Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(483)

Unified Diff: skia/ext/convolver.cc

Issue 2011713003: Roll skia to 8cc209111876b7c78b5ec577c9221d8ed5e21024 (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_SSE2.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: skia/ext/convolver.cc
diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc
new file mode 100644
index 0000000000000000000000000000000000000000..9d07cff4a68421850266c2796a38c1a2ba036e06
--- /dev/null
+++ b/skia/ext/convolver.cc
@@ -0,0 +1,705 @@
+// Copyright (c) 2011 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <algorithm>
+
+#include "base/logging.h"
+#include "skia/ext/convolver.h"
+#include "skia/ext/convolver_SSE2.h"
+#include "skia/ext/convolver_mips_dspr2.h"
+#include "third_party/skia/include/core/SkSize.h"
+#include "third_party/skia/include/core/SkTypes.h"
+
+namespace skia {
+
+namespace {
+
+// Converts the argument to an 8-bit unsigned value by clamping to the range
+// 0-255.
+inline unsigned char ClampTo8(int a) {
+ if (static_cast<unsigned>(a) < 256)
+ return a; // Avoid the extra check in the common case.
+ if (a < 0)
+ return 0;
+ return 255;
+}
+
+// Takes the value produced by accumulating element-wise product of image with
+// a kernel and brings it back into range.
+// All of the filter scaling factors are in fixed point with kShiftBits bits of
+// fractional part.
+inline unsigned char BringBackTo8(int a, bool take_absolute) {
+ a >>= ConvolutionFilter1D::kShiftBits;
+ if (take_absolute)
+ a = std::abs(a);
+ return ClampTo8(a);
+}
+
+// Stores a list of rows in a circular buffer. The usage is you write into it
+// by calling AdvanceRow. It will keep track of which row in the buffer it
+// should use next, and the total number of rows added.
+class CircularRowBuffer {
+ public:
+ // The number of pixels in each row is given in |source_row_pixel_width|.
+ // The maximum number of rows needed in the buffer is |max_y_filter_size|
+ // (we only need to store enough rows for the biggest filter).
+ //
+ // We use the |first_input_row| to compute the coordinates of all of the
+ // following rows returned by Advance().
+ CircularRowBuffer(int dest_row_pixel_width,
+ int max_y_filter_size,
+ int first_input_row)
+ : row_byte_width_(dest_row_pixel_width * 4),
+ num_rows_(max_y_filter_size),
+ next_row_(0),
+ next_row_coordinate_(first_input_row) {
+ buffer_.resize(row_byte_width_ * max_y_filter_size);
+ row_addresses_.resize(num_rows_);
+ }
+
+ // Moves to the next row in the buffer, returning a pointer to the beginning
+ // of it.
+ unsigned char* AdvanceRow() {
+ unsigned char* row = &buffer_[next_row_ * row_byte_width_];
+ next_row_coordinate_++;
+
+ // Set the pointer to the next row to use, wrapping around if necessary.
+ next_row_++;
+ if (next_row_ == num_rows_)
+ next_row_ = 0;
+ return row;
+ }
+
+ // Returns a pointer to an "unrolled" array of rows. These rows will start
+ // at the y coordinate placed into |*first_row_index| and will continue in
+ // order for the maximum number of rows in this circular buffer.
+ //
+ // The |first_row_index_| may be negative. This means the circular buffer
+ // starts before the top of the image (it hasn't been filled yet).
+ unsigned char* const* GetRowAddresses(int* first_row_index) {
+ // Example for a 4-element circular buffer holding coords 6-9.
+ // Row 0 Coord 8
+ // Row 1 Coord 9
+ // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
+ // Row 3 Coord 7
+ //
+ // The "next" row is also the first (lowest) coordinate. This computation
+ // may yield a negative value, but that's OK, the math will work out
+ // since the user of this buffer will compute the offset relative
+ // to the first_row_index and the negative rows will never be used.
+ *first_row_index = next_row_coordinate_ - num_rows_;
+
+ int cur_row = next_row_;
+ for (int i = 0; i < num_rows_; i++) {
+ row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
+
+ // Advance to the next row, wrapping if necessary.
+ cur_row++;
+ if (cur_row == num_rows_)
+ cur_row = 0;
+ }
+ return &row_addresses_[0];
+ }
+
+ private:
+ // The buffer storing the rows. They are packed, each one row_byte_width_.
