = |
- isolate->external_reference_table(); |
- if (external_reference_table == NULL) { |
- external_reference_table = new ExternalReferenceTable(isolate); |
- isolate->set_external_reference_table(external_reference_table); |
- } |
- return external_reference_table; |
-} |
- |
- |
-ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) { |
- // Miscellaneous |
- Add(ExternalReference::roots_array_start(isolate).address(), |
- "Heap::roots_array_start()"); |
- Add(ExternalReference::address_of_stack_limit(isolate).address(), |
- "StackGuard::address_of_jslimit()"); |
- Add(ExternalReference::address_of_real_stack_limit(isolate).address(), |
- "StackGuard::address_of_real_jslimit()"); |
- Add(ExternalReference::new_space_start(isolate).address(), |
- "Heap::NewSpaceStart()"); |
- Add(ExternalReference::new_space_mask(isolate).address(), |
- "Heap::NewSpaceMask()"); |
- Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), |
- "Heap::NewSpaceAllocationLimitAddress()"); |
- Add(ExternalReference::new_space_allocation_top_address(isolate).address(), |
- "Heap::NewSpaceAllocationTopAddress()"); |
- Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()"); |
- Add(ExternalReference::debug_step_in_fp_address(isolate).address(), |
- "Debug::step_in_fp_addr()"); |
- Add(ExternalReference::mod_two_doubles_operation(isolate).address(), |
- "mod_two_doubles"); |
- // Keyed lookup cache. |
- Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), |
- "KeyedLookupCache::keys()"); |
- Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), |
- "KeyedLookupCache::field_offsets()"); |
- Add(ExternalReference::handle_scope_next_address(isolate).address(), |
- "HandleScope::next"); |
- Add(ExternalReference::handle_scope_limit_address(isolate).address(), |
- "HandleScope::limit"); |
- Add(ExternalReference::handle_scope_level_address(isolate).address(), |
- "HandleScope::level"); |
- Add(ExternalReference::new_deoptimizer_function(isolate).address(), |
- "Deoptimizer::New()"); |
- Add(ExternalReference::compute_output_frames_function(isolate).address(), |
- "Deoptimizer::ComputeOutputFrames()"); |
- Add(ExternalReference::address_of_min_int().address(), |
- "LDoubleConstant::min_int"); |
- Add(ExternalReference::address_of_one_half().address(), |
- "LDoubleConstant::one_half"); |
- Add(ExternalReference::isolate_address(isolate).address(), "isolate"); |
- Add(ExternalReference::address_of_negative_infinity().address(), |
- "LDoubleConstant::negative_infinity"); |
- Add(ExternalReference::power_double_double_function(isolate).address(), |
- "power_double_double_function"); |
- Add(ExternalReference::power_double_int_function(isolate).address(), |
- "power_double_int_function"); |
- Add(ExternalReference::store_buffer_top(isolate).address(), |
- "store_buffer_top"); |
- Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan"); |
- Add(ExternalReference::get_date_field_function(isolate).address(), |
- "JSDate::GetField"); |
- Add(ExternalReference::date_cache_stamp(isolate).address(), |
- "date_cache_stamp"); |
- Add(ExternalReference::address_of_pending_message_obj(isolate).address(), |
- "address_of_pending_message_obj"); |
- Add(ExternalReference::get_make_code_young_function(isolate).address(), |
- "Code::MakeCodeYoung"); |
- Add(ExternalReference::cpu_features().address(), "cpu_features"); |
- Add(ExternalReference::old_space_allocation_top_address(isolate).address(), |
- "Heap::OldSpaceAllocationTopAddress"); |
- Add(ExternalReference::old_space_allocation_limit_address(isolate).address(), |
- "Heap::OldSpaceAllocationLimitAddress"); |
- Add(ExternalReference::allocation_sites_list_address(isolate).address(), |
- "Heap::allocation_sites_list_address()"); |
- Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias"); |
- Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), |
- "Code::MarkCodeAsExecuted"); |
- Add(ExternalReference::is_profiling_address(isolate).address(), |
- "CpuProfiler::is_profiling"); |
- Add(ExternalReference::scheduled_exception_address(isolate).address(), |
- "Isolate::scheduled_exception"); |
- Add(ExternalReference::invoke_function_callback(isolate).address(), |
- "InvokeFunctionCallback"); |
- Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(), |
- "InvokeAccessorGetterCallback"); |
- Add(ExternalReference::flush_icache_function(isolate).address(), |
- "CpuFeatures::FlushICache"); |
- Add(ExternalReference::log_enter_external_function(isolate).address(), |
- "Logger::EnterExternal"); |
- Add(ExternalReference::log_leave_external_function(isolate).address(), |
- "Logger::LeaveExternal"); |
- Add(ExternalReference::address_of_minus_one_half().address(), |
- "double_constants.minus_one_half"); |
- Add(ExternalReference::stress_deopt_count(isolate).address(), |
- "Isolate::stress_deopt_count_address()"); |
- |
- // Debug addresses |
- Add(ExternalReference::debug_after_break_target_address(isolate).address(), |
- "Debug::after_break_target_address()"); |
- Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate) |
- .address(), |
- "Debug::restarter_frame_function_pointer_address()"); |
- Add(ExternalReference::debug_is_active_address(isolate).address(), |
- "Debug::is_active_address()"); |
- |
-#ifndef V8_INTERPRETED_REGEXP |
- Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), |
- "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); |
- Add(ExternalReference::re_check_stack_guard_state(isolate).address(), |
- "RegExpMacroAssembler*::CheckStackGuardState()"); |
- Add(ExternalReference::re_grow_stack(isolate).address(), |
- "NativeRegExpMacroAssembler::GrowStack()"); |
- Add(ExternalReference::re_word_character_map().address(), |
- "NativeRegExpMacroAssembler::word_character_map"); |
- Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), |
- "RegExpStack::limit_address()"); |
- Add(ExternalReference::address_of_regexp_stack_memory_address(isolate) |
- .address(), |
- "RegExpStack::memory_address()"); |
- Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), |
- "RegExpStack::memory_size()"); |
- Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), |
- "OffsetsVector::static_offsets_vector"); |
-#endif // V8_INTERPRETED_REGEXP |
- |
- // The following populates all of the different type of external references |
- // into the ExternalReferenceTable. |
- // |
- // NOTE: This function was originally 100k of code. It has since been |
- // rewritten to be mostly table driven, as the callback macro style tends to |
- // very easily cause code bloat. Please be careful in the future when adding |
- // new references. |
- |
- struct RefTableEntry { |
- uint16_t id; |
- const char* name; |
- }; |
- |
- static const RefTableEntry c_builtins[] = { |
-#define DEF_ENTRY_C(name, ignored) \ |
- { Builtins::c_##name, "Builtins::" #name } \ |
- , |
- BUILTIN_LIST_C(DEF_ENTRY_C) |
-#undef DEF_ENTRY_C |
- }; |
- |
- for (unsigned i = 0; i < arraysize(c_builtins); ++i) { |
- ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id), |
- isolate); |
- Add(ref.address(), c_builtins[i].name); |
- } |
- |
- static const RefTableEntry builtins[] = { |
-#define DEF_ENTRY_C(name, ignored) \ |
- { Builtins::k##name, "Builtins::" #name } \ |
- , |
-#define DEF_ENTRY_A(name, i1, i2, i3) \ |
- { Builtins::k##name, "Builtins::" #name } \ |
- , |
- BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A) |
- BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) |
-#undef DEF_ENTRY_C |
-#undef DEF_ENTRY_A |
- }; |
- |
- for (unsigned i = 0; i < arraysize(builtins); ++i) { |
- ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate); |
- Add(ref.address(), builtins[i].name); |
- } |
- |
- static const RefTableEntry runtime_functions[] = { |
-#define RUNTIME_ENTRY(name, i1, i2) \ |
- { Runtime::k##name, "Runtime::" #name } \ |
- , |
- FOR_EACH_INTRINSIC(RUNTIME_ENTRY) |
-#undef RUNTIME_ENTRY |
- }; |
- |
- for (unsigned i = 0; i < arraysize(runtime_functions); ++i) { |
- ExternalReference ref( |
- static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate); |
- Add(ref.address(), runtime_functions[i].name); |
- } |
- |
- static const RefTableEntry inline_caches[] = { |
-#define IC_ENTRY(name) \ |
- { IC::k##name, "IC::" #name } \ |
- , |
- IC_UTIL_LIST(IC_ENTRY) |
-#undef IC_ENTRY |
- }; |
- |
- for (unsigned i = 0; i < arraysize(inline_caches); ++i) { |
- ExternalReference ref( |
- IC_Utility(static_cast<IC::UtilityId>(inline_caches[i].id)), isolate); |
- Add(ref.address(), runtime_functions[i].name); |
- } |
- |
- // Stat counters |
- struct StatsRefTableEntry { |
- StatsCounter* (Counters::*counter)(); |
- const char* name; |
- }; |
- |
- static const StatsRefTableEntry stats_ref_table[] = { |
-#define COUNTER_ENTRY(name, caption) \ |
- { &Counters::name, "Counters::" #name } \ |
- , |
- STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY) |
-#undef COUNTER_ENTRY |
- }; |
- |
- Counters* counters = isolate->counters(); |
- for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) { |
- // To make sure the indices are not dependent on whether counters are |
- // enabled, use a dummy address as filler. |
- Address address = NotAvailable(); |
- StatsCounter* counter = (counters->*(stats_ref_table[i].counter))(); |
- if (counter->Enabled()) { |
- address = reinterpret_cast<Address>(counter->GetInternalPointer()); |
- } |
- Add(address, stats_ref_table[i].name); |
- } |
- |
- // Top addresses |
- static const char* address_names[] = { |
-#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address", |
- FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL |
-#undef BUILD_NAME_LITERAL |
- }; |
- |
- for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) { |
- Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)), |
- address_names[i]); |
- } |
- |
- // Accessors |
- struct AccessorRefTable { |
- Address address; |
- const char* name; |
- }; |
- |
- static const AccessorRefTable accessors[] = { |
-#define ACCESSOR_INFO_DECLARATION(name) \ |
- { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \ |
- , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"}, |
- ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION) |
-#undef ACCESSOR_INFO_DECLARATION |
- }; |
- |
- for (unsigned i = 0; i < arraysize(accessors); ++i) { |
- Add(accessors[i].address, accessors[i].name); |
- } |
- |
- StubCache* stub_cache = isolate->stub_cache(); |
- |
- // Stub cache tables |
- Add(stub_cache->key_reference(StubCache::kPrimary).address(), |
- "StubCache::primary_->key"); |
- Add(stub_cache->value_reference(StubCache::kPrimary).address(), |
- "StubCache::primary_->value"); |
- Add(stub_cache->map_reference(StubCache::kPrimary).address(), |
- "StubCache::primary_->map"); |
- Add(stub_cache->key_reference(StubCache::kSecondary).address(), |
- "StubCache::secondary_->key"); |
- Add(stub_cache->value_reference(StubCache::kSecondary).address(), |
- "StubCache::secondary_->value"); |
- Add(stub_cache->map_reference(StubCache::kSecondary).address(), |
- "StubCache::secondary_->map"); |
- |
- // Runtime entries |
- Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), |
- "HandleScope::DeleteExtensions"); |
- Add(ExternalReference::incremental_marking_record_write_function(isolate) |
- .address(), |
- "IncrementalMarking::RecordWrite"); |
- Add(ExternalReference::store_buffer_overflow_function(isolate).address(), |
- "StoreBuffer::StoreBufferOverflow"); |
- |
- // Add a small set of deopt entry addresses to encoder without generating the |
- // deopt table code, which isn't possible at deserialization time. |
- HandleScope scope(isolate); |
- for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { |
- Address address = Deoptimizer::GetDeoptimizationEntry( |
- isolate, |
- entry, |
- Deoptimizer::LAZY, |
- Deoptimizer::CALCULATE_ENTRY_ADDRESS); |
- Add(address, "lazy_deopt"); |
- } |
-} |
- |
