OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/v8.h" | |
6 | |
7 #include "src/accessors.h" | |
8 #include "src/api.h" | |
9 #include "src/base/platform/platform.h" | |
10 #include "src/bootstrapper.h" | |
11 #include "src/code-stubs.h" | |
12 #include "src/cpu-profiler.h" | |
13 #include "src/deoptimizer.h" | |
14 #include "src/execution.h" | |
15 #include "src/global-handles.h" | |
16 #include "src/ic/ic.h" | |
17 #include "src/ic/stub-cache.h" | |
18 #include "src/objects.h" | |
19 #include "src/parser.h" | |
20 #include "src/runtime/runtime.h" | |
21 #include "src/snapshot/natives.h" | |
22 #include "src/snapshot/serialize.h" | |
23 #include "src/snapshot/snapshot.h" | |
24 #include "src/snapshot/snapshot-source-sink.h" | |
25 #include "src/v8threads.h" | |
26 #include "src/version.h" | |
27 | |
28 namespace v8 { | |
29 namespace internal { | |
30 | |
31 | |
32 // ----------------------------------------------------------------------------- | |
33 // Coding of external references. | |
34 | |
35 | |
36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { | |
37 ExternalReferenceTable* external_reference_table = | |
38 isolate->external_reference_table(); | |
39 if (external_reference_table == NULL) { | |
40 external_reference_table = new ExternalReferenceTable(isolate); | |
41 isolate->set_external_reference_table(external_reference_table); | |
42 } | |
43 return external_reference_table; | |
44 } | |
45 | |
46 | |
47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) { | |
48 // Miscellaneous | |
49 Add(ExternalReference::roots_array_start(isolate).address(), | |
50 "Heap::roots_array_start()"); | |
51 Add(ExternalReference::address_of_stack_limit(isolate).address(), | |
52 "StackGuard::address_of_jslimit()"); | |
53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(), | |
54 "StackGuard::address_of_real_jslimit()"); | |
55 Add(ExternalReference::new_space_start(isolate).address(), | |
56 "Heap::NewSpaceStart()"); | |
57 Add(ExternalReference::new_space_mask(isolate).address(), | |
58 "Heap::NewSpaceMask()"); | |
59 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), | |
60 "Heap::NewSpaceAllocationLimitAddress()"); | |
61 Add(ExternalReference::new_space_allocation_top_address(isolate).address(), | |
62 "Heap::NewSpaceAllocationTopAddress()"); | |
63 Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()"); | |
64 Add(ExternalReference::debug_step_in_fp_address(isolate).address(), | |
65 "Debug::step_in_fp_addr()"); | |
66 Add(ExternalReference::mod_two_doubles_operation(isolate).address(), | |
67 "mod_two_doubles"); | |
68 // Keyed lookup cache. | |
69 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), | |
70 "KeyedLookupCache::keys()"); | |
71 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), | |
72 "KeyedLookupCache::field_offsets()"); | |
73 Add(ExternalReference::handle_scope_next_address(isolate).address(), | |
74 "HandleScope::next"); | |
75 Add(ExternalReference::handle_scope_limit_address(isolate).address(), | |
76 "HandleScope::limit"); | |
77 Add(ExternalReference::handle_scope_level_address(isolate).address(), | |
78 "HandleScope::level"); | |
79 Add(ExternalReference::new_deoptimizer_function(isolate).address(), | |
80 "Deoptimizer::New()"); | |
81 Add(ExternalReference::compute_output_frames_function(isolate).address(), | |
82 "Deoptimizer::ComputeOutputFrames()"); | |
83 Add(ExternalReference::address_of_min_int().address(), | |
84 "LDoubleConstant::min_int"); | |
85 Add(ExternalReference::address_of_one_half().address(), | |
86 "LDoubleConstant::one_half"); | |
87 Add(ExternalReference::isolate_address(isolate).address(), "isolate"); | |
88 Add(ExternalReference::address_of_negative_infinity().address(), | |
89 "LDoubleConstant::negative_infinity"); | |
90 Add(ExternalReference::power_double_double_function(isolate).address(), | |
91 "power_double_double_function"); | |
92 Add(ExternalReference::power_double_int_function(isolate).address(), | |
93 "power_double_int_function"); | |
94 Add(ExternalReference::store_buffer_top(isolate).address(), | |
95 "store_buffer_top"); | |
96 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan"); | |
97 Add(ExternalReference::get_date_field_function(isolate).address(), | |
98 "JSDate::GetField"); | |
99 Add(ExternalReference::date_cache_stamp(isolate).address(), | |
100 "date_cache_stamp"); | |
101 Add(ExternalReference::address_of_pending_message_obj(isolate).address(), | |
102 "address_of_pending_message_obj"); | |
103 Add(ExternalReference::get_make_code_young_function(isolate).address(), | |
104 "Code::MakeCodeYoung"); | |
105 Add(ExternalReference::cpu_features().address(), "cpu_features"); | |
106 Add(ExternalReference::old_space_allocation_top_address(isolate).address(), | |
107 "Heap::OldSpaceAllocationTopAddress"); | |
108 Add(ExternalReference::old_space_allocation_limit_address(isolate).address(), | |
109 "Heap::OldSpaceAllocationLimitAddress"); | |
110 Add(ExternalReference::allocation_sites_list_address(isolate).address(), | |
111 "Heap::allocation_sites_list_address()"); | |
112 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias"); | |
113 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), | |
114 "Code::MarkCodeAsExecuted"); | |
115 Add(ExternalReference::is_profiling_address(isolate).address(), | |
116 "CpuProfiler::is_profiling"); | |
117 Add(ExternalReference::scheduled_exception_address(isolate).address(), | |
118 "Isolate::scheduled_exception"); | |
119 Add(ExternalReference::invoke_function_callback(isolate).address(), | |
120 "InvokeFunctionCallback"); | |
121 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(), | |
122 "InvokeAccessorGetterCallback"); | |
123 Add(ExternalReference::flush_icache_function(isolate).address(), | |
124 "CpuFeatures::FlushICache"); | |
125 Add(ExternalReference::log_enter_external_function(isolate).address(), | |
126 "Logger::EnterExternal"); | |
127 Add(ExternalReference::log_leave_external_function(isolate).address(), | |
128 "Logger::LeaveExternal"); | |
129 Add(ExternalReference::address_of_minus_one_half().address(), | |
130 "double_constants.minus_one_half"); | |
131 Add(ExternalReference::stress_deopt_count(isolate).address(), | |
132 "Isolate::stress_deopt_count_address()"); | |
133 | |
134 // Debug addresses | |
135 Add(ExternalReference::debug_after_break_target_address(isolate).address(), | |
136 "Debug::after_break_target_address()"); | |
137 Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate) | |
138 .address(), | |
139 "Debug::restarter_frame_function_pointer_address()"); | |
140 Add(ExternalReference::debug_is_active_address(isolate).address(), | |
141 "Debug::is_active_address()"); | |
142 | |
143 #ifndef V8_INTERPRETED_REGEXP | |
144 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), | |
145 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); | |
146 Add(ExternalReference::re_check_stack_guard_state(isolate).address(), | |
147 "RegExpMacroAssembler*::CheckStackGuardState()"); | |
148 Add(ExternalReference::re_grow_stack(isolate).address(), | |
149 "NativeRegExpMacroAssembler::GrowStack()"); | |
150 Add(ExternalReference::re_word_character_map().address(), | |
151 "NativeRegExpMacroAssembler::word_character_map"); | |
152 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), | |
153 "RegExpStack::limit_address()"); | |
154 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate) | |
155 .address(), | |
156 "RegExpStack::memory_address()"); | |
157 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), | |
158 "RegExpStack::memory_size()"); | |
159 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), | |
160 "OffsetsVector::static_offsets_vector"); | |
161 #endif // V8_INTERPRETED_REGEXP | |
162 | |
163 // The following populates all of the different type of external references | |
164 // into the ExternalReferenceTable. | |
165 // | |
166 // NOTE: This function was originally 100k of code. It has since been | |
167 // rewritten to be mostly table driven, as the callback macro style tends to | |
168 // very easily cause code bloat. Please be careful in the future when adding | |
169 // new references. | |
170 | |
171 struct RefTableEntry { | |
172 uint16_t id; | |
173 const char* name; | |
174 }; | |
175 | |
176 static const RefTableEntry c_builtins[] = { | |
177 #define DEF_ENTRY_C(name, ignored) \ | |
178 { Builtins::c_##name, "Builtins::" #name } \ | |
179 , | |
180 BUILTIN_LIST_C(DEF_ENTRY_C) | |
181 #undef DEF_ENTRY_C | |
182 }; | |
183 | |
184 for (unsigned i = 0; i < arraysize(c_builtins); ++i) { | |
185 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id), | |
186 isolate); | |
187 Add(ref.address(), c_builtins[i].name); | |
188 } | |
189 | |
190 static const RefTableEntry builtins[] = { | |
191 #define DEF_ENTRY_C(name, ignored) \ | |
192 { Builtins::k##name, "Builtins::" #name } \ | |
193 , | |
194 #define DEF_ENTRY_A(name, i1, i2, i3) \ | |
195 { Builtins::k##name, "Builtins::" #name } \ | |
196 , | |
197 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A) | |
198 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) | |
199 #undef DEF_ENTRY_C | |
200 #undef DEF_ENTRY_A | |
201 }; | |
202 | |
203 for (unsigned i = 0; i < arraysize(builtins); ++i) { | |
204 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate); | |
205 Add(ref.address(), builtins[i].name); | |
206 } | |
207 | |
208 static const RefTableEntry runtime_functions[] = { | |
209 #define RUNTIME_ENTRY(name, i1, i2) \ | |
210 { Runtime::k##name, "Runtime::" #name } \ | |
211 , | |
212 FOR_EACH_INTRINSIC(RUNTIME_ENTRY) | |
213 #undef RUNTIME_ENTRY | |
214 }; | |
215 | |
216 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) { | |
217 ExternalReference ref( | |
218 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate); | |
219 Add(ref.address(), runtime_functions[i].name); | |
220 } | |
221 | |
222 static const RefTableEntry inline_caches[] = { | |
223 #define IC_ENTRY(name) \ | |
224 { IC::k##name, "IC::" #name } \ | |
225 , | |
226 IC_UTIL_LIST(IC_ENTRY) | |
227 #undef IC_ENTRY | |
228 }; | |
229 | |
230 for (unsigned i = 0; i < arraysize(inline_caches); ++i) { | |
231 ExternalReference ref( | |
232 IC_Utility(static_cast<IC::UtilityId>(inline_caches[i].id)), isolate); | |
233 Add(ref.address(), runtime_functions[i].name); | |
234 } | |
235 | |
236 // Stat counters | |
237 struct StatsRefTableEntry { | |
238 StatsCounter* (Counters::*counter)(); | |
239 const char* name; | |
240 }; | |
241 | |
242 static const StatsRefTableEntry stats_ref_table[] = { | |
243 #define COUNTER_ENTRY(name, caption) \ | |
244 { &Counters::name, "Counters::" #name } \ | |
245 , | |
246 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY) | |
247 #undef COUNTER_ENTRY | |
248 }; | |
249 | |
250 Counters* counters = isolate->counters(); | |
251 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) { | |
252 // To make sure the indices are not dependent on whether counters are | |
253 // enabled, use a dummy address as filler. | |
254 Address address = NotAvailable(); | |
255 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))(); | |
256 if (counter->Enabled()) { | |
257 address = reinterpret_cast<Address>(counter->GetInternalPointer()); | |
258 } | |
259 Add(address, stats_ref_table[i].name); | |
260 } | |
261 | |
262 // Top addresses | |
263 static const char* address_names[] = { | |
264 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address", | |
265 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL | |
266 #undef BUILD_NAME_LITERAL | |
267 }; | |
268 | |
269 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) { | |
270 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)), | |
271 address_names[i]); | |
272 } | |
273 | |
274 // Accessors | |
275 struct AccessorRefTable { | |
276 Address address; | |
277 const char* name; | |
278 }; | |
279 | |
280 static const AccessorRefTable accessors[] = { | |
281 #define ACCESSOR_INFO_DECLARATION(name) \ | |
282 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \ | |
283 , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"}, | |
284 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION) | |
285 #undef ACCESSOR_INFO_DECLARATION | |
286 }; | |
287 | |
288 for (unsigned i = 0; i < arraysize(accessors); ++i) { | |
289 Add(accessors[i].address, accessors[i].name); | |
290 } | |
291 | |
292 StubCache* stub_cache = isolate->stub_cache(); | |
293 | |
294 // Stub cache tables | |
295 Add(stub_cache->key_reference(StubCache::kPrimary).address(), | |
296 "StubCache::primary_->key"); | |
297 Add(stub_cache->value_reference(StubCache::kPrimary).address(), | |
298 "StubCache::primary_->value"); | |
299 Add(stub_cache->map_reference(StubCache::kPrimary).address(), | |
300 "StubCache::primary_->map"); | |
301 Add(stub_cache->key_reference(StubCache::kSecondary).address(), | |
302 "StubCache::secondary_->key"); | |
303 Add(stub_cache->value_reference(StubCache::kSecondary).address(), | |
304 "StubCache::secondary_->value"); | |
305 Add(stub_cache->map_reference(StubCache::kSecondary).address(), | |
306 "StubCache::secondary_->map"); | |
307 | |
308 // Runtime entries | |
309 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), | |
310 "HandleScope::DeleteExtensions"); | |
311 Add(ExternalReference::incremental_marking_record_write_function(isolate) | |
312 .address(), | |
313 "IncrementalMarking::RecordWrite"); | |