+ std::vector<unsigned char> buffer_;
+
+ // Number of bytes per row in the |buffer_|.
+ int row_byte_width_;
+
+ // The number of rows available in the buffer.
+ int num_rows_;
+
+ // The next row index we should write into. This wraps around as the
+ // circular buffer is used.
+ int next_row_;
+
+ // The y coordinate of the |next_row_|. This is incremented each time a
+ // new row is appended and does not wrap.
+ int next_row_coordinate_;
+
+ // Buffer used by GetRowAddresses().
+ std::vector<unsigned char*> row_addresses_;
+};
+
+// Convolves horizontally along a single row. The row data is given in
+// |src_data| and continues for the num_values() of the filter.
+template <bool has_alpha>
+void ConvolveHorizontally(const unsigned char* src_data,
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row) {
+ // Loop over each pixel on this row in the output image.
+ int num_values = filter.num_values();
+ for (int out_x = 0; out_x < num_values; out_x++) {
+ // Get the filter that determines the current output pixel.
+ int filter_offset, filter_length;
+ const ConvolutionFilter1D::Fixed* filter_values =
+ filter.FilterForValue(out_x, &filter_offset, &filter_length);
+
+ // Compute the first pixel in this row that the filter affects. It will
+ // touch |filter_length| pixels (4 bytes each) after this.
+ const unsigned char* row_to_filter = &src_data[filter_offset * 4];
+
+ // Apply the filter to the row to get the destination pixel in |accum|.
+ int accum[4] = {0};
+ for (int filter_x = 0; filter_x < filter_length; filter_x++) {
+ ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
+ accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
+ accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
+ accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
+ if (has_alpha)
+ accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
+ }
+
+ // Bring this value back in range. All of the filter scaling factors
+ // are in fixed point with kShiftBits bits of fractional part.
+ accum[0] >>= ConvolutionFilter1D::kShiftBits;
+ accum[1] >>= ConvolutionFilter1D::kShiftBits;
+ accum[2] >>= ConvolutionFilter1D::kShiftBits;
+ if (has_alpha)
+ accum[3] >>= ConvolutionFilter1D::kShiftBits;
+
+ // Store the new pixel.
+ out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
+ out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
+ out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
+ if (has_alpha)
+ out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
+ }
+}
+
+// Does vertical convolution to produce one output row. The filter values and
+// length are given in the first two parameters. These are applied to each
+// of the rows pointed to in the |source_data_rows| array, with each row
+// being |pixel_width| wide.
+//
+// The output must have room for |pixel_width * 4| bytes.
+template <bool has_alpha>
+void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row) {
+ // We go through each column in the output and do a vertical convolution,
+ // generating one output pixel each time.
+ for (int out_x = 0; out_x < pixel_width; out_x++) {
+ // Compute the number of bytes over in each row that the current column
+ // we're convolving starts at. The pixel will cover the next 4 bytes.
+ int byte_offset = out_x * 4;
+
+ // Apply the filter to one column of pixels.
+ int accum[4] = {0};
+ for (int filter_y = 0; filter_y < filter_length; filter_y++) {
+ ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
+ accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
+ accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
+ accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
+ if (has_alpha)
+ accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
+ }
+
+ // Bring this value back in range. All of the filter scaling factors
+ // are in fixed point with kShiftBits bits of precision.
+ accum[0] >>= ConvolutionFilter1D::kShiftBits;
+ accum[1] >>= ConvolutionFilter1D::kShiftBits;
+ accum[2] >>= ConvolutionFilter1D::kShiftBits;
+ if (has_alpha)
+ accum[3] >>= ConvolutionFilter1D::kShiftBits;
+
+ // Store the new pixel.
+ out_row[byte_offset + 0] = ClampTo8(accum[0]);
+ out_row[byte_offset + 1] = ClampTo8(accum[1]);
+ out_row[byte_offset + 2] = ClampTo8(accum[2]);
+ if (has_alpha) {
+ unsigned char alpha = ClampTo8(accum[3]);
+
+ // Make sure the alpha channel doesn't come out smaller than any of the
+ // color channels. We use premultipled alpha channels, so this should
+ // never happen, but rounding errors will cause this from time to time.
+ // These "impossible" colors will cause overflows (and hence random pixel
+ // values) when the resulting bitmap is drawn to the screen.