- |
-ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) { |
- map_ = isolate->external_reference_map(); |
- if (map_ != NULL) return; |
- map_ = new HashMap(HashMap::PointersMatch); |
- ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate); |
- for (int i = 0; i < table->size(); ++i) { |
- Address addr = table->address(i); |
- if (addr == ExternalReferenceTable::NotAvailable()) continue; |
- // We expect no duplicate external references entries in the table. |
- DCHECK_NULL(map_->Lookup(addr, Hash(addr))); |
- map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i); |
- } |
- isolate->set_external_reference_map(map_); |
-} |
- |
- |
-uint32_t ExternalReferenceEncoder::Encode(Address address) const { |
- DCHECK_NOT_NULL(address); |
- HashMap::Entry* entry = |
- const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); |
- DCHECK_NOT_NULL(entry); |
- return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); |
-} |
- |
- |
-const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate, |
- Address address) const { |
- HashMap::Entry* entry = |
- const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); |
- if (entry == NULL) return "<unknown>"; |
- uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); |
- return ExternalReferenceTable::instance(isolate)->name(i); |
-} |
- |
- |
-RootIndexMap::RootIndexMap(Isolate* isolate) { |
- map_ = isolate->root_index_map(); |
- if (map_ != NULL) return; |
- map_ = new HashMap(HashMap::PointersMatch); |
- Object** root_array = isolate->heap()->roots_array_start(); |
- for (uint32_t i = 0; i < Heap::kStrongRootListLength; i++) { |
- Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i); |
- Object* root = root_array[root_index]; |
- // Omit root entries that can be written after initialization. They must |
- // not be referenced through the root list in the snapshot. |
- if (root->IsHeapObject() && |
- isolate->heap()->RootCanBeTreatedAsConstant(root_index)) { |
- HeapObject* heap_object = HeapObject::cast(root); |
- HashMap::Entry* entry = LookupEntry(map_, heap_object, false); |
- if (entry != NULL) { |
- // Some are initialized to a previous value in the root list. |
- DCHECK_LT(GetValue(entry), i); |
- } else { |
- SetValue(LookupEntry(map_, heap_object, true), i); |
- } |
- } |
- } |
- isolate->set_root_index_map(map_); |
-} |
- |
- |
-class CodeAddressMap: public CodeEventLogger { |
- public: |
- explicit CodeAddressMap(Isolate* isolate) |
- : isolate_(isolate) { |
- isolate->logger()->addCodeEventListener(this); |
- } |
- |
- virtual ~CodeAddressMap() { |
- isolate_->logger()->removeCodeEventListener(this); |
- } |
- |
- virtual void CodeMoveEvent(Address from, Address to) { |
- address_to_name_map_.Move(from, to); |
- } |
- |
- virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) { |
- } |
- |
- virtual void CodeDeleteEvent(Address from) { |
- address_to_name_map_.Remove(from); |
- } |
- |
- const char* Lookup(Address address) { |
- return address_to_name_map_.Lookup(address); |
- } |
- |
- private: |
- class NameMap { |
- public: |
- NameMap() : impl_(HashMap::PointersMatch) {} |
- |
- ~NameMap() { |
- for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { |
- DeleteArray(static_cast<const char*>(p->value)); |
- } |
- } |
- |
- void Insert(Address code_address, const char* name, int name_size) { |
- HashMap::Entry* entry = FindOrCreateEntry(code_address); |
- if (entry->value == NULL) { |
- entry->value = CopyName(name, name_size); |
- } |
- } |
- |
- const char* Lookup(Address code_address) { |
- HashMap::Entry* entry = FindEntry(code_address); |
- return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; |
- } |
- |
- void Remove(Address code_address) { |
- HashMap::Entry* entry = FindEntry(code_address); |
- if (entry != NULL) { |
- DeleteArray(static_cast<char*>(entry->value)); |
- RemoveEntry(entry); |
- } |
- } |
- |
- void Move(Address from, Address to) { |
- if (from == to) return; |
- HashMap::Entry* from_entry = FindEntry(from); |
- DCHECK(from_entry != NULL); |
- void* value = from_entry->value; |
- RemoveEntry(from_entry); |
- HashMap::Entry* to_entry = FindOrCreateEntry(to); |
- DCHECK(to_entry->value == NULL); |
- to_entry->value = value; |
- } |
- |
- private: |
- static char* CopyName(const char* name, int name_size) { |
- char* result = NewArray<char>(name_size + 1); |
- for (int i = 0; i < name_size; ++i) { |
- char c = name[i]; |
- if (c == '\0') c = ' '; |
- result[i] = c; |
- } |
- result[name_size] = '\0'; |
- return result; |
- } |
- |
- HashMap::Entry* FindOrCreateEntry(Address code_address) { |
- return impl_.LookupOrInsert(code_address, |
- ComputePointerHash(code_address)); |
- } |
- |
- HashMap::Entry* FindEntry(Address code_address) { |
- return impl_.Lookup(code_address, ComputePointerHash(code_address)); |
- } |
- |
- void RemoveEntry(HashMap::Entry* entry) { |
- impl_.Remove(entry->key, entry->hash); |
- } |
- |
- HashMap impl_; |
- |
- DISALLOW_COPY_AND_ASSIGN(NameMap); |
- }; |
- |
- virtual void LogRecordedBuffer(Code* code, |
- SharedFunctionInfo*, |
- const char* name, |
- int length) { |
- address_to_name_map_.Insert(code->address(), name, length); |
- } |
- |
- NameMap address_to_name_map_; |
- Isolate* isolate_; |
-}; |
- |
- |
-void Deserializer::DecodeReservation( |
- Vector<const SerializedData::Reservation> res) { |
- DCHECK_EQ(0, reservations_[NEW_SPACE].length()); |
- STATIC_ASSERT(NEW_SPACE == 0); |
- int current_space = NEW_SPACE; |
- for (auto& r : res) { |
- reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); |
- if (r.is_last()) current_space++; |
- } |
- DCHECK_EQ(kNumberOfSpaces, current_space); |
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; |
-} |
- |
- |
-void Deserializer::FlushICacheForNewCodeObjects() { |
- PageIterator it(isolate_->heap()->code_space()); |
- while (it.has_next()) { |
- Page* p = it.next(); |
- CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start()); |
- } |
-} |
- |
- |
-bool Deserializer::ReserveSpace() { |
-#ifdef DEBUG |
- for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { |
- CHECK(reservations_[i].length() > 0); |
- } |
-#endif // DEBUG |
- if (!isolate_->heap()->ReserveSpace(reservations_)) return false; |
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { |
- high_water_[i] = reservations_[i][0].start; |
- } |
- return true; |
-} |
- |
- |
-void Deserializer::Initialize(Isolate* isolate) { |
- DCHECK_NULL(isolate_); |
- DCHECK_NOT_NULL(isolate); |
- isolate_ = isolate; |
- DCHECK_NULL(external_reference_table_); |
- external_reference_table_ = ExternalReferenceTable::instance(isolate); |
- CHECK_EQ(magic_number_, |
- SerializedData::ComputeMagicNumber(external_reference_table_)); |
-} |
- |
- |
-void Deserializer::Deserialize(Isolate* isolate) { |
- Initialize(isolate); |
- if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); |
- // No active threads. |
- DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); |
- // No active handles. |
- DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); |
- isolate_->heap()->IterateSmiRoots(this); |
- isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); |
- isolate_->heap()->RepairFreeListsAfterDeserialization(); |
- isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); |
- |
- isolate_->heap()->set_native_contexts_list( |
- isolate_->heap()->undefined_value()); |
- isolate_->heap()->set_array_buffers_list( |
- isolate_->heap()->undefined_value()); |
- isolate->heap()->set_new_array_buffer_views_list( |
- isolate_->heap()->undefined_value()); |
- |
- // The allocation site list is build during root iteration, but if no sites |
- // were encountered then it needs to be initialized to undefined. |
- if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { |
- isolate_->heap()->set_allocation_sites_list( |
- isolate_->heap()->undefined_value()); |
- } |
- |
- // Update data pointers to the external strings containing natives sources. |
- for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { |
- Object* source = isolate_->heap()->natives_source_cache()->get(i); |
- if (!source->IsUndefined()) { |
- ExternalOneByteString::cast(source)->update_data_cache(); |
- } |
- } |
- |
- FlushICacheForNewCodeObjects(); |
- |
- // Issue code events for newly deserialized code objects. |
- LOG_CODE_EVENT(isolate_, LogCodeObjects()); |
- LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); |
-} |
- |
- |
-MaybeHandle<Object> Deserializer::DeserializePartial( |
- Isolate* isolate, Handle<JSGlobalProxy> global_proxy, |
- Handle<FixedArray>* outdated_contexts_out) { |
- Initialize(isolate); |
- if (!ReserveSpace()) { |
- V8::FatalProcessOutOfMemory("deserialize context"); |
- return MaybeHandle<Object>(); |
- } |
- |
- Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); |
- attached_objects[kGlobalProxyReference] = global_proxy; |
- SetAttachedObjects(attached_objects); |
- |
- DisallowHeapAllocation no_gc; |
- // Keep track of the code space start and end pointers in case new |
- // code objects were unserialized |
- OldSpace* code_space = isolate_->heap()->code_space(); |
- Address start_address = code_space->top(); |
- Object* root; |
- Object* outdated_contexts; |
- VisitPointer(&root); |
- VisitPointer(&outdated_contexts); |
- |
- // There's no code deserialized here. If this assert fires |
- // then that's changed and logging should be added to notify |
- // the profiler et al of the new code. |
- CHECK_EQ(start_address, code_space->top()); |
- CHECK(outdated_contexts->IsFixedArray()); |
- *outdated_contexts_out = |
- Handle<FixedArray>(FixedArray::cast(outdated_contexts), isolate); |
- return Handle<Object>(root, isolate); |
-} |
- |
- |
-MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( |
- Isolate* isolate) { |
- Initialize(isolate); |
- if (!ReserveSpace()) { |
- return Handle<SharedFunctionInfo>(); |
- } else { |
- deserializing_user_code_ = true; |
- DisallowHeapAllocation no_gc; |
- Object* root; |
- VisitPointer(&root); |
- return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); |
- } |
-} |
- |
- |
-Deserializer::~Deserializer() { |
- // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. |
- // DCHECK(source_.AtEOF()); |
- attached_objects_.Dispose(); |
-} |
- |
- |
-// This is called on the roots. It is the driver of the deserialization |
-// process. It is also called on the body of each function. |
-void Deserializer::VisitPointers(Object** start, Object** end) { |
- // The space must be new space. Any other space would cause ReadChunk to try |
- // to update the remembered using NULL as the address. |
- ReadData(start, end, NEW_SPACE, NULL); |
-} |
- |
- |
-void Deserializer::RelinkAllocationSite(AllocationSite* site) { |
- if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { |
- site->set_weak_next(isolate_->heap()->undefined_value()); |
- } else { |
- site->set_weak_next(isolate_->heap()->allocation_sites_list()); |
- } |
- isolate_->heap()->set_allocation_sites_list(site); |
-} |
- |
- |
-// Used to insert a deserialized internalized string into the string table. |
-class StringTableInsertionKey : public HashTableKey { |
- public: |
- explicit StringTableInsertionKey(String* string) |
- : string_(string), hash_(HashForObject(string)) { |
- DCHECK(string->IsInternalizedString()); |
- } |
- |
- bool IsMatch(Object* string) OVERRIDE { |
- // We know that all entries in a hash table had their hash keys created. |
- // Use that knowledge to have fast failure. |
- if (hash_ != HashForObject(string)) return false; |
- // We want to compare the content of two internalized strings here. |
- return string_->SlowEquals(String::cast(string)); |
- } |
- |
- uint32_t Hash() OVERRIDE { return hash_; } |
- |
- uint32_t HashForObject(Object* key) OVERRIDE { |
- return String::cast(key)->Hash(); |
- } |
- |
- MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) |
- OVERRIDE { |
- return handle(string_, isolate); |
- } |
- |
- String* string_; |
- uint32_t hash_; |
-}; |
- |
- |
-HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) { |
- if (obj->IsString()) { |
- String* string = String::cast(obj); |
- // Uninitialize hash field as the hash seed may have changed. |
- string->set_hash_field(String::kEmptyHashField); |
- if (string->IsInternalizedString()) { |
- DisallowHeapAllocation no_gc; |
- HandleScope scope(isolate_); |
- StringTableInsertionKey key(string); |
- String* canonical = *StringTable::LookupKey(isolate_, &key); |
- string->SetForwardedInternalizedString(canonical); |
- return canonical; |
- } |
- } else if (obj->IsScript()) { |
- Script::cast(obj)->set_id(isolate_->heap()->NextScriptId()); |
- } |
- return obj; |
-} |
- |
- |
-HeapObject* Deserializer::GetBackReferencedObject(int space) { |
- HeapObject* obj; |
- BackReference back_reference(source_.GetInt()); |
- if (space == LO_SPACE) { |
- CHECK(back_reference.chunk_index() == 0); |
- uint32_t index = back_reference.large_object_index(); |
- obj = deserialized_large_objects_[index]; |
- } else { |
- DCHECK(space < kNumberOfPreallocatedSpaces); |
- uint32_t chunk_index = back_reference.chunk_index(); |
- DCHECK_LE(chunk_index, current_chunk_[space]); |
- uint32_t chunk_offset = back_reference.chunk_offset(); |
- obj = HeapObject::FromAddress(reservations_[space][chunk_index].start + |
- chunk_offset); |
- } |
- if (deserializing_user_code() && obj->IsInternalizedString()) { |
- obj = String::cast(obj)->GetForwardedInternalizedString(); |
- } |
- hot_objects_.Add(obj); |
- return obj; |
-} |
- |
- |
-// This routine writes the new object into the pointer provided and then |
-// returns true if the new object was in young space and false otherwise. |
-// The reason for this strange interface is that otherwise the object is |
-// written very late, which means the FreeSpace map is not set up by the |
-// time we need to use it to mark the space at the end of a page free. |
-void Deserializer::ReadObject(int space_number, Object** write_back) { |
- Address address; |
- HeapObject* obj; |
- int next_int = source_.GetInt(); |
- |
- bool double_align = false; |
-#ifndef V8_HOST_ARCH_64_BIT |
- double_align = next_int == kDoubleAlignmentSentinel; |
- if (double_align) next_int = source_.GetInt(); |
-#endif |
- |
- DCHECK_NE(kDoubleAlignmentSentinel, next_int); |
- int size = next_int << kObjectAlignmentBits; |
- int reserved_size = size + (double_align ? kPointerSize : 0); |
- address = Allocate(space_number, reserved_size); |
- obj = HeapObject::FromAddress(address); |
- if (double_align) { |
- obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size); |
- address = obj->address(); |
- } |
- |
- isolate_->heap()->OnAllocationEvent(obj, size); |
- Object** current = reinterpret_cast<Object**>(address); |
- Object** limit = current + (size >> kPointerSizeLog2); |
- if (FLAG_log_snapshot_positions) { |
- LOG(isolate_, SnapshotPositionEvent(address, source_.position())); |
- } |
- ReadData(current, limit, space_number, address); |
- |
- // TODO(mvstanton): consider treating the heap()->allocation_sites_list() |
- // as a (weak) root. If this root is relocated correctly, |
- // RelinkAllocationSite() isn't necessary. |
- if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj)); |
- |
- // Fix up strings from serialized user code. |
- if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj); |
- |
- Object* write_back_obj = obj; |
- UnalignedCopy(write_back, &write_back_obj); |
-#ifdef DEBUG |
- if (obj->IsCode()) { |
- DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); |
-#ifdef VERIFY_HEAP |
- obj->ObjectVerify(); |
-#endif // VERIFY_HEAP |
- } else { |
- DCHECK(space_number != CODE_SPACE); |
- } |
-#endif // DEBUG |
-} |
- |
- |
-// We know the space requirements before deserialization and can |
-// pre-allocate that reserved space. During deserialization, all we need |
-// to do is to bump up the pointer for each space in the reserved |
-// space. This is also used for fixing back references. |
-// We may have to split up the pre-allocation into several chunks |
-// because it would not fit onto a single page. We do not have to keep |
-// track of when to move to the next chunk. An opcode will signal this. |
-// Since multiple large objects cannot be folded into one large object |
-// space allocation, we have to do an actual allocation when deserializing |
-// each large object. Instead of tracking offset for back references, we |
-// reference large objects by index. |
-Address Deserializer::Allocate(int space_index, int size) { |
- if (space_index == LO_SPACE) { |
- AlwaysAllocateScope scope(isolate_); |
- LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); |
- Executability exec = static_cast<Executability>(source_.Get()); |
- AllocationResult result = lo_space->AllocateRaw(size, exec); |
- HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); |
- deserialized_large_objects_.Add(obj); |
- return obj->address(); |
- } else { |
- DCHECK(space_index < kNumberOfPreallocatedSpaces); |
- Address address = high_water_[space_index]; |
- DCHECK_NOT_NULL(address); |
- high_water_[space_index] += size; |
-#ifdef DEBUG |
- // Assert that the current reserved chunk is still big enough. |
- const Heap::Reservation& reservation = reservations_[space_index]; |
- int chunk_index = current_chunk_[space_index]; |
- CHECK_LE(high_water_[space_index], reservation[chunk_index].end); |
-#endif |
- return address; |
- } |
-} |
- |
- |
-void Deserializer::ReadData(Object** current, Object** limit, int source_space, |
- Address current_object_address) { |
- Isolate* const isolate = isolate_; |
- // Write barrier support costs around 1% in startup time. In fact there |
- // are no new space objects in current boot snapshots, so it's not needed, |
- // but that may change. |
- bool write_barrier_needed = |
- (current_object_address != NULL && source_space != NEW_SPACE && |
- source_space != CODE_SPACE); |
- while (current < limit) { |
- byte data = source_.Get(); |
- switch (data) { |
-#define CASE_STATEMENT(where, how, within, space_number) \ |
- case where + how + within + space_number: \ |
- STATIC_ASSERT((where & ~kWhereMask) == 0); \ |
- STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ |
- STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ |
- STATIC_ASSERT((space_number & ~kSpaceMask) == 0); |
- |
-#define CASE_BODY(where, how, within, space_number_if_any) \ |
- { \ |
- bool emit_write_barrier = false; \ |
- bool current_was_incremented = false; \ |
- int space_number = space_number_if_any == kAnyOldSpace \ |
- ? (data & kSpaceMask) \ |
- : space_number_if_any; \ |
- if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ |
- ReadObject(space_number, current); \ |
- emit_write_barrier = (space_number == NEW_SPACE); \ |
- } else { \ |
- Object* new_object = NULL; /* May not be a real Object pointer. */ \ |
- if (where == kNewObject) { \ |
- ReadObject(space_number, &new_object); \ |
- } else if (where == kBackref) { \ |
- emit_write_barrier = (space_number == NEW_SPACE); \ |
- new_object = GetBackReferencedObject(data & kSpaceMask); \ |
- } else if (where == kBackrefWithSkip) { \ |
- int skip = source_.GetInt(); \ |
- current = reinterpret_cast<Object**>( \ |
- reinterpret_cast<Address>(current) + skip); \ |
- emit_write_barrier = (space_number == NEW_SPACE); \ |
- new_object = GetBackReferencedObject(data & kSpaceMask); \ |
- } else if (where == kRootArray) { \ |
- int root_id = source_.GetInt(); \ |
- new_object = isolate->heap()->roots_array_start()[root_id]; \ |
- emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ |
- } else if (where == kPartialSnapshotCache) { \ |
- int cache_index = source_.GetInt(); \ |
- new_object = isolate->partial_snapshot_cache()->at(cache_index); \ |
- emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ |
- } else if (where == kExternalReference) { \ |
- int skip = source_.GetInt(); \ |
- current = reinterpret_cast<Object**>( \ |
- reinterpret_cast<Address>(current) + skip); \ |
- int reference_id = source_.GetInt(); \ |
- Address address = external_reference_table_->address(reference_id); \ |
- new_object = reinterpret_cast<Object*>(address); \ |
- } else if (where == kAttachedReference) { \ |
- int index = source_.GetInt(); \ |
- DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ |
- new_object = *attached_objects_[index]; \ |
- emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ |
- } else { \ |
- DCHECK(where == kBuiltin); \ |
- DCHECK(deserializing_user_code()); \ |
- int builtin_id = source_.GetInt(); \ |
- DCHECK_LE(0, builtin_id); \ |
- DCHECK_LT(builtin_id, Builtins::builtin_count); \ |
- Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ |
- new_object = isolate->builtins()->builtin(name); \ |
- emit_write_barrier = false; \ |
- } \ |
- if (within == kInnerPointer) { \ |
- if (space_number != CODE_SPACE || new_object->IsCode()) { \ |
- Code* new_code_object = reinterpret_cast<Code*>(new_object); \ |
- new_object = \ |
- reinterpret_cast<Object*>(new_code_object->instruction_start()); \ |
- } else { \ |
- DCHECK(space_number == CODE_SPACE); \ |
- Cell* cell = Cell::cast(new_object); \ |
- new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ |
- } \ |
- } \ |
- if (how == kFromCode) { \ |
- Address location_of_branch_data = reinterpret_cast<Address>(current); \ |
- Assembler::deserialization_set_special_target_at( \ |
- location_of_branch_data, \ |
- Code::cast(HeapObject::FromAddress(current_object_address)), \ |
- reinterpret_cast<Address>(new_object)); \ |
- location_of_branch_data += Assembler::kSpecialTargetSize; \ |
- current = reinterpret_cast<Object**>(location_of_branch_data); \ |
- current_was_incremented = true; \ |
- } else { \ |
- UnalignedCopy(current, &new_object); \ |
- } \ |
- } \ |
- if (emit_write_barrier && write_barrier_needed) { \ |
- Address current_address = reinterpret_cast<Address>(current); \ |
- isolate->heap()->RecordWrite( \ |
- current_object_address, \ |
- static_cast<int>(current_address - current_object_address)); \ |
- } \ |
- if (!current_was_incremented) { \ |
- current++; \ |
- } \ |
- break; \ |
- } |
- |
-// This generates a case and a body for the new space (which has to do extra |
-// write barrier handling) and handles the other spaces with fall-through cases |
-// and one body. |
-#define ALL_SPACES(where, how, within) \ |
- CASE_STATEMENT(where, how, within, NEW_SPACE) \ |
- CASE_BODY(where, how, within, NEW_SPACE) \ |
- CASE_STATEMENT(where, how, within, OLD_SPACE) \ |
- CASE_STATEMENT(where, how, within, CODE_SPACE) \ |
- CASE_STATEMENT(where, how, within, MAP_SPACE) \ |
- CASE_STATEMENT(where, how, within, LO_SPACE) \ |
- CASE_BODY(where, how, within, kAnyOldSpace) |
- |
-#define FOUR_CASES(byte_code) \ |
- case byte_code: \ |
- case byte_code + 1: \ |
- case byte_code + 2: \ |
- case byte_code + 3: |
- |
-#define SIXTEEN_CASES(byte_code) \ |
- FOUR_CASES(byte_code) \ |
- FOUR_CASES(byte_code + 4) \ |
- FOUR_CASES(byte_code + 8) \ |
- FOUR_CASES(byte_code + 12) |
- |
- // Deserialize a new object and write a pointer to it to the current |
- // object. |
- ALL_SPACES(kNewObject, kPlain, kStartOfObject) |
- // Support for direct instruction pointers in functions. It's an inner |
- // pointer because it points at the entry point, not at the start of the |
- // code object. |
- CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE) |
- CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE) |
- // Deserialize a new code object and write a pointer to its first |
- // instruction to the current code object. |
- ALL_SPACES(kNewObject, kFromCode, kInnerPointer) |
- // Find a recently deserialized object using its offset from the current |