314 Add(ExternalReference::store_buffer_overflow_function(isolate).address(), | |
315 "StoreBuffer::StoreBufferOverflow"); | |
316 | |
317 // Add a small set of deopt entry addresses to encoder without generating the | |
318 // deopt table code, which isn't possible at deserialization time. | |
319 HandleScope scope(isolate); | |
320 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { | |
321 Address address = Deoptimizer::GetDeoptimizationEntry( | |
322 isolate, | |
323 entry, | |
324 Deoptimizer::LAZY, | |
325 Deoptimizer::CALCULATE_ENTRY_ADDRESS); | |
326 Add(address, "lazy_deopt"); | |
327 } | |
328 } | |
329 | |
330 | |
331 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) { | |
332 map_ = isolate->external_reference_map(); | |
333 if (map_ != NULL) return; | |
334 map_ = new HashMap(HashMap::PointersMatch); | |
335 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate); | |
336 for (int i = 0; i < table->size(); ++i) { | |
337 Address addr = table->address(i); | |
338 if (addr == ExternalReferenceTable::NotAvailable()) continue; | |
339 // We expect no duplicate external references entries in the table. | |
340 DCHECK_NULL(map_->Lookup(addr, Hash(addr))); | |
341 map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i); | |
342 } | |
343 isolate->set_external_reference_map(map_); | |
344 } | |
345 | |
346 | |
347 uint32_t ExternalReferenceEncoder::Encode(Address address) const { | |
348 DCHECK_NOT_NULL(address); | |
349 HashMap::Entry* entry = | |
350 const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); | |
351 DCHECK_NOT_NULL(entry); | |
352 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); | |
353 } | |
354 | |
355 | |
356 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate, | |
357 Address address) const { | |
358 HashMap::Entry* entry = | |
359 const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); | |
360 if (entry == NULL) return "<unknown>"; | |
361 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); | |
362 return ExternalReferenceTable::instance(isolate)->name(i); | |
363 } | |
364 | |
365 | |
366 RootIndexMap::RootIndexMap(Isolate* isolate) { | |
367 map_ = isolate->root_index_map(); | |
368 if (map_ != NULL) return; | |
369 map_ = new HashMap(HashMap::PointersMatch); | |
370 Object** root_array = isolate->heap()->roots_array_start(); | |
371 for (uint32_t i = 0; i < Heap::kStrongRootListLength; i++) { | |
372 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i); | |
373 Object* root = root_array[root_index]; | |
374 // Omit root entries that can be written after initialization. They must | |
375 // not be referenced through the root list in the snapshot. | |
376 if (root->IsHeapObject() && | |
377 isolate->heap()->RootCanBeTreatedAsConstant(root_index)) { | |
378 HeapObject* heap_object = HeapObject::cast(root); | |
379 HashMap::Entry* entry = LookupEntry(map_, heap_object, false); | |
380 if (entry != NULL) { | |
381 // Some are initialized to a previous value in the root list. | |
382 DCHECK_LT(GetValue(entry), i); | |
383 } else { | |
384 SetValue(LookupEntry(map_, heap_object, true), i); | |
385 } | |
386 } | |
387 } | |
388 isolate->set_root_index_map(map_); | |
389 } | |
390 | |
391 | |
392 class CodeAddressMap: public CodeEventLogger { | |
393 public: | |
394 explicit CodeAddressMap(Isolate* isolate) | |
395 : isolate_(isolate) { | |
396 isolate->logger()->addCodeEventListener(this); | |
397 } | |
398 | |
399 virtual ~CodeAddressMap() { | |
400 isolate_->logger()->removeCodeEventListener(this); | |
401 } | |
402 | |
403 virtual void CodeMoveEvent(Address from, Address to) { | |
404 address_to_name_map_.Move(from, to); | |
405 } | |
406 | |
407 virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) { | |
408 } | |
409 | |
410 virtual void CodeDeleteEvent(Address from) { | |
411 address_to_name_map_.Remove(from); | |
412 } | |
413 | |
414 const char* Lookup(Address address) { | |
415 return address_to_name_map_.Lookup(address); | |
416 } | |
417 | |
418 private: | |
419 class NameMap { | |
420 public: | |
421 NameMap() : impl_(HashMap::PointersMatch) {} | |
422 | |
423 ~NameMap() { | |
424 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { | |
425 DeleteArray(static_cast<const char*>(p->value)); | |
426 } | |
427 } | |
428 | |
429 void Insert(Address code_address, const char* name, int name_size) { | |
430 HashMap::Entry* entry = FindOrCreateEntry(code_address); | |
431 if (entry->value == NULL) { | |
432 entry->value = CopyName(name, name_size); | |
433 } | |
434 } | |
435 | |
436 const char* Lookup(Address code_address) { | |
437 HashMap::Entry* entry = FindEntry(code_address); | |
438 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; | |
439 } | |
440 | |
441 void Remove(Address code_address) { | |
442 HashMap::Entry* entry = FindEntry(code_address); | |
443 if (entry != NULL) { | |
444 DeleteArray(static_cast<char*>(entry->value)); | |
445 RemoveEntry(entry); | |
446 } | |
447 } | |
448 | |
449 void Move(Address from, Address to) { | |
450 if (from == to) return; | |
451 HashMap::Entry* from_entry = FindEntry(from); | |
452 DCHECK(from_entry != NULL); | |
453 void* value = from_entry->value; | |
454 RemoveEntry(from_entry); | |
455 HashMap::Entry* to_entry = FindOrCreateEntry(to); | |
456 DCHECK(to_entry->value == NULL); | |
457 to_entry->value = value; | |
458 } | |
459 | |
460 private: | |
461 static char* CopyName(const char* name, int name_size) { | |
462 char* result = NewArray<char>(name_size + 1); | |
463 for (int i = 0; i < name_size; ++i) { | |
464 char c = name[i]; | |
465 if (c == '\0') c = ' '; | |
466 result[i] = c; | |
467 } | |
468 result[name_size] = '\0'; | |
469 return result; | |
470 } | |
471 | |
472 HashMap::Entry* FindOrCreateEntry(Address code_address) { | |
473 return impl_.LookupOrInsert(code_address, | |
474 ComputePointerHash(code_address)); | |
475 } | |
476 | |
477 HashMap::Entry* FindEntry(Address code_address) { | |
478 return impl_.Lookup(code_address, ComputePointerHash(code_address)); | |
479 } | |
480 | |
481 void RemoveEntry(HashMap::Entry* entry) { | |
482 impl_.Remove(entry->key, entry->hash); | |
483 } | |
484 | |
485 HashMap impl_; | |
486 | |
487 DISALLOW_COPY_AND_ASSIGN(NameMap); | |
488 }; | |
489 | |
490 virtual void LogRecordedBuffer(Code* code, | |
491 SharedFunctionInfo*, | |
492 const char* name, | |
493 int length) { | |
494 address_to_name_map_.Insert(code->address(), name, length); | |
495 } | |
496 | |
497 NameMap address_to_name_map_; | |
498 Isolate* isolate_; | |
499 }; | |
500 | |
501 | |
502 void Deserializer::DecodeReservation( | |
503 Vector<const SerializedData::Reservation> res) { | |
504 DCHECK_EQ(0, reservations_[NEW_SPACE].length()); | |
505 STATIC_ASSERT(NEW_SPACE == 0); | |
506 int current_space = NEW_SPACE; | |
507 for (auto& r : res) { | |
508 reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); | |
509 if (r.is_last()) current_space++; | |
510 } | |
511 DCHECK_EQ(kNumberOfSpaces, current_space); | |
512 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; | |
513 } | |
514 | |
515 | |
516 void Deserializer::FlushICacheForNewCodeObjects() { | |
517 PageIterator it(isolate_->heap()->code_space()); | |
518 while (it.has_next()) { | |
519 Page* p = it.next(); | |
520 CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start()); | |
521 } | |
522 } | |
523 | |
524 | |
525 bool Deserializer::ReserveSpace() { | |
526 #ifdef DEBUG | |
527 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { | |
528 CHECK(reservations_[i].length() > 0); | |
529 } | |
530 #endif // DEBUG | |
531 if (!isolate_->heap()->ReserveSpace(reservations_)) return false; | |
532 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { | |
533 high_water_[i] = reservations_[i][0].start; | |
534 } | |
535 return true; | |
536 } | |
537 | |
538 | |
539 void Deserializer::Initialize(Isolate* isolate) { | |
540 DCHECK_NULL(isolate_); | |
541 DCHECK_NOT_NULL(isolate); | |
542 isolate_ = isolate; | |
543 DCHECK_NULL(external_reference_table_); | |
544 external_reference_table_ = ExternalReferenceTable::instance(isolate); | |
545 CHECK_EQ(magic_number_, | |
546 SerializedData::ComputeMagicNumber(external_reference_table_)); | |
547 } | |
548 | |
549 | |
550 void Deserializer::Deserialize(Isolate* isolate) { | |
551 Initialize(isolate); | |
552 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); | |
553 // No active threads. | |
554 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); | |
555 // No active handles. | |
556 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); | |
557 isolate_->heap()->IterateSmiRoots(this); | |
558 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); | |
559 isolate_->heap()->RepairFreeListsAfterDeserialization(); | |
560 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); | |
561 | |
562 isolate_->heap()->set_native_contexts_list( | |
563 isolate_->heap()->undefined_value()); | |
564 isolate_->heap()->set_array_buffers_list( | |
565 isolate_->heap()->undefined_value()); | |
566 isolate->heap()->set_new_array_buffer_views_list( | |
567 isolate_->heap()->undefined_value()); | |
568 | |
569 // The allocation site list is build during root iteration, but if no sites | |
570 // were encountered then it needs to be initialized to undefined. | |
571 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { | |
572 isolate_->heap()->set_allocation_sites_list( | |
573 isolate_->heap()->undefined_value()); | |
574 } | |
575 | |
576 // Update data pointers to the external strings containing natives sources. | |
577 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { | |
578 Object* source = isolate_->heap()->natives_source_cache()->get(i); | |
579 if (!source->IsUndefined()) { | |
580 ExternalOneByteString::cast(source)->update_data_cache(); | |
581 } | |
582 } | |
583 | |
584 FlushICacheForNewCodeObjects(); | |
585 | |
586 // Issue code events for newly deserialized code objects. | |
587 LOG_CODE_EVENT(isolate_, LogCodeObjects()); | |
588 LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); | |
589 } | |
590 | |
591 | |
592 MaybeHandle<Object> Deserializer::DeserializePartial( | |
593 Isolate* isolate, Handle<JSGlobalProxy> global_proxy, | |
594 Handle<FixedArray>* outdated_contexts_out) { | |
595 Initialize(isolate); | |
596 if (!ReserveSpace()) { | |
597 V8::FatalProcessOutOfMemory("deserialize context"); | |
598 return MaybeHandle<Object>(); | |
599 } | |
600 | |
601 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); | |
602 attached_objects[kGlobalProxyReference] = global_proxy; | |
603 SetAttachedObjects(attached_objects); | |
604 | |
605 DisallowHeapAllocation no_gc; | |
606 // Keep track of the code space start and end pointers in case new | |
607 // code objects were unserialized | |
608 OldSpace* code_space = isolate_->heap()->code_space(); | |
609 Address start_address = code_space->top(); | |
610 Object* root; | |
611 Object* outdated_contexts; | |
612 VisitPointer(&root); | |
613 VisitPointer(&outdated_contexts); | |
614 | |
615 // There's no code deserialized here. If this assert fires | |
616 // then that's changed and logging should be added to notify | |
617 // the profiler et al of the new code. | |
618 CHECK_EQ(start_address, code_space->top()); | |
619 CHECK(outdated_contexts->IsFixedArray()); | |
620 *outdated_contexts_out = | |
621 Handle<FixedArray>(FixedArray::cast(outdated_contexts), isolate); | |
622 return Handle<Object>(root, isolate); | |
623 } | |
624 | |
625 | |
626 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( | |
627 Isolate* isolate) { | |
628 Initialize(isolate); | |
629 if (!ReserveSpace()) { | |
630 return Handle<SharedFunctionInfo>(); | |
631 } else { | |
632 deserializing_user_code_ = true; | |
633 DisallowHeapAllocation no_gc; | |
634 Object* root; | |
635 VisitPointer(&root); | |
636 return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); | |
637 } | |
638 } | |
639 | |
640 | |
641 Deserializer::~Deserializer() { | |
642 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. | |
643 // DCHECK(source_.AtEOF()); | |
644 attached_objects_.Dispose(); | |
645 } | |
646 | |
647 | |
648 // This is called on the roots. It is the driver of the deserialization | |
649 // process. It is also called on the body of each function. | |
650 void Deserializer::VisitPointers(Object** start, Object** end) { | |
651 // The space must be new space. Any other space would cause ReadChunk to try | |
652 // to update the remembered using NULL as the address. | |
653 ReadData(start, end, NEW_SPACE, NULL); | |
654 } | |
655 | |
656 | |
657 void Deserializer::RelinkAllocationSite(AllocationSite* site) { | |
658 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { | |
659 site->set_weak_next(isolate_->heap()->undefined_value()); | |
660 } else { | |
661 site->set_weak_next(isolate_->heap()->allocation_sites_list()); | |
662 } | |
663 isolate_->heap()->set_allocation_sites_list(site); | |
664 } | |
665 | |
666 | |
667 // Used to insert a deserialized internalized string into the string table. | |
668 class StringTableInsertionKey : public HashTableKey { | |
669 public: | |
670 explicit StringTableInsertionKey(String* string) | |
671 : string_(string), hash_(HashForObject(string)) { | |
672 DCHECK(string->IsInternalizedString()); | |
673 } | |
674 | |
675 bool IsMatch(Object* string) OVERRIDE { | |