+ //
+ // We only need to do this when generating the final output row (here).
+ int max_color_channel = std::max(
+ out_row[byte_offset + 0],
+ std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
+ if (alpha < max_color_channel)
+ out_row[byte_offset + 3] = max_color_channel;
+ else
+ out_row[byte_offset + 3] = alpha;
+ } else {
+ // No alpha channel, the image is opaque.
+ out_row[byte_offset + 3] = 0xff;
+ }
+ }
+}
+
+void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row,
+ bool source_has_alpha) {
+ if (source_has_alpha) {
+ ConvolveVertically<true>(filter_values, filter_length, source_data_rows,
+ pixel_width, out_row);
+ } else {
+ ConvolveVertically<false>(filter_values, filter_length, source_data_rows,
+ pixel_width, out_row);
+ }
+}
+
+} // namespace
+
+// ConvolutionFilter1D ---------------------------------------------------------
+
+ConvolutionFilter1D::ConvolutionFilter1D() : max_filter_(0) {}
+
+ConvolutionFilter1D::~ConvolutionFilter1D() {}
+
+void ConvolutionFilter1D::AddFilter(int filter_offset,
+ const float* filter_values,
+ int filter_length) {
+ SkASSERT(filter_length > 0);
+
+ std::vector<Fixed> fixed_values;
+ fixed_values.reserve(filter_length);
+
+ for (int i = 0; i < filter_length; ++i)
+ fixed_values.push_back(FloatToFixed(filter_values[i]));
+
+ AddFilter(filter_offset, &fixed_values[0], filter_length);
+}
+
+void ConvolutionFilter1D::AddFilter(int filter_offset,
+ const Fixed* filter_values,
+ int filter_length) {
+ // It is common for leading/trailing filter values to be zeros. In such
+ // cases it is beneficial to only store the central factors.
+ // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
+ // a 1080p image this optimization gives a ~10% speed improvement.
+ int filter_size = filter_length;
+ int first_non_zero = 0;
+ while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
+ first_non_zero++;
+
+ if (first_non_zero < filter_length) {
+ // Here we have at least one non-zero factor.
+ int last_non_zero = filter_length - 1;
+ while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
+ last_non_zero--;
+
+ filter_offset += first_non_zero;
+ filter_length = last_non_zero + 1 - first_non_zero;
+ SkASSERT(filter_length > 0);
+
+ for (int i = first_non_zero; i <= last_non_zero; i++)
+ filter_values_.push_back(filter_values[i]);
+ } else {
+ // Here all the factors were zeroes.
+ filter_length = 0;
+ }
+
+ FilterInstance instance;
+
+ // We pushed filter_length elements onto filter_values_
+ instance.data_location =
+ (static_cast<int>(filter_values_.size()) - filter_length);
+ instance.offset = filter_offset;
+ instance.trimmed_length = filter_length;
+ instance.length = filter_size;
+ filters_.push_back(instance);
+
+ max_filter_ = std::max(max_filter_, filter_length);
+}
+
+const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter(
+ int* specified_filter_length,
+ int* filter_offset,
+ int* filter_length) const {
+ const FilterInstance& filter = filters_[0];
+ *filter_offset = filter.offset;
+ *filter_length = filter.trimmed_length;
+ *specified_filter_length = filter.length;
+ if (filter.trimmed_length == 0)
+ return NULL;
+
+ return &filter_values_[filter.data_location];
+}
+
+typedef void (*ConvolveVertically_pointer)(
+ const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row,
+ bool has_alpha);
+typedef void (*Convolve4RowsHorizontally_pointer)(
+ const unsigned char* src_data[4],
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row[4]);
+typedef void (*ConvolveHorizontally_pointer)(const unsigned char* src_data,
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row,
+ bool has_alpha);
+
+struct ConvolveProcs {
+ // This is how many extra pixels may be read by the
+ // conolve*horizontally functions.