- // allocation point and write a pointer to it to the current object. |
- ALL_SPACES(kBackref, kPlain, kStartOfObject) |
- ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) |
-#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ |
- defined(V8_TARGET_ARCH_PPC) || V8_OOL_CONSTANT_POOL |
- // Deserialize a new object from pointer found in code and write |
- // a pointer to it to the current object. Required only for MIPS, PPC or |
- // ARM with ool constant pool, and omitted on the other architectures |
- // because it is fully unrolled and would cause bloat. |
- ALL_SPACES(kNewObject, kFromCode, kStartOfObject) |
- // Find a recently deserialized code object using its offset from the |
- // current allocation point and write a pointer to it to the current |
- // object. Required only for MIPS, PPC or ARM with ool constant pool. |
- ALL_SPACES(kBackref, kFromCode, kStartOfObject) |
- ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) |
-#endif |
- // Find a recently deserialized code object using its offset from the |
- // current allocation point and write a pointer to its first instruction |
- // to the current code object or the instruction pointer in a function |
- // object. |
- ALL_SPACES(kBackref, kFromCode, kInnerPointer) |
- ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) |
- ALL_SPACES(kBackref, kPlain, kInnerPointer) |
- ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) |
- // Find an object in the roots array and write a pointer to it to the |
- // current object. |
- CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0) |
- CASE_BODY(kRootArray, kPlain, kStartOfObject, 0) |
-#if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \ |
- defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) |
- // Find an object in the roots array and write a pointer to it to in code. |
- CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0) |
- CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0) |
-#endif |
- // Find an object in the partial snapshots cache and write a pointer to it |
- // to the current object. |
- CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0) |
- CASE_BODY(kPartialSnapshotCache, kPlain, kStartOfObject, 0) |
- // Find an code entry in the partial snapshots cache and |
- // write a pointer to it to the current object. |
- CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0) |
- CASE_BODY(kPartialSnapshotCache, kPlain, kInnerPointer, 0) |
- // Find an external reference and write a pointer to it to the current |
- // object. |
- CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0) |
- CASE_BODY(kExternalReference, kPlain, kStartOfObject, 0) |
- // Find an external reference and write a pointer to it in the current |
- // code object. |
- CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0) |
- CASE_BODY(kExternalReference, kFromCode, kStartOfObject, 0) |
- // Find an object in the attached references and write a pointer to it to |
- // the current object. |
- CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0) |
- CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0) |
- CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0) |
- CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0) |
- CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0) |
- CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0) |
- // Find a builtin and write a pointer to it to the current object. |
- CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0) |
- CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0) |
- CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0) |
- CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0) |
- CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0) |
- CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0) |
- |
-#undef CASE_STATEMENT |
-#undef CASE_BODY |
-#undef ALL_SPACES |
- |
- case kSkip: { |
- int size = source_.GetInt(); |
- current = reinterpret_cast<Object**>( |
- reinterpret_cast<intptr_t>(current) + size); |
- break; |
- } |
- |
- case kInternalReferenceEncoded: |
- case kInternalReference: { |
- // Internal reference address is not encoded via skip, but by offset |
- // from code entry. |
- int pc_offset = source_.GetInt(); |
- int target_offset = source_.GetInt(); |
- Code* code = |
- Code::cast(HeapObject::FromAddress(current_object_address)); |
- DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); |
- DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); |
- Address pc = code->entry() + pc_offset; |
- Address target = code->entry() + target_offset; |
- Assembler::deserialization_set_target_internal_reference_at( |
- pc, target, data == kInternalReference |
- ? RelocInfo::INTERNAL_REFERENCE |
- : RelocInfo::INTERNAL_REFERENCE_ENCODED); |
- break; |
- } |
- |
- case kNop: |
- break; |
- |
- case kNextChunk: { |
- int space = source_.Get(); |
- DCHECK(space < kNumberOfPreallocatedSpaces); |
- int chunk_index = current_chunk_[space]; |
- const Heap::Reservation& reservation = reservations_[space]; |
- // Make sure the current chunk is indeed exhausted. |
- CHECK_EQ(reservation[chunk_index].end, high_water_[space]); |
- // Move to next reserved chunk. |
- chunk_index = ++current_chunk_[space]; |
- CHECK_LT(chunk_index, reservation.length()); |
- high_water_[space] = reservation[chunk_index].start; |
- break; |
- } |
- |
- case kSynchronize: |
- // If we get here then that indicates that you have a mismatch between |
- // the number of GC roots when serializing and deserializing. |
- CHECK(false); |
- break; |
- |
- case kNativesStringResource: { |
- DCHECK(!isolate_->heap()->deserialization_complete()); |
- int index = source_.Get(); |
- Vector<const char> source_vector = Natives::GetScriptSource(index); |
- NativesExternalStringResource* resource = |
- new NativesExternalStringResource(source_vector.start(), |
- source_vector.length()); |
- Object* resource_obj = reinterpret_cast<Object*>(resource); |
- UnalignedCopy(current++, &resource_obj); |
- break; |
- } |
- |
- // Deserialize raw data of variable length. |
- case kVariableRawData: { |
- int size_in_bytes = source_.GetInt(); |
- byte* raw_data_out = reinterpret_cast<byte*>(current); |
- source_.CopyRaw(raw_data_out, size_in_bytes); |
- break; |
- } |
- |
- case kVariableRepeat: { |
- int repeats = source_.GetInt(); |
- Object* object = current[-1]; |
- DCHECK(!isolate->heap()->InNewSpace(object)); |
- for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); |
- break; |
- } |
- |
- STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); |
- STATIC_ASSERT(kNumberOfRootArrayConstants == 32); |
- SIXTEEN_CASES(kRootArrayConstantsWithSkip) |
- SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { |
- int skip = source_.GetInt(); |
- current = reinterpret_cast<Object**>( |
- reinterpret_cast<intptr_t>(current) + skip); |
- // Fall through. |
- } |
- |
- SIXTEEN_CASES(kRootArrayConstants) |
- SIXTEEN_CASES(kRootArrayConstants + 16) { |
- int root_id = data & kRootArrayConstantsMask; |
- Object* object = isolate->heap()->roots_array_start()[root_id]; |
- DCHECK(!isolate->heap()->InNewSpace(object)); |
- UnalignedCopy(current++, &object); |
- break; |
- } |
- |
- STATIC_ASSERT(kNumberOfHotObjects == 8); |
- FOUR_CASES(kHotObjectWithSkip) |
- FOUR_CASES(kHotObjectWithSkip + 4) { |
- int skip = source_.GetInt(); |
- current = reinterpret_cast<Object**>( |
- reinterpret_cast<Address>(current) + skip); |
- // Fall through. |
- } |
- |
- FOUR_CASES(kHotObject) |
- FOUR_CASES(kHotObject + 4) { |
- int index = data & kHotObjectMask; |
- Object* hot_object = hot_objects_.Get(index); |
- UnalignedCopy(current, &hot_object); |
- if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) { |
- Address current_address = reinterpret_cast<Address>(current); |
- isolate->heap()->RecordWrite( |
- current_object_address, |
- static_cast<int>(current_address - current_object_address)); |
- } |
- current++; |
- break; |
- } |
- |
- // Deserialize raw data of fixed length from 1 to 32 words. |
- STATIC_ASSERT(kNumberOfFixedRawData == 32); |
- SIXTEEN_CASES(kFixedRawData) |
- SIXTEEN_CASES(kFixedRawData + 16) { |
- byte* raw_data_out = reinterpret_cast<byte*>(current); |
- int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; |
- source_.CopyRaw(raw_data_out, size_in_bytes); |
- current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); |
- break; |
- } |
- |
- STATIC_ASSERT(kNumberOfFixedRepeat == 16); |
- SIXTEEN_CASES(kFixedRepeat) { |
- int repeats = data - kFixedRepeatStart; |
- Object* object; |
- UnalignedCopy(&object, current - 1); |
- DCHECK(!isolate->heap()->InNewSpace(object)); |
- for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); |
- break; |
- } |
- |
-#undef SIXTEEN_CASES |
-#undef FOUR_CASES |
- |
- default: |
- CHECK(false); |
- } |
- } |
- CHECK_EQ(limit, current); |
-} |
- |
- |
-Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) |
- : isolate_(isolate), |
- sink_(sink), |
- external_reference_encoder_(isolate), |
- root_index_map_(isolate), |
- code_address_map_(NULL), |
- large_objects_total_size_(0), |
- seen_large_objects_index_(0) { |
- // The serializer is meant to be used only to generate initial heap images |
- // from a context in which there is only one isolate. |
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { |
- pending_chunk_[i] = 0; |
- max_chunk_size_[i] = static_cast<uint32_t>( |
- MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i))); |
- } |
-} |
- |
- |
-Serializer::~Serializer() { |
- if (code_address_map_ != NULL) delete code_address_map_; |
-} |
- |
- |
-void StartupSerializer::SerializeStrongReferences() { |
- Isolate* isolate = this->isolate(); |
- // No active threads. |
- CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse()); |
- // No active or weak handles. |
- CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); |
- CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); |
- CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); |
- // We don't support serializing installed extensions. |
- CHECK(!isolate->has_installed_extensions()); |
- isolate->heap()->IterateSmiRoots(this); |
- isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); |
-} |
- |
- |
-void StartupSerializer::VisitPointers(Object** start, Object** end) { |
- for (Object** current = start; current < end; current++) { |
- if (start == isolate()->heap()->roots_array_start()) { |
- root_index_wave_front_ = |
- Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); |
- } |
- if (ShouldBeSkipped(current)) { |
- sink_->Put(kSkip, "Skip"); |
- sink_->PutInt(kPointerSize, "SkipOneWord"); |
- } else if ((*current)->IsSmi()) { |
- sink_->Put(kOnePointerRawData, "Smi"); |
- for (int i = 0; i < kPointerSize; i++) { |
- sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); |
- } |
- } else { |
- SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); |
- } |
- } |
-} |
- |
- |
-void PartialSerializer::Serialize(Object** o) { |
- if ((*o)->IsContext()) { |
- Context* context = Context::cast(*o); |
- global_object_ = context->global_object(); |
- back_reference_map()->AddGlobalProxy(context->global_proxy()); |
- } |
- VisitPointer(o); |
- SerializeOutdatedContextsAsFixedArray(); |
- Pad(); |
-} |
- |
- |
-void PartialSerializer::SerializeOutdatedContextsAsFixedArray() { |
- int length = outdated_contexts_.length(); |
- if (length == 0) { |
- FixedArray* empty = isolate_->heap()->empty_fixed_array(); |
- SerializeObject(empty, kPlain, kStartOfObject, 0); |
- } else { |
- // Serialize an imaginary fixed array containing outdated contexts. |
- int size = FixedArray::SizeFor(length); |
- Allocate(NEW_SPACE, size); |
- sink_->Put(kNewObject + NEW_SPACE, "emulated FixedArray"); |
- sink_->PutInt(size >> kObjectAlignmentBits, "FixedArray size in words"); |