676 // We know that all entries in a hash table had their hash keys created. | |
677 // Use that knowledge to have fast failure. | |
678 if (hash_ != HashForObject(string)) return false; | |
679 // We want to compare the content of two internalized strings here. | |
680 return string_->SlowEquals(String::cast(string)); | |
681 } | |
682 | |
683 uint32_t Hash() OVERRIDE { return hash_; } | |
684 | |
685 uint32_t HashForObject(Object* key) OVERRIDE { | |
686 return String::cast(key)->Hash(); | |
687 } | |
688 | |
689 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) | |
690 OVERRIDE { | |
691 return handle(string_, isolate); | |
692 } | |
693 | |
694 String* string_; | |
695 uint32_t hash_; | |
696 }; | |
697 | |
698 | |
699 HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) { | |
700 if (obj->IsString()) { | |
701 String* string = String::cast(obj); | |
702 // Uninitialize hash field as the hash seed may have changed. | |
703 string->set_hash_field(String::kEmptyHashField); | |
704 if (string->IsInternalizedString()) { | |
705 DisallowHeapAllocation no_gc; | |
706 HandleScope scope(isolate_); | |
707 StringTableInsertionKey key(string); | |
708 String* canonical = *StringTable::LookupKey(isolate_, &key); | |
709 string->SetForwardedInternalizedString(canonical); | |
710 return canonical; | |
711 } | |
712 } else if (obj->IsScript()) { | |
713 Script::cast(obj)->set_id(isolate_->heap()->NextScriptId()); | |
714 } | |
715 return obj; | |
716 } | |
717 | |
718 | |
719 HeapObject* Deserializer::GetBackReferencedObject(int space) { | |
720 HeapObject* obj; | |
721 BackReference back_reference(source_.GetInt()); | |
722 if (space == LO_SPACE) { | |
723 CHECK(back_reference.chunk_index() == 0); | |
724 uint32_t index = back_reference.large_object_index(); | |
725 obj = deserialized_large_objects_[index]; | |
726 } else { | |
727 DCHECK(space < kNumberOfPreallocatedSpaces); | |
728 uint32_t chunk_index = back_reference.chunk_index(); | |
729 DCHECK_LE(chunk_index, current_chunk_[space]); | |
730 uint32_t chunk_offset = back_reference.chunk_offset(); | |
731 obj = HeapObject::FromAddress(reservations_[space][chunk_index].start + | |
732 chunk_offset); | |
733 } | |
734 if (deserializing_user_code() && obj->IsInternalizedString()) { | |
735 obj = String::cast(obj)->GetForwardedInternalizedString(); | |
736 } | |
737 hot_objects_.Add(obj); | |
738 return obj; | |
739 } | |
740 | |
741 | |
742 // This routine writes the new object into the pointer provided and then | |
743 // returns true if the new object was in young space and false otherwise. | |
744 // The reason for this strange interface is that otherwise the object is | |
745 // written very late, which means the FreeSpace map is not set up by the | |
746 // time we need to use it to mark the space at the end of a page free. | |
747 void Deserializer::ReadObject(int space_number, Object** write_back) { | |
748 Address address; | |
749 HeapObject* obj; | |
750 int next_int = source_.GetInt(); | |
751 | |
752 bool double_align = false; | |
753 #ifndef V8_HOST_ARCH_64_BIT | |
754 double_align = next_int == kDoubleAlignmentSentinel; | |
755 if (double_align) next_int = source_.GetInt(); | |
756 #endif | |
757 | |
758 DCHECK_NE(kDoubleAlignmentSentinel, next_int); | |
759 int size = next_int << kObjectAlignmentBits; | |
760 int reserved_size = size + (double_align ? kPointerSize : 0); | |
761 address = Allocate(space_number, reserved_size); | |
762 obj = HeapObject::FromAddress(address); | |
763 if (double_align) { | |
764 obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size); | |
765 address = obj->address(); | |
766 } | |
767 | |
768 isolate_->heap()->OnAllocationEvent(obj, size); | |
769 Object** current = reinterpret_cast<Object**>(address); | |
770 Object** limit = current + (size >> kPointerSizeLog2); | |
771 if (FLAG_log_snapshot_positions) { | |
772 LOG(isolate_, SnapshotPositionEvent(address, source_.position())); | |
773 } | |
774 ReadData(current, limit, space_number, address); | |
775 | |
776 // TODO(mvstanton): consider treating the heap()->allocation_sites_list() | |
777 // as a (weak) root. If this root is relocated correctly, | |
778 // RelinkAllocationSite() isn't necessary. | |
779 if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj)); | |
780 | |
781 // Fix up strings from serialized user code. | |
782 if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj); | |
783 | |
784 Object* write_back_obj = obj; | |
785 UnalignedCopy(write_back, &write_back_obj); | |
786 #ifdef DEBUG | |
787 if (obj->IsCode()) { | |
788 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); | |
789 #ifdef VERIFY_HEAP | |
790 obj->ObjectVerify(); | |
791 #endif // VERIFY_HEAP | |
792 } else { | |
793 DCHECK(space_number != CODE_SPACE); | |
794 } | |
795 #endif // DEBUG | |
796 } | |
797 | |
798 | |
799 // We know the space requirements before deserialization and can | |
800 // pre-allocate that reserved space. During deserialization, all we need | |
801 // to do is to bump up the pointer for each space in the reserved | |
802 // space. This is also used for fixing back references. | |
803 // We may have to split up the pre-allocation into several chunks | |
804 // because it would not fit onto a single page. We do not have to keep | |
805 // track of when to move to the next chunk. An opcode will signal this. | |
806 // Since multiple large objects cannot be folded into one large object | |
807 // space allocation, we have to do an actual allocation when deserializing | |
808 // each large object. Instead of tracking offset for back references, we | |
809 // reference large objects by index. | |
810 Address Deserializer::Allocate(int space_index, int size) { | |
811 if (space_index == LO_SPACE) { | |
812 AlwaysAllocateScope scope(isolate_); | |
813 LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); | |
814 Executability exec = static_cast<Executability>(source_.Get()); | |
815 AllocationResult result = lo_space->AllocateRaw(size, exec); | |
816 HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); | |
817 deserialized_large_objects_.Add(obj); | |
818 return obj->address(); | |
819 } else { | |
820 DCHECK(space_index < kNumberOfPreallocatedSpaces); | |
821 Address address = high_water_[space_index]; | |
822 DCHECK_NOT_NULL(address); | |
823 high_water_[space_index] += size; | |
824 #ifdef DEBUG | |
825 // Assert that the current reserved chunk is still big enough. | |
826 const Heap::Reservation& reservation = reservations_[space_index]; | |
827 int chunk_index = current_chunk_[space_index]; | |
828 CHECK_LE(high_water_[space_index], reservation[chunk_index].end); | |
829 #endif | |
830 return address; | |
831 } | |
832 } | |
833 | |
834 | |
835 void Deserializer::ReadData(Object** current, Object** limit, int source_space, | |
836 Address current_object_address) { | |
837 Isolate* const isolate = isolate_; | |
838 // Write barrier support costs around 1% in startup time. In fact there | |
839 // are no new space objects in current boot snapshots, so it's not needed, | |
840 // but that may change. | |
841 bool write_barrier_needed = | |
842 (current_object_address != NULL && source_space != NEW_SPACE && | |
843 source_space != CODE_SPACE); | |
844 while (current < limit) { | |
845 byte data = source_.Get(); | |
846 switch (data) { | |
847 #define CASE_STATEMENT(where, how, within, space_number) \ | |
848 case where + how + within + space_number: \ | |
849 STATIC_ASSERT((where & ~kWhereMask) == 0); \ | |
850 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ | |
851 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ | |
852 STATIC_ASSERT((space_number & ~kSpaceMask) == 0); | |
853 | |
854 #define CASE_BODY(where, how, within, space_number_if_any) \ | |
855 { \ | |
856 bool emit_write_barrier = false; \ | |
857 bool current_was_incremented = false; \ | |
858 int space_number = space_number_if_any == kAnyOldSpace \ | |
859 ? (data & kSpaceMask) \ | |
860 : space_number_if_any; \ | |
861 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ | |
862 ReadObject(space_number, current); \ | |
863 emit_write_barrier = (space_number == NEW_SPACE); \ | |
864 } else { \ | |
865 Object* new_object = NULL; /* May not be a real Object pointer. */ \ | |
866 if (where == kNewObject) { \ | |
867 ReadObject(space_number, &new_object); \ | |
868 } else if (where == kBackref) { \ | |
869 emit_write_barrier = (space_number == NEW_SPACE); \ | |
870 new_object = GetBackReferencedObject(data & kSpaceMask); \ | |
871 } else if (where == kBackrefWithSkip) { \ | |
872 int skip = source_.GetInt(); \ | |
873 current = reinterpret_cast<Object**>( \ | |
874 reinterpret_cast<Address>(current) + skip); \ | |
875 emit_write_barrier = (space_number == NEW_SPACE); \ | |
876 new_object = GetBackReferencedObject(data & kSpaceMask); \ | |
877 } else if (where == kRootArray) { \ | |
878 int root_id = source_.GetInt(); \ | |
879 new_object = isolate->heap()->roots_array_start()[root_id]; \ | |
880 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ | |
881 } else if (where == kPartialSnapshotCache) { \ | |
882 int cache_index = source_.GetInt(); \ | |
883 new_object = isolate->partial_snapshot_cache()->at(cache_index); \ | |
884 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ | |
885 } else if (where == kExternalReference) { \ | |
886 int skip = source_.GetInt(); \ | |
887 current = reinterpret_cast<Object**>( \ | |
888 reinterpret_cast<Address>(current) + skip); \ | |
889 int reference_id = source_.GetInt(); \ | |
890 Address address = external_reference_table_->address(reference_id); \ | |
891 new_object = reinterpret_cast<Object*>(address); \ | |
892 } else if (where == kAttachedReference) { \ | |
893 int index = source_.GetInt(); \ | |
894 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ | |
895 new_object = *attached_objects_[index]; \ | |
896 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ | |
897 } else { \ | |
898 DCHECK(where == kBuiltin); \ | |
899 DCHECK(deserializing_user_code()); \ | |
900 int builtin_id = source_.GetInt(); \ | |
901 DCHECK_LE(0, builtin_id); \ | |
902 DCHECK_LT(builtin_id, Builtins::builtin_count); \ | |
903 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ | |
904 new_object = isolate->builtins()->builtin(name); \ | |
905 emit_write_barrier = false; \ | |
906 } \ | |
907 if (within == kInnerPointer) { \ | |
908 if (space_number != CODE_SPACE || new_object->IsCode()) { \ | |
909 Code* new_code_object = reinterpret_cast<Code*>(new_object); \ | |
910 new_object = \ | |
911 reinterpret_cast<Object*>(new_code_object->instruction_start()); \ | |
912 } else { \ | |
913 DCHECK(space_number == CODE_SPACE); \ | |
914 Cell* cell = Cell::cast(new_object); \ | |
915 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ | |
916 } \ | |
917 } \ | |
918 if (how == kFromCode) { \ | |
919 Address location_of_branch_data = reinterpret_cast<Address>(current); \ | |
920 Assembler::deserialization_set_special_target_at( \ | |
921 location_of_branch_data, \ | |
922 Code::cast(HeapObject::FromAddress(current_object_address)), \ | |
923 reinterpret_cast<Address>(new_object)); \ | |
924 location_of_branch_data += Assembler::kSpecialTargetSize; \ | |
925 current = reinterpret_cast<Object**>(location_of_branch_data); \ | |
926 current_was_incremented = true; \ | |
927 } else { \ | |
928 UnalignedCopy(current, &new_object); \ | |
929 } \ | |
930 } \ | |
931 if (emit_write_barrier && write_barrier_needed) { \ | |
932 Address current_address = reinterpret_cast<Address>(current); \ | |
933 isolate->heap()->RecordWrite( \ | |
934 current_object_address, \ | |
935 static_cast<int>(current_address - current_object_address)); \ | |
936 } \ | |
937 if (!current_was_incremented) { \ | |
938 current++; \ | |
939 } \ | |
940 break; \ | |
941 } | |
942 | |
943 // This generates a case and a body for the new space (which has to do extra | |
944 // write barrier handling) and handles the other spaces with fall-through cases | |
945 // and one body. | |
946 #define ALL_SPACES(where, how, within) \ | |
947 CASE_STATEMENT(where, how, within, NEW_SPACE) \ | |
948 CASE_BODY(where, how, within, NEW_SPACE) \ | |
949 CASE_STATEMENT(where, how, within, OLD_SPACE) \ | |
950 CASE_STATEMENT(where, how, within, CODE_SPACE) \ | |
951 CASE_STATEMENT(where, how, within, MAP_SPACE) \ | |
952 CASE_STATEMENT(where, how, within, LO_SPACE) \ | |
953 CASE_BODY(where, how, within, kAnyOldSpace) | |
954 | |
955 #define FOUR_CASES(byte_code) \ | |
956 case byte_code: \ | |
957 case byte_code + 1: \ | |
958 case byte_code + 2: \ | |
959 case byte_code + 3: | |
960 | |
961 #define SIXTEEN_CASES(byte_code) \ | |
962 FOUR_CASES(byte_code) \ | |
963 FOUR_CASES(byte_code + 4) \ | |
964 FOUR_CASES(byte_code + 8) \ | |
965 FOUR_CASES(byte_code + 12) | |
966 | |
967 // Deserialize a new object and write a pointer to it to the current | |
968 // object. | |
969 ALL_SPACES(kNewObject, kPlain, kStartOfObject) | |
970 // Support for direct instruction pointers in functions. It's an inner | |
971 // pointer because it points at the entry point, not at the start of the | |
972 // code object. | |
973 CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE) | |
974 CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE) | |
975 // Deserialize a new code object and write a pointer to its first | |