+ int extra_horizontal_reads;
+ ConvolveVertically_pointer convolve_vertically;
+ Convolve4RowsHorizontally_pointer convolve_4rows_horizontally;
+ ConvolveHorizontally_pointer convolve_horizontally;
+};
+
+void SetupSIMD(ConvolveProcs* procs) {
+#ifdef SIMD_SSE2
+ procs->extra_horizontal_reads = 3;
+ procs->convolve_vertically = &ConvolveVertically_SSE2;
+ procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
+ procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
+#elif defined SIMD_MIPS_DSPR2
+ procs->extra_horizontal_reads = 3;
+ procs->convolve_vertically = &ConvolveVertically_mips_dspr2;
+ procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2;
+#endif
+}
+
+void BGRAConvolve2D(const unsigned char* source_data,
+ int source_byte_row_stride,
+ bool source_has_alpha,
+ const ConvolutionFilter1D& filter_x,
+ const ConvolutionFilter1D& filter_y,
+ int output_byte_row_stride,
+ unsigned char* output,
+ bool use_simd_if_possible) {
+ ConvolveProcs simd;
+ simd.extra_horizontal_reads = 0;
+ simd.convolve_vertically = NULL;
+ simd.convolve_4rows_horizontally = NULL;
+ simd.convolve_horizontally = NULL;
+ if (use_simd_if_possible) {
+ SetupSIMD(&simd);
+ }
+
+ int max_y_filter_size = filter_y.max_filter();
+
+ // The next row in the input that we will generate a horizontally
+ // convolved row for. If the filter doesn't start at the beginning of the
+ // image (this is the case when we are only resizing a subset), then we
+ // don't want to generate any output rows before that. Compute the starting
+ // row for convolution as the first pixel for the first vertical filter.
+ int filter_offset, filter_length;
+ const ConvolutionFilter1D::Fixed* filter_values =
+ filter_y.FilterForValue(0, &filter_offset, &filter_length);
+ int next_x_row = filter_offset;
+
+ // We loop over each row in the input doing a horizontal convolution. This
+ // will result in a horizontally convolved image. We write the results into
+ // a circular buffer of convolved rows and do vertical convolution as rows
+ // are available. This prevents us from having to store the entire
+ // intermediate image and helps cache coherency.
+ // We will need four extra rows to allow horizontal convolution could be done
+ // simultaneously. We also padding each row in row buffer to be aligned-up to
+ // 16 bytes.
+ // TODO(jiesun): We do not use aligned load from row buffer in vertical
+ // convolution pass yet. Somehow Windows does not like it.
+ int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
+ int row_buffer_height =
+ max_y_filter_size + (simd.convolve_4rows_horizontally ? 4 : 0);
+ CircularRowBuffer row_buffer(row_buffer_width, row_buffer_height,
+ filter_offset);
+
+ // Loop over every possible output row, processing just enough horizontal
+ // convolutions to run each subsequent vertical convolution.
+ SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
+ int num_output_rows = filter_y.num_values();
+
+ // We need to check which is the last line to convolve before we advance 4
+ // lines in one iteration.
+ int last_filter_offset, last_filter_length;
+
+ // SSE2 can access up to 3 extra pixels past the end of the
+ // buffer. At the bottom of the image, we have to be careful
+ // not to access data past the end of the buffer. Normally
+ // we fall back to the C++ implementation for the last row.
+ // If the last row is less than 3 pixels wide, we may have to fall
+ // back to the C++ version for more rows. Compute how many
+ // rows we need to avoid the SSE implementation for here.
+ filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset,
+ &last_filter_length);
+ int avoid_simd_rows =
+ 1 +
+ simd.extra_horizontal_reads / (last_filter_offset + last_filter_length);
+
+ filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
+ &last_filter_length);
+
+ for (int out_y = 0; out_y < num_output_rows; out_y++) {
+ filter_values =
+ filter_y.FilterForValue(out_y, &filter_offset, &filter_length);
+
+ // Generate output rows until we have enough to run the current filter.
+ while (next_x_row < filter_offset + filter_length) {
+ if (simd.convolve_4rows_horizontally &&
+ next_x_row + 3 <
+ last_filter_offset + last_filter_length - avoid_simd_rows) {
+ const unsigned char* src[4];
+ unsigned char* out_row[4];
+ for (int i = 0; i < 4; ++i) {
+ src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
+ out_row[i] = row_buffer.AdvanceRow();
+ }
+ simd.convolve_4rows_horizontally(src, filter_x, out_row);
+ next_x_row += 4;
+ } else {
+ // Check if we need to avoid SSE2 for this row.