- Map* map = isolate_->heap()->fixed_array_map(); |
- SerializeObject(map, kPlain, kStartOfObject, 0); |
- Smi* length_smi = Smi::FromInt(length); |
- sink_->Put(kOnePointerRawData, "Smi"); |
- for (int i = 0; i < kPointerSize; i++) { |
- sink_->Put(reinterpret_cast<byte*>(&length_smi)[i], "Byte"); |
- } |
- for (int i = 0; i < length; i++) { |
- BackReference back_ref = outdated_contexts_[i]; |
- DCHECK(BackReferenceIsAlreadyAllocated(back_ref)); |
- sink_->Put(kBackref + back_ref.space(), "BackRef"); |
- sink_->PutInt(back_ref.reference(), "BackRefValue"); |
- } |
- } |
-} |
- |
- |
-bool Serializer::ShouldBeSkipped(Object** current) { |
- Object** roots = isolate()->heap()->roots_array_start(); |
- return current == &roots[Heap::kStoreBufferTopRootIndex] |
- || current == &roots[Heap::kStackLimitRootIndex] |
- || current == &roots[Heap::kRealStackLimitRootIndex]; |
-} |
- |
- |
-void Serializer::VisitPointers(Object** start, Object** end) { |
- for (Object** current = start; current < end; current++) { |
- if ((*current)->IsSmi()) { |
- sink_->Put(kOnePointerRawData, "Smi"); |
- for (int i = 0; i < kPointerSize; i++) { |
- sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); |
- } |
- } else { |
- SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); |
- } |
- } |
-} |
- |
- |
-void Serializer::EncodeReservations( |
- List<SerializedData::Reservation>* out) const { |
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { |
- for (int j = 0; j < completed_chunks_[i].length(); j++) { |
- out->Add(SerializedData::Reservation(completed_chunks_[i][j])); |
- } |
- |
- if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) { |
- out->Add(SerializedData::Reservation(pending_chunk_[i])); |
- } |
- out->last().mark_as_last(); |
- } |
- |
- out->Add(SerializedData::Reservation(large_objects_total_size_)); |
- out->last().mark_as_last(); |
-} |
- |
- |
-// This ensures that the partial snapshot cache keeps things alive during GC and |
-// tracks their movement. When it is called during serialization of the startup |
-// snapshot nothing happens. When the partial (context) snapshot is created, |
-// this array is populated with the pointers that the partial snapshot will |
-// need. As that happens we emit serialized objects to the startup snapshot |
-// that correspond to the elements of this cache array. On deserialization we |
-// therefore need to visit the cache array. This fills it up with pointers to |
-// deserialized objects. |
-void SerializerDeserializer::Iterate(Isolate* isolate, |
- ObjectVisitor* visitor) { |
- if (isolate->serializer_enabled()) return; |
- List<Object*>* cache = isolate->partial_snapshot_cache(); |
- for (int i = 0;; ++i) { |
- // Extend the array ready to get a value when deserializing. |
- if (cache->length() <= i) cache->Add(Smi::FromInt(0)); |
- visitor->VisitPointer(&cache->at(i)); |
- // Sentinel is the undefined object, which is a root so it will not normally |
- // be found in the cache. |
- if (cache->at(i)->IsUndefined()) break; |
- } |
-} |
- |
- |
-int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { |
- Isolate* isolate = this->isolate(); |
- List<Object*>* cache = isolate->partial_snapshot_cache(); |
- int new_index = cache->length(); |
- |
- int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index); |
- if (index == PartialCacheIndexMap::kInvalidIndex) { |
- // We didn't find the object in the cache. So we add it to the cache and |
- // then visit the pointer so that it becomes part of the startup snapshot |
- // and we can refer to it from the partial snapshot. |
- cache->Add(heap_object); |
- startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); |
- // We don't recurse from the startup snapshot generator into the partial |
- // snapshot generator. |
- return new_index; |
- } |
- return index; |
-} |
- |
- |
-#ifdef DEBUG |
-bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) { |
- DCHECK(reference.is_valid()); |
- DCHECK(!reference.is_source()); |
- DCHECK(!reference.is_global_proxy()); |
- AllocationSpace space = reference.space(); |
- int chunk_index = reference.chunk_index(); |
- if (space == LO_SPACE) { |
- return chunk_index == 0 && |
- reference.large_object_index() < seen_large_objects_index_; |
- } else if (chunk_index == completed_chunks_[space].length()) { |
- return reference.chunk_offset() < pending_chunk_[space]; |
- } else { |
- return chunk_index < completed_chunks_[space].length() && |
- reference.chunk_offset() < completed_chunks_[space][chunk_index]; |
- } |
-} |
-#endif // DEBUG |
- |
- |
-bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, |
- WhereToPoint where_to_point, int skip) { |
- if (how_to_code == kPlain && where_to_point == kStartOfObject) { |
- // Encode a reference to a hot object by its index in the working set. |
- int index = hot_objects_.Find(obj); |
- if (index != HotObjectsList::kNotFound) { |
- DCHECK(index >= 0 && index < kNumberOfHotObjects); |
- if (FLAG_trace_serializer) { |
- PrintF(" Encoding hot object %d:", index); |
- obj->ShortPrint(); |
- PrintF("\n"); |
- } |
- if (skip != 0) { |
- sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip"); |
- sink_->PutInt(skip, "HotObjectSkipDistance"); |
- } else { |
- sink_->Put(kHotObject + index, "HotObject"); |
- } |
- return true; |
- } |
- } |
- BackReference back_reference = back_reference_map_.Lookup(obj); |
- if (back_reference.is_valid()) { |
- // Encode the location of an already deserialized object in order to write |
- // its location into a later object. We can encode the location as an |
- // offset fromthe start of the deserialized objects or as an offset |
- // backwards from thecurrent allocation pointer. |
- if (back_reference.is_source()) { |
- FlushSkip(skip); |
- if (FLAG_trace_serializer) PrintF(" Encoding source object\n"); |
- DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); |
- sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source"); |
- sink_->PutInt(kSourceObjectReference, "kSourceObjectReference"); |
- } else if (back_reference.is_global_proxy()) { |
- FlushSkip(skip); |
- if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n"); |
- DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); |
- sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy"); |
- sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference"); |
- } else { |
- if (FLAG_trace_serializer) { |
- PrintF(" Encoding back reference to: "); |
- obj->ShortPrint(); |
- PrintF("\n"); |
- } |
- |
- AllocationSpace space = back_reference.space(); |
- if (skip == 0) { |
- sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); |
- } else { |
- sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, |
- "BackRefWithSkip"); |
- sink_->PutInt(skip, "BackRefSkipDistance"); |
- } |
- DCHECK(BackReferenceIsAlreadyAllocated(back_reference)); |
- sink_->PutInt(back_reference.reference(), "BackRefValue"); |
- |
- hot_objects_.Add(obj); |
- } |
- return true; |
- } |
- return false; |
-} |
- |
- |
-void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, |
- WhereToPoint where_to_point, int skip) { |
- DCHECK(!obj->IsJSFunction()); |
- |
- int root_index = root_index_map_.Lookup(obj); |
- // We can only encode roots as such if it has already been serialized. |
- // That applies to root indices below the wave front. |
- if (root_index != RootIndexMap::kInvalidRootIndex && |
- root_index < root_index_wave_front_) { |
- PutRoot(root_index, obj, how_to_code, where_to_point, skip); |
- return; |
- } |
- |
- if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) { |
- obj = isolate()->builtins()->builtin(Builtins::kCompileLazy); |
- } |
- |
- if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; |
- |
- FlushSkip(skip); |
- |
- // Object has not yet been serialized. Serialize it here. |
- ObjectSerializer object_serializer(this, obj, sink_, how_to_code, |
- where_to_point); |
- object_serializer.Serialize(); |
-} |
- |
- |
-void StartupSerializer::SerializeWeakReferences() { |
- // This phase comes right after the serialization (of the snapshot). |
- // After we have done the partial serialization the partial snapshot cache |
- // will contain some references needed to decode the partial snapshot. We |
- // add one entry with 'undefined' which is the sentinel that the deserializer |
- // uses to know it is done deserializing the array. |
- Object* undefined = isolate()->heap()->undefined_value(); |
- VisitPointer(&undefined); |
- isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); |
- Pad(); |
-} |
- |
- |
-void Serializer::PutRoot(int root_index, |
- HeapObject* object, |
- SerializerDeserializer::HowToCode how_to_code, |
- SerializerDeserializer::WhereToPoint where_to_point, |
- int skip) { |
- if (FLAG_trace_serializer) { |
- PrintF(" Encoding root %d:", root_index); |
- object->ShortPrint(); |
- PrintF("\n"); |
- } |
- |
- if (how_to_code == kPlain && where_to_point == kStartOfObject && |
- root_index < kNumberOfRootArrayConstants && |
- !isolate()->heap()->InNewSpace(object)) { |
- if (skip == 0) { |
- sink_->Put(kRootArrayConstants + root_index, "RootConstant"); |
- } else { |
- sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant"); |
- sink_->PutInt(skip, "SkipInPutRoot"); |
- } |
- } else { |
- FlushSkip(skip); |
- sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); |
- sink_->PutInt(root_index, "root_index"); |
- } |
-} |
- |
- |
-void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, |
- WhereToPoint where_to_point, int skip) { |
- if (obj->IsMap()) { |
- // The code-caches link to context-specific code objects, which |
- // the startup and context serializes cannot currently handle. |
- DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array()); |
- } |
- |
- // Replace typed arrays by undefined. |
- if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value(); |
- |
- int root_index = root_index_map_.Lookup(obj); |
- if (root_index != RootIndexMap::kInvalidRootIndex) { |
- PutRoot(root_index, obj, how_to_code, where_to_point, skip); |
- return; |
- } |
- |
- if (ShouldBeInThePartialSnapshotCache(obj)) { |
- FlushSkip(skip); |
- |
- int cache_index = PartialSnapshotCacheIndex(obj); |
- sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, |
- "PartialSnapshotCache"); |
- sink_->PutInt(cache_index, "partial_snapshot_cache_index"); |
- return; |
- } |
- |
- // Pointers from the partial snapshot to the objects in the startup snapshot |
- // should go through the root array or through the partial snapshot cache. |
- // If this is not the case you may have to add something to the root array. |
- DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid()); |
- // All the internalized strings that the partial snapshot needs should be |
- // either in the root table or in the partial snapshot cache. |
- DCHECK(!obj->IsInternalizedString()); |
- |
- if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; |
- |
- FlushSkip(skip); |
- |
- // Clear literal boilerplates. |
- if (obj->IsJSFunction() && !JSFunction::cast(obj)->shared()->bound()) { |
- FixedArray* literals = JSFunction::cast(obj)->literals(); |
- for (int i = 0; i < literals->length(); i++) literals->set_undefined(i); |
- } |
- |
- // Object has not yet been serialized. Serialize it here. |
- ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point); |
- serializer.Serialize(); |
- |
- if (obj->IsContext() && |
- Context::cast(obj)->global_object() == global_object_) { |
- // Context refers to the current global object. This reference will |
- // become outdated after deserialization. |
- BackReference back_reference = back_reference_map_.Lookup(obj); |
- DCHECK(back_reference.is_valid()); |
- outdated_contexts_.Add(back_reference); |
- } |
-} |
- |
- |
-void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, |