976 // instruction to the current code object. | |
977 ALL_SPACES(kNewObject, kFromCode, kInnerPointer) | |
978 // Find a recently deserialized object using its offset from the current | |
979 // allocation point and write a pointer to it to the current object. | |
980 ALL_SPACES(kBackref, kPlain, kStartOfObject) | |
981 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) | |
982 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ | |
983 defined(V8_TARGET_ARCH_PPC) || V8_OOL_CONSTANT_POOL | |
984 // Deserialize a new object from pointer found in code and write | |
985 // a pointer to it to the current object. Required only for MIPS, PPC or | |
986 // ARM with ool constant pool, and omitted on the other architectures | |
987 // because it is fully unrolled and would cause bloat. | |
988 ALL_SPACES(kNewObject, kFromCode, kStartOfObject) | |
989 // Find a recently deserialized code object using its offset from the | |
990 // current allocation point and write a pointer to it to the current | |
991 // object. Required only for MIPS, PPC or ARM with ool constant pool. | |
992 ALL_SPACES(kBackref, kFromCode, kStartOfObject) | |
993 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) | |
994 #endif | |
995 // Find a recently deserialized code object using its offset from the | |
996 // current allocation point and write a pointer to its first instruction | |
997 // to the current code object or the instruction pointer in a function | |
998 // object. | |
999 ALL_SPACES(kBackref, kFromCode, kInnerPointer) | |
1000 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) | |
1001 ALL_SPACES(kBackref, kPlain, kInnerPointer) | |
1002 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) | |
1003 // Find an object in the roots array and write a pointer to it to the | |
1004 // current object. | |
1005 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0) | |
1006 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0) | |
1007 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \ | |
1008 defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) | |
1009 // Find an object in the roots array and write a pointer to it to in code. | |
1010 CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0) | |
1011 CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0) | |
1012 #endif | |
1013 // Find an object in the partial snapshots cache and write a pointer to it | |
1014 // to the current object. | |
1015 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0) | |
1016 CASE_BODY(kPartialSnapshotCache, kPlain, kStartOfObject, 0) | |
1017 // Find an code entry in the partial snapshots cache and | |
1018 // write a pointer to it to the current object. | |
1019 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0) | |
1020 CASE_BODY(kPartialSnapshotCache, kPlain, kInnerPointer, 0) | |
1021 // Find an external reference and write a pointer to it to the current | |
1022 // object. | |
1023 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0) | |
1024 CASE_BODY(kExternalReference, kPlain, kStartOfObject, 0) | |
1025 // Find an external reference and write a pointer to it in the current | |
1026 // code object. | |
1027 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0) | |
1028 CASE_BODY(kExternalReference, kFromCode, kStartOfObject, 0) | |
1029 // Find an object in the attached references and write a pointer to it to | |
1030 // the current object. | |
1031 CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0) | |
1032 CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0) | |
1033 CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0) | |
1034 CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0) | |
1035 CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0) | |
1036 CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0) | |
1037 // Find a builtin and write a pointer to it to the current object. | |
1038 CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0) | |
1039 CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0) | |
1040 CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0) | |
1041 CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0) | |
1042 CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0) | |
1043 CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0) | |
1044 | |
1045 #undef CASE_STATEMENT | |
1046 #undef CASE_BODY | |
1047 #undef ALL_SPACES | |
1048 | |
1049 case kSkip: { | |
1050 int size = source_.GetInt(); | |
1051 current = reinterpret_cast<Object**>( | |
1052 reinterpret_cast<intptr_t>(current) + size); | |
1053 break; | |
1054 } | |
1055 | |
1056 case kInternalReferenceEncoded: | |
1057 case kInternalReference: { | |
1058 // Internal reference address is not encoded via skip, but by offset | |
1059 // from code entry. | |
1060 int pc_offset = source_.GetInt(); | |
1061 int target_offset = source_.GetInt(); | |
1062 Code* code = | |
1063 Code::cast(HeapObject::FromAddress(current_object_address)); | |
1064 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); | |
1065 DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); | |
1066 Address pc = code->entry() + pc_offset; | |
1067 Address target = code->entry() + target_offset; | |
1068 Assembler::deserialization_set_target_internal_reference_at( | |
1069 pc, target, data == kInternalReference | |
1070 ? RelocInfo::INTERNAL_REFERENCE | |
1071 : RelocInfo::INTERNAL_REFERENCE_ENCODED); | |
1072 break; | |
1073 } | |
1074 | |
1075 case kNop: | |
1076 break; | |
1077 | |
1078 case kNextChunk: { | |
1079 int space = source_.Get(); | |
1080 DCHECK(space < kNumberOfPreallocatedSpaces); | |
1081 int chunk_index = current_chunk_[space]; | |
1082 const Heap::Reservation& reservation = reservations_[space]; | |
1083 // Make sure the current chunk is indeed exhausted. | |
1084 CHECK_EQ(reservation[chunk_index].end, high_water_[space]); | |
1085 // Move to next reserved chunk. | |
1086 chunk_index = ++current_chunk_[space]; | |
1087 CHECK_LT(chunk_index, reservation.length()); | |
1088 high_water_[space] = reservation[chunk_index].start; | |
1089 break; | |
1090 } | |
1091 | |
1092 case kSynchronize: | |
1093 // If we get here then that indicates that you have a mismatch between | |
1094 // the number of GC roots when serializing and deserializing. | |
1095 CHECK(false); | |
1096 break; | |
1097 | |
1098 case kNativesStringResource: { | |
1099 DCHECK(!isolate_->heap()->deserialization_complete()); | |
1100 int index = source_.Get(); | |
1101 Vector<const char> source_vector = Natives::GetScriptSource(index); | |
1102 NativesExternalStringResource* resource = | |
1103 new NativesExternalStringResource(source_vector.start(), | |
1104 source_vector.length()); | |
1105 Object* resource_obj = reinterpret_cast<Object*>(resource); | |
1106 UnalignedCopy(current++, &resource_obj); | |
1107 break; | |
1108 } | |
1109 | |
1110 // Deserialize raw data of variable length. | |
1111 case kVariableRawData: { | |
1112 int size_in_bytes = source_.GetInt(); | |
1113 byte* raw_data_out = reinterpret_cast<byte*>(current); | |
1114 source_.CopyRaw(raw_data_out, size_in_bytes); | |
1115 break; | |
1116 } | |
1117 | |
1118 case kVariableRepeat: { | |
1119 int repeats = source_.GetInt(); | |
1120 Object* object = current[-1]; | |
1121 DCHECK(!isolate->heap()->InNewSpace(object)); | |
1122 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); | |
1123 break; | |
1124 } | |
1125 | |
1126 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); | |
1127 STATIC_ASSERT(kNumberOfRootArrayConstants == 32); | |
1128 SIXTEEN_CASES(kRootArrayConstantsWithSkip) | |
1129 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { | |
1130 int skip = source_.GetInt(); | |
1131 current = reinterpret_cast<Object**>( | |
1132 reinterpret_cast<intptr_t>(current) + skip); | |
1133 // Fall through. | |
1134 } | |
1135 | |
1136 SIXTEEN_CASES(kRootArrayConstants) | |
1137 SIXTEEN_CASES(kRootArrayConstants + 16) { | |
1138 int root_id = data & kRootArrayConstantsMask; | |
1139 Object* object = isolate->heap()->roots_array_start()[root_id]; | |
1140 DCHECK(!isolate->heap()->InNewSpace(object)); | |
1141 UnalignedCopy(current++, &object); | |
1142 break; | |
1143 } | |
1144 | |
1145 STATIC_ASSERT(kNumberOfHotObjects == 8); | |
1146 FOUR_CASES(kHotObjectWithSkip) | |
1147 FOUR_CASES(kHotObjectWithSkip + 4) { | |
1148 int skip = source_.GetInt(); | |
1149 current = reinterpret_cast<Object**>( | |
1150 reinterpret_cast<Address>(current) + skip); | |
1151 // Fall through. | |
1152 } | |
1153 | |
1154 FOUR_CASES(kHotObject) | |
1155 FOUR_CASES(kHotObject + 4) { | |
1156 int index = data & kHotObjectMask; | |
1157 Object* hot_object = hot_objects_.Get(index); | |
1158 UnalignedCopy(current, &hot_object); | |
1159 if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) { | |
1160 Address current_address = reinterpret_cast<Address>(current); | |
1161 isolate->heap()->RecordWrite( | |
1162 current_object_address, | |
1163 static_cast<int>(current_address - current_object_address)); | |
1164 } | |
1165 current++; | |
1166 break; | |
1167 } | |
1168 | |
1169 // Deserialize raw data of fixed length from 1 to 32 words. | |
1170 STATIC_ASSERT(kNumberOfFixedRawData == 32); | |
1171 SIXTEEN_CASES(kFixedRawData) | |
1172 SIXTEEN_CASES(kFixedRawData + 16) { | |
1173 byte* raw_data_out = reinterpret_cast<byte*>(current); | |
1174 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; | |
1175 source_.CopyRaw(raw_data_out, size_in_bytes); | |
1176 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); | |
1177 break; | |
1178 } | |
1179 | |
1180 STATIC_ASSERT(kNumberOfFixedRepeat == 16); | |
1181 SIXTEEN_CASES(kFixedRepeat) { | |
1182 int repeats = data - kFixedRepeatStart; | |
1183 Object* object; | |
1184 UnalignedCopy(&object, current - 1); | |
1185 DCHECK(!isolate->heap()->InNewSpace(object)); | |
1186 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); | |
1187 break; | |
1188 } | |
1189 | |
1190 #undef SIXTEEN_CASES | |
1191 #undef FOUR_CASES | |
1192 | |
1193 default: | |
1194 CHECK(false); | |
1195 } | |
1196 } | |
1197 CHECK_EQ(limit, current); | |
1198 } | |
1199 | |
1200 | |
1201 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) | |
1202 : isolate_(isolate), | |
1203 sink_(sink), | |
1204 external_reference_encoder_(isolate), | |
1205 root_index_map_(isolate), | |
1206 code_address_map_(NULL), | |
1207 large_objects_total_size_(0), | |
1208 seen_large_objects_index_(0) { | |
1209 // The serializer is meant to be used only to generate initial heap images | |
1210 // from a context in which there is only one isolate. | |
1211 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { | |
1212 pending_chunk_[i] = 0; | |
1213 max_chunk_size_[i] = static_cast<uint32_t>( | |
1214 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i))); | |
1215 } | |
1216 } | |
1217 | |
1218 | |
1219 Serializer::~Serializer() { | |
1220 if (code_address_map_ != NULL) delete code_address_map_; | |
1221 } | |
1222 | |
1223 | |
1224 void StartupSerializer::SerializeStrongReferences() { | |
1225 Isolate* isolate = this->isolate(); | |
1226 // No active threads. | |
1227 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse()); | |
1228 // No active or weak handles. | |
1229 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); | |
1230 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); | |
1231 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); | |
1232 // We don't support serializing installed extensions. | |
1233 CHECK(!isolate->has_installed_extensions()); | |
1234 isolate->heap()->IterateSmiRoots(this); | |
1235 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); | |
1236 } | |
1237 | |
1238 | |
1239 void StartupSerializer::VisitPointers(Object** start, Object** end) { | |
1240 for (Object** current = start; current < end; current++) { | |
1241 if (start == isolate()->heap()->roots_array_start()) { | |
1242 root_index_wave_front_ = | |
1243 Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); | |
1244 } | |
1245 if (ShouldBeSkipped(current)) { | |
1246 sink_->Put(kSkip, "Skip"); | |
1247 sink_->PutInt(kPointerSize, "SkipOneWord"); | |
1248 } else if ((*current)->IsSmi()) { | |
1249 sink_->Put(kOnePointerRawData, "Smi"); | |
1250 for (int i = 0; i < kPointerSize; i++) { | |
1251 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); | |
1252 } | |
1253 } else { | |
1254 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); | |
1255 } | |
1256 } | |
1257 } | |
1258 | |
1259 | |
1260 void PartialSerializer::Serialize(Object** o) { | |
1261 if ((*o)->IsContext()) { | |
1262 Context* context = Context::cast(*o); | |
1263 global_object_ = context->global_object(); | |
1264 back_reference_map()->AddGlobalProxy(context->global_proxy()); | |
1265 } | |
1266 VisitPointer(o); | |
1267 SerializeOutdatedContextsAsFixedArray(); | |
1268 Pad(); | |
1269 } | |
1270 | |
1271 | |
1272 void PartialSerializer::SerializeOutdatedContextsAsFixedArray() { | |
1273 int length = outdated_contexts_.length(); | |
1274 if (length == 0) { | |
1275 FixedArray* empty = isolate_->heap()->empty_fixed_array(); | |
1276 SerializeObject(empty, kPlain, kStartOfObject, 0); | |
1277 } else { | |
1278 // Serialize an imaginary fixed array containing outdated contexts. | |
1279 int size = FixedArray::SizeFor(length); | |
1280 Allocate(NEW_SPACE, size); | |
1281 sink_->Put(kNewObject + NEW_SPACE, "emulated FixedArray"); | |