+ if (simd.convolve_horizontally &&
+ next_x_row <
+ last_filter_offset + last_filter_length - avoid_simd_rows) {
+ simd.convolve_horizontally(
+ &source_data[next_x_row * source_byte_row_stride], filter_x,
+ row_buffer.AdvanceRow(), source_has_alpha);
+ } else {
+ if (source_has_alpha) {
+ ConvolveHorizontally<true>(
+ &source_data[next_x_row * source_byte_row_stride], filter_x,
+ row_buffer.AdvanceRow());
+ } else {
+ ConvolveHorizontally<false>(
+ &source_data[next_x_row * source_byte_row_stride], filter_x,
+ row_buffer.AdvanceRow());
+ }
+ }
+ next_x_row++;
+ }
+ }
+
+ // Compute where in the output image this row of final data will go.
+ unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
+
+ // Get the list of rows that the circular buffer has, in order.
+ int first_row_in_circular_buffer;
+ unsigned char* const* rows_to_convolve =
+ row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
+
+ // Now compute the start of the subset of those rows that the filter
+ // needs.
+ unsigned char* const* first_row_for_filter =
+ &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
+
+ if (simd.convolve_vertically) {
+ simd.convolve_vertically(filter_values, filter_length,
+ first_row_for_filter, filter_x.num_values(),
+ cur_output_row, source_has_alpha);
+ } else {
+ ConvolveVertically(filter_values, filter_length, first_row_for_filter,
+ filter_x.num_values(), cur_output_row,
+ source_has_alpha);
+ }
+ }
+}
+
+void SingleChannelConvolveX1D(const unsigned char* source_data,
+ int source_byte_row_stride,
+ int input_channel_index,
+ int input_channel_count,
+ const ConvolutionFilter1D& filter,
+ const SkISize& image_size,
+ unsigned char* output,
+ int output_byte_row_stride,
+ int output_channel_index,
+ int output_channel_count,
+ bool absolute_values) {
+ int filter_offset, filter_length, filter_size;
+ // Very much unlike BGRAConvolve2D, here we expect to have the same filter
+ // for all pixels.
+ const ConvolutionFilter1D::Fixed* filter_values =
+ filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
+
+ if (filter_values == NULL || image_size.width() < filter_size) {
+ NOTREACHED();
+ return;
+ }
+
+ int centrepoint = filter_length / 2;
+ if (filter_size - filter_offset != 2 * filter_offset) {
+ // This means the original filter was not symmetrical AND
+ // got clipped from one side more than from the other.
+ centrepoint = filter_size / 2 - filter_offset;
+ }
+
+ const unsigned char* source_data_row = source_data;
+ unsigned char* output_row = output;
+
+ for (int r = 0; r < image_size.height(); ++r) {
+ unsigned char* target_byte = output_row + output_channel_index;
+ // Process the lead part, padding image to the left with the first pixel.
+ int c = 0;
+ for (; c < centrepoint; ++c, target_byte += output_channel_count) {
+ int accval = 0;
+ int i = 0;
+ int pixel_byte_index = input_channel_index;
+ for (; i < centrepoint - c; ++i) // Padding part.
+ accval += filter_values[i] * source_data_row[pixel_byte_index];
+
+ for (; i < filter_length; ++i, pixel_byte_index += input_channel_count)
+ accval += filter_values[i] * source_data_row[pixel_byte_index];
+
+ *target_byte = BringBackTo8(accval, absolute_values);
+ }
+
+ // Now for the main event.
+ for (; c < image_size.width() - centrepoint;
+ ++c, target_byte += output_channel_count) {
+ int accval = 0;
+ int pixel_byte_index =
+ (c - centrepoint) * input_channel_count + input_channel_index;
+
+ for (int i = 0; i < filter_length;
+ ++i, pixel_byte_index += input_channel_count) {
+ accval += filter_values[i] * source_data_row[pixel_byte_index];
+ }
+
+ *target_byte = BringBackTo8(accval, absolute_values);
+ }
+
+ for (; c < image_size.width(); ++c, target_byte += output_channel_count) {
+ int accval = 0;
+ int overlap_taps = image_size.width() - c + centrepoint;
+ int pixel_byte_index =
+ (c - centrepoint) * input_channel_count + input_channel_index;
+ int i = 0;
+ for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count)
+ accval += filter_values[i] * source_data_row[pixel_byte_index];
+
+ for (; i < filter_length; ++i)
+ accval += filter_values[i] * source_data_row[pixel_byte_index];
+
+ *target_byte = BringBackTo8(accval, absolute_values);
+ }
+
+ source_data_row += source_byte_row_stride;
+ output_row += output_byte_row_stride;
+ }
+}
+
+void SingleChannelConvolveY1D(const unsigned char* source_data,
+ int source_byte_row_stride,
+ int input_channel_index,
+ int input_channel_count,
+ const ConvolutionFilter1D& filter,
+ const SkISize& image_size,
+ unsigned char* output,
+ int output_byte_row_stride,
+ int output_channel_index,
+ int output_channel_count,
+ bool absolute_values) {
+ int filter_offset, filter_length, filter_size;
+ // Very much unlike BGRAConvolve2D, here we expect to have the same filter
+ // for all pixels.