- int size, Map* map) { |
- if (serializer_->code_address_map_) { |
- const char* code_name = |
- serializer_->code_address_map_->Lookup(object_->address()); |
- LOG(serializer_->isolate_, |
- CodeNameEvent(object_->address(), sink_->Position(), code_name)); |
- LOG(serializer_->isolate_, |
- SnapshotPositionEvent(object_->address(), sink_->Position())); |
- } |
- |
- BackReference back_reference; |
- if (space == LO_SPACE) { |
- sink_->Put(kNewObject + reference_representation_ + space, |
- "NewLargeObject"); |
- sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); |
- if (object_->IsCode()) { |
- sink_->Put(EXECUTABLE, "executable large object"); |
- } else { |
- sink_->Put(NOT_EXECUTABLE, "not executable large object"); |
- } |
- back_reference = serializer_->AllocateLargeObject(size); |
- } else { |
- bool needs_double_align = false; |
- if (object_->NeedsToEnsureDoubleAlignment()) { |
- // Add wriggle room for double alignment padding. |
- back_reference = serializer_->Allocate(space, size + kPointerSize); |
- needs_double_align = true; |
- } else { |
- back_reference = serializer_->Allocate(space, size); |
- } |
- sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); |
- if (needs_double_align) |
- sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel"); |
- int encoded_size = size >> kObjectAlignmentBits; |
- DCHECK_NE(kDoubleAlignmentSentinel, encoded_size); |
- sink_->PutInt(encoded_size, "ObjectSizeInWords"); |
- } |
- |
- // Mark this object as already serialized. |
- serializer_->back_reference_map()->Add(object_, back_reference); |
- |
- // Serialize the map (first word of the object). |
- serializer_->SerializeObject(map, kPlain, kStartOfObject, 0); |
-} |
- |
- |
-void Serializer::ObjectSerializer::SerializeExternalString() { |
- // Instead of serializing this as an external string, we serialize |
- // an imaginary sequential string with the same content. |
- Isolate* isolate = serializer_->isolate(); |
- DCHECK(object_->IsExternalString()); |
- DCHECK(object_->map() != isolate->heap()->native_source_string_map()); |
- ExternalString* string = ExternalString::cast(object_); |
- int length = string->length(); |
- Map* map; |
- int content_size; |
- int allocation_size; |
- const byte* resource; |
- // Find the map and size for the imaginary sequential string. |
- bool internalized = object_->IsInternalizedString(); |
- if (object_->IsExternalOneByteString()) { |
- map = internalized ? isolate->heap()->one_byte_internalized_string_map() |
- : isolate->heap()->one_byte_string_map(); |
- allocation_size = SeqOneByteString::SizeFor(length); |
- content_size = length * kCharSize; |
- resource = reinterpret_cast<const byte*>( |
- ExternalOneByteString::cast(string)->resource()->data()); |
- } else { |
- map = internalized ? isolate->heap()->internalized_string_map() |
- : isolate->heap()->string_map(); |
- allocation_size = SeqTwoByteString::SizeFor(length); |
- content_size = length * kShortSize; |
- resource = reinterpret_cast<const byte*>( |
- ExternalTwoByteString::cast(string)->resource()->data()); |
- } |
- |
- AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize) |
- ? LO_SPACE |
- : OLD_SPACE; |
- SerializePrologue(space, allocation_size, map); |
- |
- // Output the rest of the imaginary string. |
- int bytes_to_output = allocation_size - HeapObject::kHeaderSize; |
- |
- // Output raw data header. Do not bother with common raw length cases here. |
- sink_->Put(kVariableRawData, "RawDataForString"); |
- sink_->PutInt(bytes_to_output, "length"); |
- |
- // Serialize string header (except for map). |
- Address string_start = string->address(); |
- for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) { |
- sink_->PutSection(string_start[i], "StringHeader"); |
- } |
- |
- // Serialize string content. |
- sink_->PutRaw(resource, content_size, "StringContent"); |
- |
- // Since the allocation size is rounded up to object alignment, there |
- // maybe left-over bytes that need to be padded. |
- int padding_size = allocation_size - SeqString::kHeaderSize - content_size; |
- DCHECK(0 <= padding_size && padding_size < kObjectAlignment); |
- for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding"); |
- |
- sink_->Put(kSkip, "SkipAfterString"); |
- sink_->PutInt(bytes_to_output, "SkipDistance"); |
-} |
- |
- |
-void Serializer::ObjectSerializer::Serialize() { |
- if (FLAG_trace_serializer) { |
- PrintF(" Encoding heap object: "); |
- object_->ShortPrint(); |
- PrintF("\n"); |
- } |
- |
- // We cannot serialize typed array objects correctly. |
- DCHECK(!object_->IsJSTypedArray()); |
- |
- if (object_->IsScript()) { |
- // Clear cached line ends. |
- Object* undefined = serializer_->isolate()->heap()->undefined_value(); |
- Script::cast(object_)->set_line_ends(undefined); |
- } |
- |
- if (object_->IsExternalString()) { |
- Heap* heap = serializer_->isolate()->heap(); |
- if (object_->map() != heap->native_source_string_map()) { |
- // Usually we cannot recreate resources for external strings. To work |
- // around this, external strings are serialized to look like ordinary |
- // sequential strings. |
- // The exception are native source code strings, since we can recreate |
- // their resources. In that case we fall through and leave it to |
- // VisitExternalOneByteString further down. |
- SerializeExternalString(); |
- return; |
- } |
- } |
- |
- int size = object_->Size(); |
- Map* map = object_->map(); |
- AllocationSpace space = |
- MemoryChunk::FromAddress(object_->address())->owner()->identity(); |
- SerializePrologue(space, size, map); |
- |
- // Serialize the rest of the object. |
- CHECK_EQ(0, bytes_processed_so_far_); |
- bytes_processed_so_far_ = kPointerSize; |
- |
- object_->IterateBody(map->instance_type(), size, this); |
- OutputRawData(object_->address() + size); |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitPointers(Object** start, |
- Object** end) { |
- Object** current = start; |
- while (current < end) { |
- while (current < end && (*current)->IsSmi()) current++; |
- if (current < end) OutputRawData(reinterpret_cast<Address>(current)); |
- |
- while (current < end && !(*current)->IsSmi()) { |
- HeapObject* current_contents = HeapObject::cast(*current); |
- int root_index = serializer_->root_index_map()->Lookup(current_contents); |
- // Repeats are not subject to the write barrier so we can only use |
- // immortal immovable root members. They are never in new space. |
- if (current != start && root_index != RootIndexMap::kInvalidRootIndex && |
- Heap::RootIsImmortalImmovable(root_index) && |
- current_contents == current[-1]) { |
- DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents)); |
- int repeat_count = 1; |
- while (¤t[repeat_count] < end - 1 && |
- current[repeat_count] == current_contents) { |
- repeat_count++; |
- } |
- current += repeat_count; |
- bytes_processed_so_far_ += repeat_count * kPointerSize; |
- if (repeat_count > kNumberOfFixedRepeat) { |
- sink_->Put(kVariableRepeat, "VariableRepeat"); |
- sink_->PutInt(repeat_count, "repeat count"); |
- } else { |
- sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat"); |
- } |
- } else { |
- serializer_->SerializeObject( |
- current_contents, kPlain, kStartOfObject, 0); |
- bytes_processed_so_far_ += kPointerSize; |
- current++; |
- } |
- } |
- } |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { |
- // Out-of-line constant pool entries will be visited by the ConstantPoolArray. |
- if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; |
- |
- int skip = OutputRawData(rinfo->target_address_address(), |
- kCanReturnSkipInsteadOfSkipping); |
- HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; |
- Object* object = rinfo->target_object(); |
- serializer_->SerializeObject(HeapObject::cast(object), how_to_code, |
- kStartOfObject, skip); |
- bytes_processed_so_far_ += rinfo->target_address_size(); |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { |
- int skip = OutputRawData(reinterpret_cast<Address>(p), |
- kCanReturnSkipInsteadOfSkipping); |
- sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); |
- sink_->PutInt(skip, "SkipB4ExternalRef"); |
- Address target = *p; |
- sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); |
- bytes_processed_so_far_ += kPointerSize; |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { |
- int skip = OutputRawData(rinfo->target_address_address(), |
- kCanReturnSkipInsteadOfSkipping); |
- HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; |
- sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); |
- sink_->PutInt(skip, "SkipB4ExternalRef"); |
- Address target = rinfo->target_external_reference(); |
- sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); |
- bytes_processed_so_far_ += rinfo->target_address_size(); |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) { |
- // We can only reference to internal references of code that has been output. |
- DCHECK(is_code_object_ && code_has_been_output_); |
- // We do not use skip from last patched pc to find the pc to patch, since |
- // target_address_address may not return addresses in ascending order when |
- // used for internal references. External references may be stored at the |
- // end of the code in the constant pool, whereas internal references are |
- // inline. That would cause the skip to be negative. Instead, we store the |
- // offset from code entry. |
- Address entry = Code::cast(object_)->entry(); |
- intptr_t pc_offset = rinfo->target_internal_reference_address() - entry; |
- intptr_t target_offset = rinfo->target_internal_reference() - entry; |
- DCHECK(0 <= pc_offset && |
- pc_offset <= Code::cast(object_)->instruction_size()); |
- DCHECK(0 <= target_offset && |
- target_offset <= Code::cast(object_)->instruction_size()); |
- sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE |
- ? kInternalReference |
- : kInternalReferenceEncoded, |
- "InternalRef"); |
- sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address"); |
- sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value"); |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { |
- int skip = OutputRawData(rinfo->target_address_address(), |
- kCanReturnSkipInsteadOfSkipping); |
- HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; |
- sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); |
- sink_->PutInt(skip, "SkipB4ExternalRef"); |
- Address target = rinfo->target_address(); |
- sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); |
- bytes_processed_so_far_ += rinfo->target_address_size(); |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { |
- // Out-of-line constant pool entries will be visited by the ConstantPoolArray. |
- if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; |
- |
- int skip = OutputRawData(rinfo->target_address_address(), |
- kCanReturnSkipInsteadOfSkipping); |
- Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
- serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); |
- bytes_processed_so_far_ += rinfo->target_address_size(); |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { |
- int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); |
- Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); |
- serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); |
- bytes_processed_so_far_ += kPointerSize; |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { |
- // Out-of-line constant pool entries will be visited by the ConstantPoolArray. |
- if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; |
- |
- int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); |
- Cell* object = Cell::cast(rinfo->target_cell()); |
- serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); |
- bytes_processed_so_far_ += kPointerSize; |
-} |
- |
- |
-void Serializer::ObjectSerializer::VisitExternalOneByteString( |