1282 sink_->PutInt(size >> kObjectAlignmentBits, "FixedArray size in words"); | |
1283 Map* map = isolate_->heap()->fixed_array_map(); | |
1284 SerializeObject(map, kPlain, kStartOfObject, 0); | |
1285 Smi* length_smi = Smi::FromInt(length); | |
1286 sink_->Put(kOnePointerRawData, "Smi"); | |
1287 for (int i = 0; i < kPointerSize; i++) { | |
1288 sink_->Put(reinterpret_cast<byte*>(&length_smi)[i], "Byte"); | |
1289 } | |
1290 for (int i = 0; i < length; i++) { | |
1291 BackReference back_ref = outdated_contexts_[i]; | |
1292 DCHECK(BackReferenceIsAlreadyAllocated(back_ref)); | |
1293 sink_->Put(kBackref + back_ref.space(), "BackRef"); | |
1294 sink_->PutInt(back_ref.reference(), "BackRefValue"); | |
1295 } | |
1296 } | |
1297 } | |
1298 | |
1299 | |
1300 bool Serializer::ShouldBeSkipped(Object** current) { | |
1301 Object** roots = isolate()->heap()->roots_array_start(); | |
1302 return current == &roots[Heap::kStoreBufferTopRootIndex] | |
1303 || current == &roots[Heap::kStackLimitRootIndex] | |
1304 || current == &roots[Heap::kRealStackLimitRootIndex]; | |
1305 } | |
1306 | |
1307 | |
1308 void Serializer::VisitPointers(Object** start, Object** end) { | |
1309 for (Object** current = start; current < end; current++) { | |
1310 if ((*current)->IsSmi()) { | |
1311 sink_->Put(kOnePointerRawData, "Smi"); | |
1312 for (int i = 0; i < kPointerSize; i++) { | |
1313 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); | |
1314 } | |
1315 } else { | |
1316 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); | |
1317 } | |
1318 } | |
1319 } | |
1320 | |
1321 | |
1322 void Serializer::EncodeReservations( | |
1323 List<SerializedData::Reservation>* out) const { | |
1324 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { | |
1325 for (int j = 0; j < completed_chunks_[i].length(); j++) { | |
1326 out->Add(SerializedData::Reservation(completed_chunks_[i][j])); | |
1327 } | |
1328 | |
1329 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) { | |
1330 out->Add(SerializedData::Reservation(pending_chunk_[i])); | |
1331 } | |
1332 out->last().mark_as_last(); | |
1333 } | |
1334 | |
1335 out->Add(SerializedData::Reservation(large_objects_total_size_)); | |
1336 out->last().mark_as_last(); | |
1337 } | |
1338 | |
1339 | |
1340 // This ensures that the partial snapshot cache keeps things alive during GC and | |
1341 // tracks their movement. When it is called during serialization of the startup | |
1342 // snapshot nothing happens. When the partial (context) snapshot is created, | |
1343 // this array is populated with the pointers that the partial snapshot will | |
1344 // need. As that happens we emit serialized objects to the startup snapshot | |
1345 // that correspond to the elements of this cache array. On deserialization we | |
1346 // therefore need to visit the cache array. This fills it up with pointers to | |
1347 // deserialized objects. | |
1348 void SerializerDeserializer::Iterate(Isolate* isolate, | |
1349 ObjectVisitor* visitor) { | |
1350 if (isolate->serializer_enabled()) return; | |
1351 List<Object*>* cache = isolate->partial_snapshot_cache(); | |
1352 for (int i = 0;; ++i) { | |
1353 // Extend the array ready to get a value when deserializing. | |
1354 if (cache->length() <= i) cache->Add(Smi::FromInt(0)); | |
1355 visitor->VisitPointer(&cache->at(i)); | |
1356 // Sentinel is the undefined object, which is a root so it will not normally | |
1357 // be found in the cache. | |
1358 if (cache->at(i)->IsUndefined()) break; | |
1359 } | |
1360 } | |
1361 | |
1362 | |
1363 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { | |
1364 Isolate* isolate = this->isolate(); | |
1365 List<Object*>* cache = isolate->partial_snapshot_cache(); | |
1366 int new_index = cache->length(); | |
1367 | |
1368 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index); | |
1369 if (index == PartialCacheIndexMap::kInvalidIndex) { | |
1370 // We didn't find the object in the cache. So we add it to the cache and | |
1371 // then visit the pointer so that it becomes part of the startup snapshot | |
1372 // and we can refer to it from the partial snapshot. | |
1373 cache->Add(heap_object); | |
1374 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); | |
1375 // We don't recurse from the startup snapshot generator into the partial | |
1376 // snapshot generator. | |
1377 return new_index; | |
1378 } | |
1379 return index; | |
1380 } | |
1381 | |
1382 | |
1383 #ifdef DEBUG | |
1384 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) { | |
1385 DCHECK(reference.is_valid()); | |
1386 DCHECK(!reference.is_source()); | |
1387 DCHECK(!reference.is_global_proxy()); | |
1388 AllocationSpace space = reference.space(); | |
1389 int chunk_index = reference.chunk_index(); | |
1390 if (space == LO_SPACE) { | |
1391 return chunk_index == 0 && | |
1392 reference.large_object_index() < seen_large_objects_index_; | |
1393 } else if (chunk_index == completed_chunks_[space].length()) { | |
1394 return reference.chunk_offset() < pending_chunk_[space]; | |
1395 } else { | |
1396 return chunk_index < completed_chunks_[space].length() && | |
1397 reference.chunk_offset() < completed_chunks_[space][chunk_index]; | |
1398 } | |
1399 } | |
1400 #endif // DEBUG | |
1401 | |
1402 | |
1403 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, | |
1404 WhereToPoint where_to_point, int skip) { | |
1405 if (how_to_code == kPlain && where_to_point == kStartOfObject) { | |
1406 // Encode a reference to a hot object by its index in the working set. | |
1407 int index = hot_objects_.Find(obj); | |
1408 if (index != HotObjectsList::kNotFound) { | |
1409 DCHECK(index >= 0 && index < kNumberOfHotObjects); | |
1410 if (FLAG_trace_serializer) { | |
1411 PrintF(" Encoding hot object %d:", index); | |
1412 obj->ShortPrint(); | |
1413 PrintF("\n"); | |
1414 } | |
1415 if (skip != 0) { | |
1416 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip"); | |
1417 sink_->PutInt(skip, "HotObjectSkipDistance"); | |
1418 } else { | |
1419 sink_->Put(kHotObject + index, "HotObject"); | |
1420 } | |
1421 return true; | |
1422 } | |
1423 } | |
1424 BackReference back_reference = back_reference_map_.Lookup(obj); | |
1425 if (back_reference.is_valid()) { | |
1426 // Encode the location of an already deserialized object in order to write | |
1427 // its location into a later object. We can encode the location as an | |
1428 // offset fromthe start of the deserialized objects or as an offset | |
1429 // backwards from thecurrent allocation pointer. | |
1430 if (back_reference.is_source()) { | |
1431 FlushSkip(skip); | |
1432 if (FLAG_trace_serializer) PrintF(" Encoding source object\n"); | |
1433 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); | |
1434 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source"); | |
1435 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference"); | |
1436 } else if (back_reference.is_global_proxy()) { | |
1437 FlushSkip(skip); | |
1438 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n"); | |
1439 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); | |
1440 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy"); | |
1441 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference"); | |
1442 } else { | |
1443 if (FLAG_trace_serializer) { | |
1444 PrintF(" Encoding back reference to: "); | |
1445 obj->ShortPrint(); | |
1446 PrintF("\n"); | |
1447 } | |
1448 | |
1449 AllocationSpace space = back_reference.space(); | |
1450 if (skip == 0) { | |
1451 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); | |
1452 } else { | |
1453 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, | |
1454 "BackRefWithSkip"); | |
1455 sink_->PutInt(skip, "BackRefSkipDistance"); | |
1456 } | |
1457 DCHECK(BackReferenceIsAlreadyAllocated(back_reference)); | |
1458 sink_->PutInt(back_reference.reference(), "BackRefValue"); | |
1459 | |
1460 hot_objects_.Add(obj); | |
1461 } | |
1462 return true; | |
1463 } | |
1464 return false; | |
1465 } | |
1466 | |
1467 | |
1468 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, | |
1469 WhereToPoint where_to_point, int skip) { | |
1470 DCHECK(!obj->IsJSFunction()); | |
1471 | |
1472 int root_index = root_index_map_.Lookup(obj); | |
1473 // We can only encode roots as such if it has already been serialized. | |
1474 // That applies to root indices below the wave front. | |
1475 if (root_index != RootIndexMap::kInvalidRootIndex && | |
1476 root_index < root_index_wave_front_) { | |
1477 PutRoot(root_index, obj, how_to_code, where_to_point, skip); | |
1478 return; | |
1479 } | |
1480 | |
1481 if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) { | |
1482 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy); | |
1483 } | |
1484 | |
1485 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; | |
1486 | |
1487 FlushSkip(skip); | |
1488 | |
1489 // Object has not yet been serialized. Serialize it here. | |
1490 ObjectSerializer object_serializer(this, obj, sink_, how_to_code, | |
1491 where_to_point); | |
1492 object_serializer.Serialize(); | |
1493 } | |
1494 | |
1495 | |
1496 void StartupSerializer::SerializeWeakReferences() { | |
1497 // This phase comes right after the serialization (of the snapshot). | |
1498 // After we have done the partial serialization the partial snapshot cache | |
1499 // will contain some references needed to decode the partial snapshot. We | |
1500 // add one entry with 'undefined' which is the sentinel that the deserializer | |
1501 // uses to know it is done deserializing the array. | |
1502 Object* undefined = isolate()->heap()->undefined_value(); | |
1503 VisitPointer(&undefined); | |
1504 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); | |
1505 Pad(); | |
1506 } | |
1507 | |
1508 | |
1509 void Serializer::PutRoot(int root_index, | |
1510 HeapObject* object, | |
1511 SerializerDeserializer::HowToCode how_to_code, | |
1512 SerializerDeserializer::WhereToPoint where_to_point, | |
1513 int skip) { | |
1514 if (FLAG_trace_serializer) { | |
1515 PrintF(" Encoding root %d:", root_index); | |
1516 object->ShortPrint(); | |
1517 PrintF("\n"); | |
1518 } | |
1519 | |
1520 if (how_to_code == kPlain && where_to_point == kStartOfObject && | |
1521 root_index < kNumberOfRootArrayConstants && | |
1522 !isolate()->heap()->InNewSpace(object)) { | |
1523 if (skip == 0) { | |
1524 sink_->Put(kRootArrayConstants + root_index, "RootConstant"); | |
1525 } else { | |
1526 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant"); | |
1527 sink_->PutInt(skip, "SkipInPutRoot"); | |
1528 } | |
1529 } else { | |
1530 FlushSkip(skip); | |
1531 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); | |
1532 sink_->PutInt(root_index, "root_index"); | |
1533 } | |
1534 } | |
1535 | |
1536 | |
1537 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, | |
1538 WhereToPoint where_to_point, int skip) { | |
1539 if (obj->IsMap()) { | |
1540 // The code-caches link to context-specific code objects, which | |
1541 // the startup and context serializes cannot currently handle. | |
1542 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array()); | |
1543 } | |
1544 | |
1545 // Replace typed arrays by undefined. | |
1546 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value(); | |
1547 | |
1548 int root_index = root_index_map_.Lookup(obj); | |
1549 if (root_index != RootIndexMap::kInvalidRootIndex) { | |
1550 PutRoot(root_index, obj, how_to_code, where_to_point, skip); | |
1551 return; | |
1552 } | |
1553 | |
1554 if (ShouldBeInThePartialSnapshotCache(obj)) { | |
1555 FlushSkip(skip); | |
1556 | |
1557 int cache_index = PartialSnapshotCacheIndex(obj); | |
1558 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, | |
1559 "PartialSnapshotCache"); | |
1560 sink_->PutInt(cache_index, "partial_snapshot_cache_index"); | |
1561 return; | |
1562 } | |
1563 | |
1564 // Pointers from the partial snapshot to the objects in the startup snapshot | |
1565 // should go through the root array or through the partial snapshot cache. | |
1566 // If this is not the case you may have to add something to the root array. | |
1567 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid()); | |
1568 // All the internalized strings that the partial snapshot needs should be | |
1569 // either in the root table or in the partial snapshot cache. | |
1570 DCHECK(!obj->IsInternalizedString()); | |
1571 | |
1572 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; | |
1573 | |
1574 FlushSkip(skip); | |
1575 | |
1576 // Clear literal boilerplates. | |
1577 if (obj->IsJSFunction() && !JSFunction::cast(obj)->shared()->bound()) { | |
1578 FixedArray* literals = JSFunction::cast(obj)->literals(); | |
1579 for (int i = 0; i < literals->length(); i++) literals->set_undefined(i); | |
1580 } | |
1581 | |
1582 // Object has not yet been serialized. Serialize it here. | |
1583 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point); | |
1584 serializer.Serialize(); | |
1585 | |
1586 if (obj->IsContext() && | |
1587 Context::cast(obj)->global_object() == global_object_) { | |
1588 // Context refers to the current global object. This reference will | |
1589 // become outdated after deserialization. | |
1590 BackReference back_reference = back_reference_map_.Lookup(obj); | |
1591 DCHECK(back_reference.is_valid()); | |
1592 outdated_contexts_.Add(back_reference); | |
1593 } | |
1594 } | |
1595 | |
1596 | |