+ const ConvolutionFilter1D::Fixed* filter_values =
+ filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
+
+ if (filter_values == NULL || image_size.height() < filter_size) {
+ NOTREACHED();
+ return;
+ }
+
+ int centrepoint = filter_length / 2;
+ if (filter_size - filter_offset != 2 * filter_offset) {
+ // This means the original filter was not symmetrical AND
+ // got clipped from one side more than from the other.
+ centrepoint = filter_size / 2 - filter_offset;
+ }
+
+ for (int c = 0; c < image_size.width(); ++c) {
+ unsigned char* target_byte =
+ output + c * output_channel_count + output_channel_index;
+ int r = 0;
+
+ for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) {
+ int accval = 0;
+ int i = 0;
+ int pixel_byte_index = c * input_channel_count + input_channel_index;
+
+ for (; i < centrepoint - r; ++i) // Padding part.
+ accval += filter_values[i] * source_data[pixel_byte_index];
+
+ for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride)
+ accval += filter_values[i] * source_data[pixel_byte_index];
+
+ *target_byte = BringBackTo8(accval, absolute_values);
+ }
+
+ for (; r < image_size.height() - centrepoint;
+ ++r, target_byte += output_byte_row_stride) {
+ int accval = 0;
+ int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
+ c * input_channel_count + input_channel_index;
+ for (int i = 0; i < filter_length;
+ ++i, pixel_byte_index += source_byte_row_stride) {
+ accval += filter_values[i] * source_data[pixel_byte_index];
+ }
+
+ *target_byte = BringBackTo8(accval, absolute_values);
+ }
+
+ for (; r < image_size.height();
+ ++r, target_byte += output_byte_row_stride) {
+ int accval = 0;
+ int overlap_taps = image_size.height() - r + centrepoint;
+ int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
+ c * input_channel_count + input_channel_index;
+ int i = 0;
+ for (; i < overlap_taps - 1;
+ ++i, pixel_byte_index += source_byte_row_stride) {
+ accval += filter_values[i] * source_data[pixel_byte_index];
+ }
+
+ for (; i < filter_length; ++i)
+ accval += filter_values[i] * source_data[pixel_byte_index];
+
+ *target_byte = BringBackTo8(accval, absolute_values);
+ }
+ }
+}
+
+void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter,
+ float kernel_sigma,
+ bool derivative) {
+ DCHECK(filter != NULL);
+ DCHECK_GT(kernel_sigma, 0.0);
+ const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f);
+ const int kernel_size = tail_length * 2 + 1;
+ const float sigmasq = kernel_sigma * kernel_sigma;
+ std::vector<float> kernel_weights(kernel_size, 0.0);
+ float kernel_sum = 1.0f;
+
+ kernel_weights[tail_length] = 1.0f;
+
+ for (int ii = 1; ii <= tail_length; ++ii) {
+ float v = std::exp(-0.5f * ii * ii / sigmasq);
+ kernel_weights[tail_length + ii] = v;
+ kernel_weights[tail_length - ii] = v;
+ kernel_sum += 2.0f * v;
+ }
+
+ for (int i = 0; i < kernel_size; ++i)
+ kernel_weights[i] /= kernel_sum;
+
+ if (derivative) {
+ kernel_weights[tail_length] = 0.0;
+ for (int ii = 1; ii <= tail_length; ++ii) {
+ float v = sigmasq * kernel_weights[tail_length + ii] / ii;
+ kernel_weights[tail_length + ii] = v;
+ kernel_weights[tail_length - ii] = -v;
+ }
+ }
+
+ filter->AddFilter(0, &kernel_weights[0], kernel_weights.size());
+}
+
+} // namespace skia
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_SSE2.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698