- v8::String::ExternalOneByteStringResource** resource_pointer) { |
- Address references_start = reinterpret_cast<Address>(resource_pointer); |
- OutputRawData(references_start); |
- for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { |
- Object* source = |
- serializer_->isolate()->heap()->natives_source_cache()->get(i); |
- if (!source->IsUndefined()) { |
- ExternalOneByteString* string = ExternalOneByteString::cast(source); |
- typedef v8::String::ExternalOneByteStringResource Resource; |
- const Resource* resource = string->resource(); |
- if (resource == *resource_pointer) { |
- sink_->Put(kNativesStringResource, "NativesStringResource"); |
- sink_->PutSection(i, "NativesStringResourceEnd"); |
- bytes_processed_so_far_ += sizeof(resource); |
- return; |
- } |
- } |
- } |
- // One of the strings in the natives cache should match the resource. We |
- // don't expect any other kinds of external strings here. |
- UNREACHABLE(); |
-} |
- |
- |
-Address Serializer::ObjectSerializer::PrepareCode() { |
- // To make snapshots reproducible, we make a copy of the code object |
- // and wipe all pointers in the copy, which we then serialize. |
- Code* original = Code::cast(object_); |
- Code* code = serializer_->CopyCode(original); |
- // Code age headers are not serializable. |
- code->MakeYoung(serializer_->isolate()); |
- int mode_mask = RelocInfo::kCodeTargetMask | |
- RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | |
- RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | |
- RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | |
- RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | |
- RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); |
- for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { |
- RelocInfo* rinfo = it.rinfo(); |
- if (!(FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool())) { |
- rinfo->WipeOut(); |
- } |
- } |
- // We need to wipe out the header fields *after* wiping out the |
- // relocations, because some of these fields are needed for the latter. |
- code->WipeOutHeader(); |
- return code->address(); |
-} |
- |
- |
-int Serializer::ObjectSerializer::OutputRawData( |
- Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { |
- Address object_start = object_->address(); |
- int base = bytes_processed_so_far_; |
- int up_to_offset = static_cast<int>(up_to - object_start); |
- int to_skip = up_to_offset - bytes_processed_so_far_; |
- int bytes_to_output = to_skip; |
- bytes_processed_so_far_ += to_skip; |
- // This assert will fail if the reloc info gives us the target_address_address |
- // locations in a non-ascending order. Luckily that doesn't happen. |
- DCHECK(to_skip >= 0); |
- bool outputting_code = false; |
- if (to_skip != 0 && is_code_object_ && !code_has_been_output_) { |
- // Output the code all at once and fix later. |
- bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; |
- outputting_code = true; |
- code_has_been_output_ = true; |
- } |
- if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) { |
- if (!outputting_code && bytes_to_output == to_skip && |
- IsAligned(bytes_to_output, kPointerAlignment) && |
- bytes_to_output <= kNumberOfFixedRawData * kPointerSize) { |
- int size_in_words = bytes_to_output >> kPointerSizeLog2; |
- sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData"); |
- to_skip = 0; // This instruction includes skip. |
- } else { |
- // We always end up here if we are outputting the code of a code object. |
- sink_->Put(kVariableRawData, "VariableRawData"); |
- sink_->PutInt(bytes_to_output, "length"); |
- } |
- |
- if (is_code_object_) object_start = PrepareCode(); |
- |
- const char* description = is_code_object_ ? "Code" : "Byte"; |
-#ifdef MEMORY_SANITIZER |
- // Object sizes are usually rounded up with uninitialized padding space. |
- MSAN_MEMORY_IS_INITIALIZED(object_start + base, bytes_to_output); |
-#endif // MEMORY_SANITIZER |
- sink_->PutRaw(object_start + base, bytes_to_output, description); |
- } |
- if (to_skip != 0 && return_skip == kIgnoringReturn) { |
- sink_->Put(kSkip, "Skip"); |
- sink_->PutInt(to_skip, "SkipDistance"); |
- to_skip = 0; |
- } |
- return to_skip; |
-} |
- |
- |
-BackReference Serializer::AllocateLargeObject(int size) { |
- // Large objects are allocated one-by-one when deserializing. We do not |
- // have to keep track of multiple chunks. |
- large_objects_total_size_ += size; |
- return BackReference::LargeObjectReference(seen_large_objects_index_++); |
-} |
- |
- |
-BackReference Serializer::Allocate(AllocationSpace space, int size) { |
- DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); |
- DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space))); |
- uint32_t new_chunk_size = pending_chunk_[space] + size; |
- if (new_chunk_size > max_chunk_size(space)) { |
- // The new chunk size would not fit onto a single page. Complete the |
- // current chunk and start a new one. |
- sink_->Put(kNextChunk, "NextChunk"); |
- sink_->Put(space, "NextChunkSpace"); |
- completed_chunks_[space].Add(pending_chunk_[space]); |
- DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex); |
- pending_chunk_[space] = 0; |
- new_chunk_size = size; |
- } |
- uint32_t offset = pending_chunk_[space]; |
- pending_chunk_[space] = new_chunk_size; |
- return BackReference::Reference(space, completed_chunks_[space].length(), |
- offset); |
-} |
- |
- |
-void Serializer::Pad() { |
- // The non-branching GetInt will read up to 3 bytes too far, so we need |
- // to pad the snapshot to make sure we don't read over the end. |
- for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { |
- sink_->Put(kNop, "Padding"); |
- } |
- // Pad up to pointer size for checksum. |
- while (!IsAligned(sink_->Position(), kPointerAlignment)) { |
- sink_->Put(kNop, "Padding"); |
- } |
-} |
- |
- |
-void Serializer::InitializeCodeAddressMap() { |
- isolate_->InitializeLoggingAndCounters(); |
- code_address_map_ = new CodeAddressMap(isolate_); |
-} |
- |
- |
-Code* Serializer::CopyCode(Code* code) { |
- code_buffer_.Rewind(0); // Clear buffer without deleting backing store. |
- int size = code->CodeSize(); |
- code_buffer_.AddAll(Vector<byte>(code->address(), size)); |
- return Code::cast(HeapObject::FromAddress(&code_buffer_.first())); |
-} |
- |
- |
-ScriptData* CodeSerializer::Serialize(Isolate* isolate, |
- Handle<SharedFunctionInfo> info, |
- Handle<String> source) { |
- base::ElapsedTimer timer; |
- if (FLAG_profile_deserialization) timer.Start(); |
- if (FLAG_trace_serializer) { |
- PrintF("[Serializing from"); |
- Object* script = info->script(); |
- if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); |
- PrintF("]\n"); |
- } |
- |
- // Serialize code object. |
- SnapshotByteSink sink(info->code()->CodeSize() * 2); |
- CodeSerializer cs(isolate, &sink, *source, info->code()); |
- DisallowHeapAllocation no_gc; |
- Object** location = Handle<Object>::cast(info).location(); |
- cs.VisitPointer(location); |
- cs.Pad(); |
- |
- SerializedCodeData data(sink.data(), cs); |
- ScriptData* script_data = data.GetScriptData(); |
- |
- if (FLAG_profile_deserialization) { |
- double ms = timer.Elapsed().InMillisecondsF(); |
- int length = script_data->length(); |
- PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); |
- } |
- |
- return script_data; |
-} |
- |
- |
-void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, |
- WhereToPoint where_to_point, int skip) { |
- int root_index = root_index_map_.Lookup(obj); |
- if (root_index != RootIndexMap::kInvalidRootIndex) { |
- PutRoot(root_index, obj, how_to_code, where_to_point, skip); |
- return; |
- } |
- |
- if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; |
- |
- FlushSkip(skip); |
- |
- if (obj->IsCode()) { |
- Code* code_object = Code::cast(obj); |
- switch (code_object->kind()) { |
- case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. |
- case Code::HANDLER: // No handlers patched in yet. |
- case Code::REGEXP: // No regexp literals initialized yet. |
- case Code::NUMBER_OF_KINDS: // Pseudo enum value. |
- CHECK(false); |
- case Code::BUILTIN: |
- SerializeBuiltin(code_object->builtin_index(), how_to_code, |
- where_to_point); |
- return; |
- case Code::STUB: |
- SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); |
- return; |
-#define IC_KIND_CASE(KIND) case Code::KIND: |
- IC_KIND_LIST(IC_KIND_CASE) |
-#undef IC_KIND_CASE |
- SerializeIC(code_object, how_to_code, where_to_point); |
- return; |
- case Code::FUNCTION: |
- DCHECK(code_object->has_reloc_info_for_serialization()); |
- // Only serialize the code for the toplevel function unless specified |
- // by flag. Replace code of inner functions by the lazy compile builtin. |
- // This is safe, as checked in Compiler::BuildFunctionInfo. |
- if (code_object != main_code_ && !FLAG_serialize_inner) { |
- SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point); |
- } else { |
- SerializeGeneric(code_object, how_to_code, where_to_point); |
- } |
- return; |
- } |
- UNREACHABLE(); |
- } |
- |
- // Past this point we should not see any (context-specific) maps anymore. |
- CHECK(!obj->IsMap()); |
- // There should be no references to the global object embedded. |
- CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject()); |
- // There should be no hash table embedded. They would require rehashing. |
- CHECK(!obj->IsHashTable()); |
- // We expect no instantiated function objects or contexts. |
- CHECK(!obj->IsJSFunction() && !obj->IsContext()); |
- |
- SerializeGeneric(obj, how_to_code, where_to_point); |
-} |
- |
- |
-void CodeSerializer::SerializeGeneric(HeapObject* heap_object, |
- HowToCode how_to_code, |
- WhereToPoint where_to_point) { |
- if (heap_object->IsInternalizedString()) num_internalized_strings_++; |
- |
- // Object has not yet been serialized. Serialize it here. |
- ObjectSerializer serializer(this, heap_object, sink_, how_to_code, |
- where_to_point); |
- serializer.Serialize(); |
-} |
- |
- |
-void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, |
- WhereToPoint where_to_point) { |
- DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || |
- (how_to_code == kPlain && where_to_point == kInnerPointer) || |
- (how_to_code == kFromCode && where_to_point == kInnerPointer)); |
- DCHECK_LT(builtin_index, Builtins::builtin_count); |
- DCHECK_LE(0, builtin_index); |
- |
- if (FLAG_trace_serializer) { |
- PrintF(" Encoding builtin: %s\n", |
- isolate()->builtins()->name(builtin_index)); |
- } |
- |
- sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); |
- sink_->PutInt(builtin_index, "builtin_index"); |
-} |
- |
- |
-void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, |
- WhereToPoint where_to_point) { |
- DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || |
- (how_to_code == kPlain && where_to_point == kInnerPointer) || |
- (how_to_code == kFromCode && where_to_point == kInnerPointer)); |
- DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); |
- DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); |
- |
- int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; |
- |
- if (FLAG_trace_serializer) { |
- PrintF(" Encoding code stub %s as %d\n", |
- CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false), |
- index); |
- } |
- |
- sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); |
- sink_->PutInt(index, "CodeStub key"); |
-} |
- |
- |
-void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, |
- WhereToPoint where_to_point) { |
- // The IC may be implemented as a stub. |
- uint32_t stub_key = ic->stub_key(); |
- if (stub_key != CodeStub::NoCacheKey()) { |
- if (FLAG_trace_serializer) { |
- PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); |
- } |
- SerializeCodeStub(stub_key, how_to_code, where_to_point); |
- return; |
- } |