1597 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, | |
1598 int size, Map* map) { | |
1599 if (serializer_->code_address_map_) { | |
1600 const char* code_name = | |
1601 serializer_->code_address_map_->Lookup(object_->address()); | |
1602 LOG(serializer_->isolate_, | |
1603 CodeNameEvent(object_->address(), sink_->Position(), code_name)); | |
1604 LOG(serializer_->isolate_, | |
1605 SnapshotPositionEvent(object_->address(), sink_->Position())); | |
1606 } | |
1607 | |
1608 BackReference back_reference; | |
1609 if (space == LO_SPACE) { | |
1610 sink_->Put(kNewObject + reference_representation_ + space, | |
1611 "NewLargeObject"); | |
1612 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); | |
1613 if (object_->IsCode()) { | |
1614 sink_->Put(EXECUTABLE, "executable large object"); | |
1615 } else { | |
1616 sink_->Put(NOT_EXECUTABLE, "not executable large object"); | |
1617 } | |
1618 back_reference = serializer_->AllocateLargeObject(size); | |
1619 } else { | |
1620 bool needs_double_align = false; | |
1621 if (object_->NeedsToEnsureDoubleAlignment()) { | |
1622 // Add wriggle room for double alignment padding. | |
1623 back_reference = serializer_->Allocate(space, size + kPointerSize); | |
1624 needs_double_align = true; | |
1625 } else { | |
1626 back_reference = serializer_->Allocate(space, size); | |
1627 } | |
1628 sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); | |
1629 if (needs_double_align) | |
1630 sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel"); | |
1631 int encoded_size = size >> kObjectAlignmentBits; | |
1632 DCHECK_NE(kDoubleAlignmentSentinel, encoded_size); | |
1633 sink_->PutInt(encoded_size, "ObjectSizeInWords"); | |
1634 } | |
1635 | |
1636 // Mark this object as already serialized. | |
1637 serializer_->back_reference_map()->Add(object_, back_reference); | |
1638 | |
1639 // Serialize the map (first word of the object). | |
1640 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0); | |
1641 } | |
1642 | |
1643 | |
1644 void Serializer::ObjectSerializer::SerializeExternalString() { | |
1645 // Instead of serializing this as an external string, we serialize | |
1646 // an imaginary sequential string with the same content. | |
1647 Isolate* isolate = serializer_->isolate(); | |
1648 DCHECK(object_->IsExternalString()); | |
1649 DCHECK(object_->map() != isolate->heap()->native_source_string_map()); | |
1650 ExternalString* string = ExternalString::cast(object_); | |
1651 int length = string->length(); | |
1652 Map* map; | |
1653 int content_size; | |
1654 int allocation_size; | |
1655 const byte* resource; | |
1656 // Find the map and size for the imaginary sequential string. | |
1657 bool internalized = object_->IsInternalizedString(); | |
1658 if (object_->IsExternalOneByteString()) { | |
1659 map = internalized ? isolate->heap()->one_byte_internalized_string_map() | |
1660 : isolate->heap()->one_byte_string_map(); | |
1661 allocation_size = SeqOneByteString::SizeFor(length); | |
1662 content_size = length * kCharSize; | |
1663 resource = reinterpret_cast<const byte*>( | |
1664 ExternalOneByteString::cast(string)->resource()->data()); | |
1665 } else { | |
1666 map = internalized ? isolate->heap()->internalized_string_map() | |
1667 : isolate->heap()->string_map(); | |
1668 allocation_size = SeqTwoByteString::SizeFor(length); | |
1669 content_size = length * kShortSize; | |
1670 resource = reinterpret_cast<const byte*>( | |
1671 ExternalTwoByteString::cast(string)->resource()->data()); | |
1672 } | |
1673 | |
1674 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize) | |
1675 ? LO_SPACE | |
1676 : OLD_SPACE; | |
1677 SerializePrologue(space, allocation_size, map); | |
1678 | |
1679 // Output the rest of the imaginary string. | |
1680 int bytes_to_output = allocation_size - HeapObject::kHeaderSize; | |
1681 | |
1682 // Output raw data header. Do not bother with common raw length cases here. | |
1683 sink_->Put(kVariableRawData, "RawDataForString"); | |
1684 sink_->PutInt(bytes_to_output, "length"); | |
1685 | |
1686 // Serialize string header (except for map). | |
1687 Address string_start = string->address(); | |
1688 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) { | |
1689 sink_->PutSection(string_start[i], "StringHeader"); | |
1690 } | |
1691 | |
1692 // Serialize string content. | |
1693 sink_->PutRaw(resource, content_size, "StringContent"); | |
1694 | |
1695 // Since the allocation size is rounded up to object alignment, there | |
1696 // maybe left-over bytes that need to be padded. | |
1697 int padding_size = allocation_size - SeqString::kHeaderSize - content_size; | |
1698 DCHECK(0 <= padding_size && padding_size < kObjectAlignment); | |
1699 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding"); | |
1700 | |
1701 sink_->Put(kSkip, "SkipAfterString"); | |
1702 sink_->PutInt(bytes_to_output, "SkipDistance"); | |
1703 } | |
1704 | |
1705 | |
1706 void Serializer::ObjectSerializer::Serialize() { | |
1707 if (FLAG_trace_serializer) { | |
1708 PrintF(" Encoding heap object: "); | |
1709 object_->ShortPrint(); | |
1710 PrintF("\n"); | |
1711 } | |
1712 | |
1713 // We cannot serialize typed array objects correctly. | |
1714 DCHECK(!object_->IsJSTypedArray()); | |
1715 | |
1716 if (object_->IsScript()) { | |
1717 // Clear cached line ends. | |
1718 Object* undefined = serializer_->isolate()->heap()->undefined_value(); | |
1719 Script::cast(object_)->set_line_ends(undefined); | |
1720 } | |
1721 | |
1722 if (object_->IsExternalString()) { | |
1723 Heap* heap = serializer_->isolate()->heap(); | |
1724 if (object_->map() != heap->native_source_string_map()) { | |
1725 // Usually we cannot recreate resources for external strings. To work | |
1726 // around this, external strings are serialized to look like ordinary | |
1727 // sequential strings. | |
1728 // The exception are native source code strings, since we can recreate | |
1729 // their resources. In that case we fall through and leave it to | |
1730 // VisitExternalOneByteString further down. | |
1731 SerializeExternalString(); | |
1732 return; | |
1733 } | |
1734 } | |
1735 | |
1736 int size = object_->Size(); | |
1737 Map* map = object_->map(); | |
1738 AllocationSpace space = | |
1739 MemoryChunk::FromAddress(object_->address())->owner()->identity(); | |
1740 SerializePrologue(space, size, map); | |
1741 | |
1742 // Serialize the rest of the object. | |
1743 CHECK_EQ(0, bytes_processed_so_far_); | |
1744 bytes_processed_so_far_ = kPointerSize; | |
1745 | |
1746 object_->IterateBody(map->instance_type(), size, this); | |
1747 OutputRawData(object_->address() + size); | |
1748 } | |
1749 | |
1750 | |
1751 void Serializer::ObjectSerializer::VisitPointers(Object** start, | |
1752 Object** end) { | |
1753 Object** current = start; | |
1754 while (current < end) { | |
1755 while (current < end && (*current)->IsSmi()) current++; | |
1756 if (current < end) OutputRawData(reinterpret_cast<Address>(current)); | |
1757 | |
1758 while (current < end && !(*current)->IsSmi()) { | |
1759 HeapObject* current_contents = HeapObject::cast(*current); | |
1760 int root_index = serializer_->root_index_map()->Lookup(current_contents); | |
1761 // Repeats are not subject to the write barrier so we can only use | |
1762 // immortal immovable root members. They are never in new space. | |
1763 if (current != start && root_index != RootIndexMap::kInvalidRootIndex && | |
1764 Heap::RootIsImmortalImmovable(root_index) && | |
1765 current_contents == current[-1]) { | |
1766 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents)); | |
1767 int repeat_count = 1; | |
1768 while (¤t[repeat_count] < end - 1 && | |
1769 current[repeat_count] == current_contents) { | |
1770 repeat_count++; | |
1771 } | |
1772 current += repeat_count; | |
1773 bytes_processed_so_far_ += repeat_count * kPointerSize; | |
1774 if (repeat_count > kNumberOfFixedRepeat) { | |
1775 sink_->Put(kVariableRepeat, "VariableRepeat"); | |
1776 sink_->PutInt(repeat_count, "repeat count"); | |
1777 } else { | |
1778 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat"); | |
1779 } | |
1780 } else { | |
1781 serializer_->SerializeObject( | |
1782 current_contents, kPlain, kStartOfObject, 0); | |
1783 bytes_processed_so_far_ += kPointerSize; | |
1784 current++; | |
1785 } | |
1786 } | |
1787 } | |
1788 } | |
1789 | |
1790 | |
1791 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { | |
1792 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. | |
1793 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; | |
1794 | |
1795 int skip = OutputRawData(rinfo->target_address_address(), | |
1796 kCanReturnSkipInsteadOfSkipping); | |
1797 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; | |
1798 Object* object = rinfo->target_object(); | |
1799 serializer_->SerializeObject(HeapObject::cast(object), how_to_code, | |
1800 kStartOfObject, skip); | |
1801 bytes_processed_so_far_ += rinfo->target_address_size(); | |
1802 } | |
1803 | |
1804 | |
1805 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { | |
1806 int skip = OutputRawData(reinterpret_cast<Address>(p), | |
1807 kCanReturnSkipInsteadOfSkipping); | |
1808 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); | |
1809 sink_->PutInt(skip, "SkipB4ExternalRef"); | |
1810 Address target = *p; | |
1811 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); | |
1812 bytes_processed_so_far_ += kPointerSize; | |
1813 } | |
1814 | |
1815 | |
1816 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { | |
1817 int skip = OutputRawData(rinfo->target_address_address(), | |
1818 kCanReturnSkipInsteadOfSkipping); | |
1819 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; | |
1820 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); | |
1821 sink_->PutInt(skip, "SkipB4ExternalRef"); | |
1822 Address target = rinfo->target_external_reference(); | |
1823 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); | |
1824 bytes_processed_so_far_ += rinfo->target_address_size(); | |
1825 } | |
1826 | |
1827 | |
1828 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) { | |
1829 // We can only reference to internal references of code that has been output. | |
1830 DCHECK(is_code_object_ && code_has_been_output_); | |
1831 // We do not use skip from last patched pc to find the pc to patch, since | |
1832 // target_address_address may not return addresses in ascending order when | |
1833 // used for internal references. External references may be stored at the | |
1834 // end of the code in the constant pool, whereas internal references are | |
1835 // inline. That would cause the skip to be negative. Instead, we store the | |
1836 // offset from code entry. | |
1837 Address entry = Code::cast(object_)->entry(); | |
1838 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry; | |
1839 intptr_t target_offset = rinfo->target_internal_reference() - entry; | |
1840 DCHECK(0 <= pc_offset && | |
1841 pc_offset <= Code::cast(object_)->instruction_size()); | |
1842 DCHECK(0 <= target_offset && | |
1843 target_offset <= Code::cast(object_)->instruction_size()); | |
1844 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE | |
1845 ? kInternalReference | |
1846 : kInternalReferenceEncoded, | |
1847 "InternalRef"); | |
1848 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address"); | |
1849 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value"); | |
1850 } | |
1851 | |
1852 | |
1853 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { | |
1854 int skip = OutputRawData(rinfo->target_address_address(), | |
1855 kCanReturnSkipInsteadOfSkipping); | |
1856 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; | |
1857 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); | |
1858 sink_->PutInt(skip, "SkipB4ExternalRef"); | |
1859 Address target = rinfo->target_address(); | |
1860 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); | |
1861 bytes_processed_so_far_ += rinfo->target_address_size(); | |
1862 } | |
1863 | |
1864 | |
1865 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { | |
1866 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. | |
1867 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; | |
1868 | |
1869 int skip = OutputRawData(rinfo->target_address_address(), | |
1870 kCanReturnSkipInsteadOfSkipping); | |
1871 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); | |
1872 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); | |
1873 bytes_processed_so_far_ += rinfo->target_address_size(); | |
1874 } | |
1875 | |
1876 | |
1877 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { | |
1878 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); | |
1879 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); | |
1880 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); | |
1881 bytes_processed_so_far_ += kPointerSize; | |
1882 } | |
1883 | |
1884 | |
1885 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { | |
1886 // Out-of-line constant pool entries will be visited by the ConstantPoolArray. | |
1887 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return; | |
1888 | |
1889 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); | |
1890 Cell* object = Cell::cast(rinfo->target_cell()); | |
1891 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); | |
1892 bytes_processed_so_far_ += kPointerSize; | |
1893 } | |
1894 | |
1895 | |
1896 void Serializer::ObjectSerializer::VisitExternalOneByteString( | |
1897 v8::String::ExternalOneByteStringResource** resource_pointer) { | |
1898 Address references_start = reinterpret_cast<Address>(resource_pointer); | |
1899 OutputRawData(references_start); | |
1900 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) { | |
1901 Object* source = | |
1902 serializer_->isolate()->heap()->natives_source_cache()->get(i); | |
1903 if (!source->IsUndefined()) { | |
1904 ExternalOneByteString* string = ExternalOneByteString::cast(source); | |
1905 typedef v8::String::ExternalOneByteStringResource Resource; | |
1906 const Resource* resource = string->resource(); | |
1907 if (resource == *resource_pointer) { | |
1908 sink_->Put(kNativesStringResource, "NativesStringResource"); | |
1909 sink_->PutSection(i, "NativesStringResourceEnd"); | |
1910 bytes_processed_so_far_ += sizeof(resource); | |
1911 return; | |
1912 } | |
1913 } | |
1914 } | |
1915 // One of the strings in the natives cache should match the resource. We | |
1916 // don't expect any other kinds of external strings here. | |
1917 UNREACHABLE(); | |
1918 } | |
1919 | |
1920 | |
1921 Address Serializer::ObjectSerializer::PrepareCode() { | |
1922 // To make snapshots reproducible, we make a copy of the code object | |
1923 // and wipe all pointers in the copy, which we then serialize. | |
1924 Code* original = Code::cast(object_); | |
1925 Code* code = serializer_->CopyCode(original); | |
1926 // Code age headers are not serializable. | |
1927 code->MakeYoung(serializer_->isolate()); | |
1928 int mode_mask = RelocInfo::kCodeTargetMask | | |
1929 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | | |
1930 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | | |
1931 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | | |
1932 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | | |
1933 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); | |
1934 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { | |
1935 RelocInfo* rinfo = it.rinfo(); | |
1936 if (!(FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool())) { | |
1937 rinfo->WipeOut(); | |
1938 } | |
1939 } | |
1940 // We need to wipe out the header fields *after* wiping out the | |
1941 // relocations, because some of these fields are needed for the latter. | |
1942 code->WipeOutHeader(); | |
1943 return code->address(); | |
1944 } | |
1945 | |
1946 | |
1947 int Serializer::ObjectSerializer::OutputRawData( | |
1948 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { | |
1949 Address object_start = object_->address(); | |
1950 int base = bytes_processed_so_far_; | |
1951 int up_to_offset = static_cast<int>(up_to - object_start); | |
1952 int to_skip = up_to_offset - bytes_processed_so_far_; | |
1953 int bytes_to_output = to_skip; | |
1954 bytes_processed_so_far_ += to_skip; | |
1955 // This assert will fail if the reloc info gives us the target_address_address | |
1956 // locations in a non-ascending order. Luckily that doesn't happen. | |
1957 DCHECK(to_skip >= 0); | |
1958 bool outputting_code = false; | |
1959 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) { | |
1960 // Output the code all at once and fix later. | |
1961 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; | |
1962 outputting_code = true; | |
1963 code_has_been_output_ = true; | |
1964 } | |
1965 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) { | |
1966 if (!outputting_code && bytes_to_output == to_skip && | |
1967 IsAligned(bytes_to_output, kPointerAlignment) && | |
1968 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) { | |
1969 int size_in_words = bytes_to_output >> kPointerSizeLog2; | |
1970 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData"); | |
1971 to_skip = 0; // This instruction includes skip. | |
1972 } else { | |
1973 // We always end up here if we are outputting the code of a code object. | |
1974 sink_->Put(kVariableRawData, "VariableRawData"); | |
1975 sink_->PutInt(bytes_to_output, "length"); | |
1976 } | |
1977 | |
1978 if (is_code_object_) object_start = PrepareCode(); | |
1979 | |
1980 const char* description = is_code_object_ ? "Code" : "Byte"; | |
1981 #ifdef MEMORY_SANITIZER | |
1982 // Object sizes are usually rounded up with uninitialized padding space. | |
1983 MSAN_MEMORY_IS_INITIALIZED(object_start + base, bytes_to_output); | |
1984 #endif // MEMORY_SANITIZER | |
1985 sink_->PutRaw(object_start + base, bytes_to_output, description); | |
1986 } | |
1987 if (to_skip != 0 && return_skip == kIgnoringReturn) { | |
1988 sink_->Put(kSkip, "Skip"); | |
1989 sink_->PutInt(to_skip, "SkipDistance"); | |
1990 to_skip = 0; | |
1991 } | |
1992 return to_skip; | |
1993 } | |
1994 | |
1995 | |
1996 BackReference Serializer::AllocateLargeObject(int size) { | |
1997 // Large objects are allocated one-by-one when deserializing. We do not | |
1998 // have to keep track of multiple chunks. | |
1999 large_objects_total_size_ += size; | |
2000 return BackReference::LargeObjectReference(seen_large_objects_index_++); | |
2001 } | |
2002 | |
2003 | |
2004 BackReference Serializer::Allocate(AllocationSpace space, int size) { | |
2005 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); | |
2006 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space))); | |
2007 uint32_t new_chunk_size = pending_chunk_[space] + size; | |
2008 if (new_chunk_size > max_chunk_size(space)) { | |
2009 // The new chunk size would not fit onto a single page. Complete the | |
2010 // current chunk and start a new one. | |
2011 sink_->Put(kNextChunk, "NextChunk"); | |
2012 sink_->Put(space, "NextChunkSpace"); | |
2013 completed_chunks_[space].Add(pending_chunk_[space]); | |
2014 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex); | |
2015 pending_chunk_[space] = 0; | |
2016 new_chunk_size = size; | |
2017 } | |
2018 uint32_t offset = pending_chunk_[space]; | |
2019 pending_chunk_[space] = new_chunk_size; | |
2020 return BackReference::Reference(space, completed_chunks_[space].length(), | |
2021 offset); | |
2022 } | |
2023 | |
2024 | |
2025 void Serializer::Pad() { | |
2026 // The non-branching GetInt will read up to 3 bytes too far, so we need | |
2027 // to pad the snapshot to make sure we don't read over the end. | |
2028 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { | |
2029 sink_->Put(kNop, "Padding"); | |
2030 } | |
2031 // Pad up to pointer size for checksum. | |
2032 while (!IsAligned(sink_->Position(), kPointerAlignment)) { | |
2033 sink_->Put(kNop, "Padding"); | |
2034 } | |
2035 } | |
2036 | |
2037 | |
2038 void Serializer::InitializeCodeAddressMap() { | |
2039 isolate_->InitializeLoggingAndCounters(); | |
2040 code_address_map_ = new CodeAddressMap(isolate_); | |
2041 } | |
2042 | |
2043 | |
2044 Code* Serializer::CopyCode(Code* code) { | |
2045 code_buffer_.Rewind(0); // Clear buffer without deleting backing store. | |
2046 int size = code->CodeSize(); | |
2047 code_buffer_.AddAll(Vector<byte>(code->address(), size)); | |
2048 return Code::cast(HeapObject::FromAddress(&code_buffer_.first())); | |
2049 } | |
2050 | |
2051 | |
2052 ScriptData* CodeSerializer::Serialize(Isolate* isolate, | |
2053 Handle<SharedFunctionInfo> info, | |
2054 Handle<String> source) { | |
2055 base::ElapsedTimer timer; | |
2056 if (FLAG_profile_deserialization) timer.Start(); | |
2057 if (FLAG_trace_serializer) { | |
2058 PrintF("[Serializing from"); | |
2059 Object* script = info->script(); | |
2060 if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); | |
2061 PrintF("]\n"); | |
2062 } | |
2063 | |
2064 // Serialize code object. | |
2065 SnapshotByteSink sink(info->code()->CodeSize() * 2); | |
2066 CodeSerializer cs(isolate, &sink, *source, info->code()); | |
2067 DisallowHeapAllocation no_gc; | |
2068 Object** location = Handle<Object>::cast(info).location(); | |
2069 cs.VisitPointer(location); | |
2070 cs.Pad(); | |
2071 | |
2072 SerializedCodeData data(sink.data(), cs); | |
2073 ScriptData* script_data = data.GetScriptData(); | |
2074 | |
2075 if (FLAG_profile_deserialization) { | |
2076 double ms = timer.Elapsed().InMillisecondsF(); | |
2077 int length = script_data->length(); | |
2078 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); | |
2079 } | |
2080 | |
2081 return script_data; | |
2082 } | |
2083 | |
2084 | |
2085 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, | |
2086 WhereToPoint where_to_point, int skip) { | |
2087 int root_index = root_index_map_.Lookup(obj); | |
2088 if (root_index != RootIndexMap::kInvalidRootIndex) { | |
2089 PutRoot(root_index, obj, how_to_code, where_to_point, skip); | |
2090 return; | |
2091 } | |
2092 | |
2093 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; | |
2094 | |
2095 FlushSkip(skip); | |
2096 | |
2097 if (obj->IsCode()) { | |
2098 Code* code_object = Code::cast(obj); | |
2099 switch (code_object->kind()) { | |
2100 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. | |
2101 case Code::HANDLER: // No handlers patched in yet. | |
2102 case Code::REGEXP: // No regexp literals initialized yet. | |
2103 case Code::NUMBER_OF_KINDS: // Pseudo enum value. | |
2104 CHECK(false); | |
2105 case Code::BUILTIN: | |
2106 SerializeBuiltin(code_object->builtin_index(), how_to_code, | |
2107 where_to_point); | |
2108 return; | |
2109 case Code::STUB: | |
2110 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); | |
2111 return; | |
2112 #define IC_KIND_CASE(KIND) case Code::KIND: | |
2113 IC_KIND_LIST(IC_KIND_CASE) | |
2114 #undef IC_KIND_CASE | |
2115 SerializeIC(code_object, how_to_code, where_to_point); | |
2116 return; | |
2117 case Code::FUNCTION: | |
2118 DCHECK(code_object->has_reloc_info_for_serialization()); | |
2119 // Only serialize the code for the toplevel function unless specified | |
2120 // by flag. Replace code of inner functions by the lazy compile builtin. | |
2121 // This is safe, as checked in Compiler::BuildFunctionInfo. | |
2122 if (code_object != main_code_ && !FLAG_serialize_inner) { | |
2123 SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point); | |
2124 } else { | |
2125 SerializeGeneric(code_object, how_to_code, where_to_point); | |
2126 } | |
2127 return; | |
2128 } | |
2129 UNREACHABLE(); | |
2130 } | |
2131 | |
2132 // Past this point we should not see any (context-specific) maps anymore. | |
2133 CHECK(!obj->IsMap()); | |
2134 // There should be no references to the global object embedded. | |
2135 CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject()); | |
2136 // There should be no hash table embedded. They would require rehashing. | |
2137 CHECK(!obj->IsHashTable()); | |
2138 // We expect no instantiated function objects or contexts. | |
2139 CHECK(!obj->IsJSFunction() && !obj->IsContext()); | |
2140 | |
2141 SerializeGeneric(obj, how_to_code, where_to_point); | |
2142 } | |
2143 | |
2144 | |
2145 void CodeSerializer::SerializeGeneric(HeapObject* heap_object, | |
2146 HowToCode how_to_code, | |
2147 WhereToPoint where_to_point) { | |
2148 if (heap_object->IsInternalizedString()) num_internalized_strings_++; | |
2149 | |
2150 // Object has not yet been serialized. Serialize it here. | |
2151 ObjectSerializer serializer(this, heap_object, sink_, how_to_code, | |
2152 where_to_point); | |
2153 serializer.Serialize(); | |
2154 } | |
2155 | |
2156 | |
2157 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, | |
2158 WhereToPoint where_to_point) { | |
2159 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || | |
2160 (how_to_code == kPlain && where_to_point == kInnerPointer) || | |
2161 (how_to_code == kFromCode && where_to_point == kInnerPointer)); | |
2162 DCHECK_LT(builtin_index, Builtins::builtin_count); | |
2163 DCHECK_LE(0, builtin_index); | |
2164 | |
2165 if (FLAG_trace_serializer) { | |
2166 PrintF(" Encoding builtin: %s\n", | |
2167 isolate()->builtins()->name(builtin_index)); | |
2168 } | |
2169 | |
2170 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); | |
2171 sink_->PutInt(builtin_index, "builtin_index"); | |
2172 } | |
2173 | |
2174 | |
2175 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, | |
2176 WhereToPoint where_to_point) { | |
2177 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || | |
2178 (how_to_code == kPlain && where_to_point == kInnerPointer) || | |
2179 (how_to_code == kFromCode && where_to_point == kInnerPointer)); | |
2180 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); | |
2181 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); | |
2182 | |
2183 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; | |
2184 | |
2185 if (FLAG_trace_serializer) { | |
2186 PrintF(" Encoding code stub %s as %d\n", | |
2187 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false), | |
2188 index); | |
2189 } | |
2190 | |
2191 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); | |
2192 sink_->PutInt(index, "CodeStub key"); | |
2193 } | |
2194 | |
2195 | |
2196 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, | |
2197 WhereToPoint where_to_point) { | |
2198 // The IC may be implemented as a stub. | |
2199 uint32_t stub_key = ic->stub_key(); | |
2200 if (stub_key != CodeStub::NoCacheKey()) { | |
2201 if (FLAG_trace_serializer) { | |
2202 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); | |
2203 } | |
2204 SerializeCodeStub(stub_key, how_to_code, where_to_point); | |
2205 return; | |
2206 } | |
2207 // The IC may be implemented as builtin. Only real builtins have an | |