- // The IC may be implemented as builtin. Only real builtins have an |
- // actual builtin_index value attached (otherwise it's just garbage). |
- // Compare to make sure we are really dealing with a builtin. |
- int builtin_index = ic->builtin_index(); |
- if (builtin_index < Builtins::builtin_count) { |
- Builtins::Name name = static_cast<Builtins::Name>(builtin_index); |
- Code* builtin = isolate()->builtins()->builtin(name); |
- if (builtin == ic) { |
- if (FLAG_trace_serializer) { |
- PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); |
- } |
- DCHECK(ic->kind() == Code::KEYED_LOAD_IC || |
- ic->kind() == Code::KEYED_STORE_IC); |
- SerializeBuiltin(builtin_index, how_to_code, where_to_point); |
- return; |
- } |
- } |
- // The IC may also just be a piece of code kept in the non_monomorphic_cache. |
- // In that case, just serialize as a normal code object. |
- if (FLAG_trace_serializer) { |
- PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); |
- } |
- DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); |
- SerializeGeneric(ic, how_to_code, where_to_point); |
-} |
- |
- |
-int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { |
- // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). |
- int index = 0; |
- while (index < stub_keys_.length()) { |
- if (stub_keys_[index] == stub_key) return index; |
- index++; |
- } |
- stub_keys_.Add(stub_key); |
- return index; |
-} |
- |
- |
-MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize( |
- Isolate* isolate, ScriptData* cached_data, Handle<String> source) { |
- base::ElapsedTimer timer; |
- if (FLAG_profile_deserialization) timer.Start(); |
- |
- HandleScope scope(isolate); |
- |
- SmartPointer<SerializedCodeData> scd( |
- SerializedCodeData::FromCachedData(isolate, cached_data, *source)); |
- if (scd.is_empty()) { |
- if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); |
- DCHECK(cached_data->rejected()); |
- return MaybeHandle<SharedFunctionInfo>(); |
- } |
- |
- // Eagerly expand string table to avoid allocations during deserialization. |
- StringTable::EnsureCapacityForDeserialization(isolate, |
- scd->NumInternalizedStrings()); |
- |
- // Prepare and register list of attached objects. |
- Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys(); |
- Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New( |
- code_stub_keys.length() + kCodeStubsBaseIndex); |
- attached_objects[kSourceObjectIndex] = source; |
- for (int i = 0; i < code_stub_keys.length(); i++) { |
- attached_objects[i + kCodeStubsBaseIndex] = |
- CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); |
- } |
- |
- Deserializer deserializer(scd.get()); |
- deserializer.SetAttachedObjects(attached_objects); |
- |
- // Deserialize. |
- Handle<SharedFunctionInfo> result; |
- if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { |
- // Deserializing may fail if the reservations cannot be fulfilled. |
- if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); |
- return MaybeHandle<SharedFunctionInfo>(); |
- } |
- deserializer.FlushICacheForNewCodeObjects(); |
- |
- if (FLAG_profile_deserialization) { |
- double ms = timer.Elapsed().InMillisecondsF(); |
- int length = cached_data->length(); |
- PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); |
- } |
- result->set_deserialized(true); |
- |
- if (isolate->logger()->is_logging_code_events() || |
- isolate->cpu_profiler()->is_profiling()) { |
- String* name = isolate->heap()->empty_string(); |
- if (result->script()->IsScript()) { |
- Script* script = Script::cast(result->script()); |
- if (script->name()->IsString()) name = String::cast(script->name()); |
- } |
- isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(), |
- *result, NULL, name); |
- } |
- return scope.CloseAndEscape(result); |
-} |
- |
- |
-void SerializedData::AllocateData(int size) { |
- DCHECK(!owns_data_); |
- data_ = NewArray<byte>(size); |
- size_ = size; |
- owns_data_ = true; |
- DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment)); |
-} |
- |
- |
-SnapshotData::SnapshotData(const Serializer& ser) { |
- DisallowHeapAllocation no_gc; |
- List<Reservation> reservations; |
- ser.EncodeReservations(&reservations); |
- const List<byte>& payload = ser.sink()->data(); |
- |
- // Calculate sizes. |
- int reservation_size = reservations.length() * kInt32Size; |
- int size = kHeaderSize + reservation_size + payload.length(); |
- |
- // Allocate backing store and create result data. |
- AllocateData(size); |
- |
- // Set header values. |
- SetMagicNumber(ser.isolate()); |
- SetHeaderValue(kCheckSumOffset, Version::Hash()); |
- SetHeaderValue(kNumReservationsOffset, reservations.length()); |
- SetHeaderValue(kPayloadLengthOffset, payload.length()); |
- |
- // Copy reservation chunk sizes. |
- CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), |
- reservation_size); |
- |
- // Copy serialized data. |
- CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(), |
- static_cast<size_t>(payload.length())); |
-} |
- |
- |
-bool SnapshotData::IsSane() { |
- return GetHeaderValue(kCheckSumOffset) == Version::Hash(); |
-} |
- |
- |
-Vector<const SerializedData::Reservation> SnapshotData::Reservations() const { |
- return Vector<const Reservation>( |
- reinterpret_cast<const Reservation*>(data_ + kHeaderSize), |
- GetHeaderValue(kNumReservationsOffset)); |
-} |
- |
- |
-Vector<const byte> SnapshotData::Payload() const { |
- int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; |
- const byte* payload = data_ + kHeaderSize + reservations_size; |
- int length = GetHeaderValue(kPayloadLengthOffset); |
- DCHECK_EQ(data_ + size_, payload + length); |
- return Vector<const byte>(payload, length); |
-} |
- |
- |
-class Checksum { |
- public: |
- explicit Checksum(Vector<const byte> payload) { |
- // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. |
- uintptr_t a = 1; |
- uintptr_t b = 0; |
- const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start()); |
- DCHECK(IsAligned(payload.length(), kIntptrSize)); |
- const uintptr_t* end = cur + payload.length() / kIntptrSize; |
- while (cur < end) { |
- // Unsigned overflow expected and intended. |
- a += *cur++; |
- b += a; |
- } |
-#if V8_HOST_ARCH_64_BIT |
- a ^= a >> 32; |
- b ^= b >> 32; |
-#endif // V8_HOST_ARCH_64_BIT |
- a_ = static_cast<uint32_t>(a); |
- b_ = static_cast<uint32_t>(b); |
- } |
- |
- bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } |
- |
- uint32_t a() const { return a_; } |
- uint32_t b() const { return b_; } |
- |
- private: |
- uint32_t a_; |
- uint32_t b_; |
- |
- DISALLOW_COPY_AND_ASSIGN(Checksum); |
-}; |
- |
- |
-SerializedCodeData::SerializedCodeData(const List<byte>& payload, |
- const CodeSerializer& cs) { |
- DisallowHeapAllocation no_gc; |
- const List<uint32_t>* stub_keys = cs.stub_keys(); |
- |
- List<Reservation> reservations; |
- cs.EncodeReservations(&reservations); |
- |
- // Calculate sizes. |
- int reservation_size = reservations.length() * kInt32Size; |
- int num_stub_keys = stub_keys->length(); |
- int stub_keys_size = stub_keys->length() * kInt32Size; |
- int payload_offset = kHeaderSize + reservation_size + stub_keys_size; |
- int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); |
- int size = padded_payload_offset + payload.length(); |
- |
- // Allocate backing store and create result data. |
- AllocateData(size); |
- |
- // Set header values. |
- SetMagicNumber(cs.isolate()); |
- SetHeaderValue(kVersionHashOffset, Version::Hash()); |
- SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); |
- SetHeaderValue(kCpuFeaturesOffset, |
- static_cast<uint32_t>(CpuFeatures::SupportedFeatures())); |
- SetHeaderValue(kFlagHashOffset, FlagList::Hash()); |
- SetHeaderValue(kNumInternalizedStringsOffset, cs.num_internalized_strings()); |
- SetHeaderValue(kNumReservationsOffset, reservations.length()); |
- SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); |
- SetHeaderValue(kPayloadLengthOffset, payload.length()); |
- |
- Checksum checksum(payload.ToConstVector()); |
- SetHeaderValue(kChecksum1Offset, checksum.a()); |
- SetHeaderValue(kChecksum2Offset, checksum.b()); |
- |
- // Copy reservation chunk sizes. |
- CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), |
- reservation_size); |
- |
- // Copy code stub keys. |
- CopyBytes(data_ + kHeaderSize + reservation_size, |
- reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size); |
- |
- memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); |
- |
- // Copy serialized data. |
- CopyBytes(data_ + padded_payload_offset, payload.begin(), |
- static_cast<size_t>(payload.length())); |
-} |
- |
- |
-SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( |
- Isolate* isolate, String* source) const { |
- uint32_t magic_number = GetMagicNumber(); |
- uint32_t version_hash = GetHeaderValue(kVersionHashOffset); |
- uint32_t source_hash = GetHeaderValue(kSourceHashOffset); |
- uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); |
- uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); |
- uint32_t c1 = GetHeaderValue(kChecksum1Offset); |
- uint32_t c2 = GetHeaderValue(kChecksum2Offset); |
- if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; |
- if (version_hash != Version::Hash()) return VERSION_MISMATCH; |
- if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; |
- if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) { |
- return CPU_FEATURES_MISMATCH; |
- } |
- if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; |
- if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; |
- return CHECK_SUCCESS; |
-} |
- |
- |
-// Return ScriptData object and relinquish ownership over it to the caller. |
-ScriptData* SerializedCodeData::GetScriptData() { |
- DCHECK(owns_data_); |
- ScriptData* result = new ScriptData(data_, size_); |
- result->AcquireDataOwnership(); |
- owns_data_ = false; |
- data_ = NULL; |
- return result; |
-} |
- |
- |
-Vector<const SerializedData::Reservation> SerializedCodeData::Reservations() |
- const { |
- return Vector<const Reservation>( |
- reinterpret_cast<const Reservation*>(data_ + kHeaderSize), |
- GetHeaderValue(kNumReservationsOffset)); |
-} |
- |
- |
-Vector<const byte> SerializedCodeData::Payload() const { |
- int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; |
- int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; |
- int payload_offset = kHeaderSize + reservations_size + code_stubs_size; |
- int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); |
- const byte* payload = data_ + padded_payload_offset; |
- DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment)); |
- int length = GetHeaderValue(kPayloadLengthOffset); |
- DCHECK_EQ(data_ + size_, payload + length); |
- return Vector<const byte>(payload, length); |
-} |
- |
- |
-int SerializedCodeData::NumInternalizedStrings() const { |
- return GetHeaderValue(kNumInternalizedStringsOffset); |
-} |
- |
-Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const { |
- int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; |
- const byte* start = data_ + kHeaderSize + reservations_size; |
- return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start), |
- GetHeaderValue(kNumCodeStubKeysOffset)); |
-} |
- |
- |
-SerializedCodeData::SerializedCodeData(ScriptData* data) |
- : SerializedData(const_cast<byte*>(data->data()), data->length()) {} |
- |
- |
-SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, |
- ScriptData* cached_data, |
- String* source) { |
- DisallowHeapAllocation no_gc; |
- SerializedCodeData* scd = new SerializedCodeData(cached_data); |
- SanityCheckResult r = scd->SanityCheck(isolate, source); |
- if (r == CHECK_SUCCESS) return scd; |
- cached_data->Reject(); |
- source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); |
- delete scd; |
- return NULL; |
-} |
- |
-} // namespace internal |
-} // namespace v8 |