2208 // actual builtin_index value attached (otherwise it's just garbage). | |
2209 // Compare to make sure we are really dealing with a builtin. | |
2210 int builtin_index = ic->builtin_index(); | |
2211 if (builtin_index < Builtins::builtin_count) { | |
2212 Builtins::Name name = static_cast<Builtins::Name>(builtin_index); | |
2213 Code* builtin = isolate()->builtins()->builtin(name); | |
2214 if (builtin == ic) { | |
2215 if (FLAG_trace_serializer) { | |
2216 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); | |
2217 } | |
2218 DCHECK(ic->kind() == Code::KEYED_LOAD_IC || | |
2219 ic->kind() == Code::KEYED_STORE_IC); | |
2220 SerializeBuiltin(builtin_index, how_to_code, where_to_point); | |
2221 return; | |
2222 } | |
2223 } | |
2224 // The IC may also just be a piece of code kept in the non_monomorphic_cache. | |
2225 // In that case, just serialize as a normal code object. | |
2226 if (FLAG_trace_serializer) { | |
2227 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); | |
2228 } | |
2229 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); | |
2230 SerializeGeneric(ic, how_to_code, where_to_point); | |
2231 } | |
2232 | |
2233 | |
2234 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { | |
2235 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). | |
2236 int index = 0; | |
2237 while (index < stub_keys_.length()) { | |
2238 if (stub_keys_[index] == stub_key) return index; | |
2239 index++; | |
2240 } | |
2241 stub_keys_.Add(stub_key); | |
2242 return index; | |
2243 } | |
2244 | |
2245 | |
2246 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize( | |
2247 Isolate* isolate, ScriptData* cached_data, Handle<String> source) { | |
2248 base::ElapsedTimer timer; | |
2249 if (FLAG_profile_deserialization) timer.Start(); | |
2250 | |
2251 HandleScope scope(isolate); | |
2252 | |
2253 SmartPointer<SerializedCodeData> scd( | |
2254 SerializedCodeData::FromCachedData(isolate, cached_data, *source)); | |
2255 if (scd.is_empty()) { | |
2256 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); | |
2257 DCHECK(cached_data->rejected()); | |
2258 return MaybeHandle<SharedFunctionInfo>(); | |
2259 } | |
2260 | |
2261 // Eagerly expand string table to avoid allocations during deserialization. | |
2262 StringTable::EnsureCapacityForDeserialization(isolate, | |
2263 scd->NumInternalizedStrings()); | |
2264 | |
2265 // Prepare and register list of attached objects. | |
2266 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys(); | |
2267 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New( | |
2268 code_stub_keys.length() + kCodeStubsBaseIndex); | |
2269 attached_objects[kSourceObjectIndex] = source; | |
2270 for (int i = 0; i < code_stub_keys.length(); i++) { | |
2271 attached_objects[i + kCodeStubsBaseIndex] = | |
2272 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); | |
2273 } | |
2274 | |
2275 Deserializer deserializer(scd.get()); | |
2276 deserializer.SetAttachedObjects(attached_objects); | |
2277 | |
2278 // Deserialize. | |
2279 Handle<SharedFunctionInfo> result; | |
2280 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { | |
2281 // Deserializing may fail if the reservations cannot be fulfilled. | |
2282 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); | |
2283 return MaybeHandle<SharedFunctionInfo>(); | |
2284 } | |
2285 deserializer.FlushICacheForNewCodeObjects(); | |
2286 | |
2287 if (FLAG_profile_deserialization) { | |
2288 double ms = timer.Elapsed().InMillisecondsF(); | |
2289 int length = cached_data->length(); | |
2290 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); | |
2291 } | |
2292 result->set_deserialized(true); | |
2293 | |
2294 if (isolate->logger()->is_logging_code_events() || | |
2295 isolate->cpu_profiler()->is_profiling()) { | |
2296 String* name = isolate->heap()->empty_string(); | |
2297 if (result->script()->IsScript()) { | |
2298 Script* script = Script::cast(result->script()); | |
2299 if (script->name()->IsString()) name = String::cast(script->name()); | |
2300 } | |
2301 isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(), | |
2302 *result, NULL, name); | |
2303 } | |
2304 return scope.CloseAndEscape(result); | |
2305 } | |
2306 | |
2307 | |
2308 void SerializedData::AllocateData(int size) { | |
2309 DCHECK(!owns_data_); | |
2310 data_ = NewArray<byte>(size); | |
2311 size_ = size; | |
2312 owns_data_ = true; | |
2313 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment)); | |
2314 } | |
2315 | |
2316 | |
2317 SnapshotData::SnapshotData(const Serializer& ser) { | |
2318 DisallowHeapAllocation no_gc; | |
2319 List<Reservation> reservations; | |
2320 ser.EncodeReservations(&reservations); | |
2321 const List<byte>& payload = ser.sink()->data(); | |
2322 | |
2323 // Calculate sizes. | |
2324 int reservation_size = reservations.length() * kInt32Size; | |
2325 int size = kHeaderSize + reservation_size + payload.length(); | |
2326 | |
2327 // Allocate backing store and create result data. | |
2328 AllocateData(size); | |
2329 | |
2330 // Set header values. | |
2331 SetMagicNumber(ser.isolate()); | |
2332 SetHeaderValue(kCheckSumOffset, Version::Hash()); | |
2333 SetHeaderValue(kNumReservationsOffset, reservations.length()); | |
2334 SetHeaderValue(kPayloadLengthOffset, payload.length()); | |
2335 | |
2336 // Copy reservation chunk sizes. | |
2337 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), | |
2338 reservation_size); | |
2339 | |
2340 // Copy serialized data. | |
2341 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(), | |
2342 static_cast<size_t>(payload.length())); | |
2343 } | |
2344 | |
2345 | |
2346 bool SnapshotData::IsSane() { | |
2347 return GetHeaderValue(kCheckSumOffset) == Version::Hash(); | |
2348 } | |
2349 | |
2350 | |
2351 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const { | |
2352 return Vector<const Reservation>( | |
2353 reinterpret_cast<const Reservation*>(data_ + kHeaderSize), | |
2354 GetHeaderValue(kNumReservationsOffset)); | |
2355 } | |
2356 | |
2357 | |
2358 Vector<const byte> SnapshotData::Payload() const { | |
2359 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; | |
2360 const byte* payload = data_ + kHeaderSize + reservations_size; | |
2361 int length = GetHeaderValue(kPayloadLengthOffset); | |
2362 DCHECK_EQ(data_ + size_, payload + length); | |
2363 return Vector<const byte>(payload, length); | |
2364 } | |
2365 | |
2366 | |
2367 class Checksum { | |
2368 public: | |
2369 explicit Checksum(Vector<const byte> payload) { | |
2370 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. | |
2371 uintptr_t a = 1; | |
2372 uintptr_t b = 0; | |
2373 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start()); | |
2374 DCHECK(IsAligned(payload.length(), kIntptrSize)); | |
2375 const uintptr_t* end = cur + payload.length() / kIntptrSize; | |
2376 while (cur < end) { | |
2377 // Unsigned overflow expected and intended. | |
2378 a += *cur++; | |
2379 b += a; | |
2380 } | |
2381 #if V8_HOST_ARCH_64_BIT | |
2382 a ^= a >> 32; | |
2383 b ^= b >> 32; | |
2384 #endif // V8_HOST_ARCH_64_BIT | |
2385 a_ = static_cast<uint32_t>(a); | |
2386 b_ = static_cast<uint32_t>(b); | |
2387 } | |
2388 | |
2389 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } | |
2390 | |
2391 uint32_t a() const { return a_; } | |
2392 uint32_t b() const { return b_; } | |
2393 | |
2394 private: | |
2395 uint32_t a_; | |
2396 uint32_t b_; | |
2397 | |
2398 DISALLOW_COPY_AND_ASSIGN(Checksum); | |
2399 }; | |
2400 | |
2401 | |
2402 SerializedCodeData::SerializedCodeData(const List<byte>& payload, | |
2403 const CodeSerializer& cs) { | |
2404 DisallowHeapAllocation no_gc; | |
2405 const List<uint32_t>* stub_keys = cs.stub_keys(); | |
2406 | |
2407 List<Reservation> reservations; | |
2408 cs.EncodeReservations(&reservations); | |
2409 | |
2410 // Calculate sizes. | |
2411 int reservation_size = reservations.length() * kInt32Size; | |
2412 int num_stub_keys = stub_keys->length(); | |
2413 int stub_keys_size = stub_keys->length() * kInt32Size; | |
2414 int payload_offset = kHeaderSize + reservation_size + stub_keys_size; | |
2415 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); | |
2416 int size = padded_payload_offset + payload.length(); | |
2417 | |
2418 // Allocate backing store and create result data. | |
2419 AllocateData(size); | |
2420 | |
2421 // Set header values. | |
2422 SetMagicNumber(cs.isolate()); | |
2423 SetHeaderValue(kVersionHashOffset, Version::Hash()); | |
2424 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); | |
2425 SetHeaderValue(kCpuFeaturesOffset, | |
2426 static_cast<uint32_t>(CpuFeatures::SupportedFeatures())); | |
2427 SetHeaderValue(kFlagHashOffset, FlagList::Hash()); | |
2428 SetHeaderValue(kNumInternalizedStringsOffset, cs.num_internalized_strings()); | |
2429 SetHeaderValue(kNumReservationsOffset, reservations.length()); | |
2430 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); | |
2431 SetHeaderValue(kPayloadLengthOffset, payload.length()); | |
2432 | |
2433 Checksum checksum(payload.ToConstVector()); | |
2434 SetHeaderValue(kChecksum1Offset, checksum.a()); | |
2435 SetHeaderValue(kChecksum2Offset, checksum.b()); | |
2436 | |
2437 // Copy reservation chunk sizes. | |
2438 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), | |
2439 reservation_size); | |
2440 | |
2441 // Copy code stub keys. | |
2442 CopyBytes(data_ + kHeaderSize + reservation_size, | |
2443 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size); | |
2444 | |
2445 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); | |
2446 | |
2447 // Copy serialized data. | |
2448 CopyBytes(data_ + padded_payload_offset, payload.begin(), | |
2449 static_cast<size_t>(payload.length())); | |
2450 } | |
2451 | |
2452 | |
2453 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( | |
2454 Isolate* isolate, String* source) const { | |
2455 uint32_t magic_number = GetMagicNumber(); | |
2456 uint32_t version_hash = GetHeaderValue(kVersionHashOffset); | |
2457 uint32_t source_hash = GetHeaderValue(kSourceHashOffset); | |
2458 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); | |
2459 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); | |
2460 uint32_t c1 = GetHeaderValue(kChecksum1Offset); | |
2461 uint32_t c2 = GetHeaderValue(kChecksum2Offset); | |
2462 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; | |
2463 if (version_hash != Version::Hash()) return VERSION_MISMATCH; | |
2464 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; | |
2465 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) { | |
2466 return CPU_FEATURES_MISMATCH; | |
2467 } | |
2468 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; | |
2469 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; | |
2470 return CHECK_SUCCESS; | |
2471 } | |
2472 | |
2473 | |
2474 // Return ScriptData object and relinquish ownership over it to the caller. | |
2475 ScriptData* SerializedCodeData::GetScriptData() { | |
2476 DCHECK(owns_data_); | |
2477 ScriptData* result = new ScriptData(data_, size_); | |
2478 result->AcquireDataOwnership(); | |
2479 owns_data_ = false; | |
2480 data_ = NULL; | |
2481 return result; | |
2482 } | |
2483 | |
2484 | |
2485 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations() | |
2486 const { | |
2487 return Vector<const Reservation>( | |
2488 reinterpret_cast<const Reservation*>(data_ + kHeaderSize), | |
2489 GetHeaderValue(kNumReservationsOffset)); | |
2490 } | |
2491 | |
2492 | |
2493 Vector<const byte> SerializedCodeData::Payload() const { | |
2494 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; | |
2495 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; | |
2496 int payload_offset = kHeaderSize + reservations_size + code_stubs_size; | |
2497 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); | |
2498 const byte* payload = data_ + padded_payload_offset; | |
2499 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment)); | |
2500 int length = GetHeaderValue(kPayloadLengthOffset); | |
2501 DCHECK_EQ(data_ + size_, payload + length); | |
2502 return Vector<const byte>(payload, length); | |
2503 } | |
2504 | |
2505 | |
2506 int SerializedCodeData::NumInternalizedStrings() const { | |
2507 return GetHeaderValue(kNumInternalizedStringsOffset); | |
2508 } | |
2509 | |
2510 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const { | |
2511 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; | |
2512 const byte* start = data_ + kHeaderSize + reservations_size; | |
2513 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start), | |
2514 GetHeaderValue(kNumCodeStubKeysOffset)); | |
2515 } | |
2516 | |
2517 | |
2518 SerializedCodeData::SerializedCodeData(ScriptData* data) | |
2519 : SerializedData(const_cast<byte*>(data->data()), data->length()) {} | |
2520 | |
2521 | |
2522 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, | |
2523 ScriptData* cached_data, | |
2524 String* source) { | |
2525 DisallowHeapAllocation no_gc; | |
2526 SerializedCodeData* scd = new SerializedCodeData(cached_data); | |
2527 SanityCheckResult r = scd->SanityCheck(isolate, source); | |
2528 if (r == CHECK_SUCCESS) return scd; | |
2529 cached_data->Reject(); | |
2530 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); | |
2531 delete scd; | |
2532 return NULL; | |
2533 } | |
2534 | |
2535 } // namespace internal | |
2536 } // namespace v8 | |
OLD | NEW |