OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include <algorithm> |
| 6 |
| 7 #include "base/logging.h" |
| 8 #include "skia/ext/convolver.h" |
| 9 #include "skia/ext/convolver_SSE2.h" |
| 10 #include "skia/ext/convolver_mips_dspr2.h" |
| 11 #include "third_party/skia/include/core/SkSize.h" |
| 12 #include "third_party/skia/include/core/SkTypes.h" |
| 13 |
| 14 namespace skia { |
| 15 |
| 16 namespace { |
| 17 |
| 18 // Converts the argument to an 8-bit unsigned value by clamping to the range |
| 19 // 0-255. |
| 20 inline unsigned char ClampTo8(int a) { |
| 21 if (static_cast<unsigned>(a) < 256) |
| 22 return a; // Avoid the extra check in the common case. |
| 23 if (a < 0) |
| 24 return 0; |
| 25 return 255; |
| 26 } |
| 27 |
| 28 // Takes the value produced by accumulating element-wise product of image with |
| 29 // a kernel and brings it back into range. |
| 30 // All of the filter scaling factors are in fixed point with kShiftBits bits of |
| 31 // fractional part. |
| 32 inline unsigned char BringBackTo8(int a, bool take_absolute) { |
| 33 a >>= ConvolutionFilter1D::kShiftBits; |
| 34 if (take_absolute) |
| 35 a = std::abs(a); |
| 36 return ClampTo8(a); |
| 37 } |
| 38 |
| 39 // Stores a list of rows in a circular buffer. The usage is you write into it |
| 40 // by calling AdvanceRow. It will keep track of which row in the buffer it |
| 41 // should use next, and the total number of rows added. |
| 42 class CircularRowBuffer { |
| 43 public: |
| 44 // The number of pixels in each row is given in |source_row_pixel_width|. |
| 45 // The maximum number of rows needed in the buffer is |max_y_filter_size| |
| 46 // (we only need to store enough rows for the biggest filter). |
| 47 // |
| 48 // We use the |first_input_row| to compute the coordinates of all of the |
| 49 // following rows returned by Advance(). |
| 50 CircularRowBuffer(int dest_row_pixel_width, |
| 51 int max_y_filter_size, |
| 52 int first_input_row) |
| 53 : row_byte_width_(dest_row_pixel_width * 4), |
| 54 num_rows_(max_y_filter_size), |
| 55 next_row_(0), |
| 56 next_row_coordinate_(first_input_row) { |
| 57 buffer_.resize(row_byte_width_ * max_y_filter_size); |
| 58 row_addresses_.resize(num_rows_); |
| 59 } |
| 60 |
| 61 // Moves to the next row in the buffer, returning a pointer to the beginning |
| 62 // of it. |
| 63 unsigned char* AdvanceRow() { |
| 64 unsigned char* row = &buffer_[next_row_ * row_byte_width_]; |
| 65 next_row_coordinate_++; |
| 66 |
| 67 // Set the pointer to the next row to use, wrapping around if necessary. |
| 68 next_row_++; |
| 69 if (next_row_ == num_rows_) |
| 70 next_row_ = 0; |
| 71 return row; |
| 72 } |
| 73 |
| 74 // Returns a pointer to an "unrolled" array of rows. These rows will start |
| 75 // at the y coordinate placed into |*first_row_index| and will continue in |
| 76 // order for the maximum number of rows in this circular buffer. |
| 77 // |
| 78 // The |first_row_index_| may be negative. This means the circular buffer |
| 79 // starts before the top of the image (it hasn't been filled yet). |
| 80 unsigned char* const* GetRowAddresses(int* first_row_index) { |
| 81 // Example for a 4-element circular buffer holding coords 6-9. |
| 82 // Row 0 Coord 8 |
| 83 // Row 1 Coord 9 |
| 84 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. |
| 85 // Row 3 Coord 7 |
| 86 // |
| 87 // The "next" row is also the first (lowest) coordinate. This computation |
| 88 // may yield a negative value, but that's OK, the math will work out |
| 89 // since the user of this buffer will compute the offset relative |
| 90 // to the first_row_index and the negative rows will never be used. |
| 91 *first_row_index = next_row_coordinate_ - num_rows_; |
| 92 |
| 93 int cur_row = next_row_; |
| 94 for (int i = 0; i < num_rows_; i++) { |
| 95 row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; |
| 96 |
| 97 // Advance to the next row, wrapping if necessary. |
| 98 cur_row++; |
| 99 if (cur_row == num_rows_) |
| 100 cur_row = 0; |
| 101 } |
| 102 return &row_addresses_[0]; |
| 103 } |
| 104 |
| 105 private: |
| 106 // The buffer storing the rows. They are packed, each one row_byte_width_. |
| 107 std::vector<unsigned char> buffer_; |
| 108 |
| 109 // Number of bytes per row in the |buffer_|. |
| 110 int row_byte_width_; |
| 111 |
| 112 // The number of rows available in the buffer. |
| 113 int num_rows_; |
| 114 |
| 115 // The next row index we should write into. This wraps around as the |
| 116 // circular buffer is used. |
| 117 int next_row_; |
| 118 |
| 119 // The y coordinate of the |next_row_|. This is incremented each time a |
| 120 // new row is appended and does not wrap. |
| 121 int next_row_coordinate_; |
| 122 |
| 123 // Buffer used by GetRowAddresses(). |
| 124 std::vector<unsigned char*> row_addresses_; |
| 125 }; |
| 126 |
| 127 // Convolves horizontally along a single row. The row data is given in |
| 128 // |src_data| and continues for the num_values() of the filter. |
| 129 template <bool has_alpha> |
| 130 void ConvolveHorizontally(const unsigned char* src_data, |
| 131 const ConvolutionFilter1D& filter, |
| 132 unsigned char* out_row) { |
| 133 // Loop over each pixel on this row in the output image. |
| 134 int num_values = filter.num_values(); |
| 135 for (int out_x = 0; out_x < num_values; out_x++) { |
| 136 // Get the filter that determines the current output pixel. |
| 137 int filter_offset, filter_length; |
| 138 const ConvolutionFilter1D::Fixed* filter_values = |
| 139 filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| 140 |
| 141 // Compute the first pixel in this row that the filter affects. It will |
| 142 // touch |filter_length| pixels (4 bytes each) after this. |
| 143 const unsigned char* row_to_filter = &src_data[filter_offset * 4]; |
| 144 |
| 145 // Apply the filter to the row to get the destination pixel in |accum|. |
| 146 int accum[4] = {0}; |
| 147 for (int filter_x = 0; filter_x < filter_length; filter_x++) { |
| 148 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; |
| 149 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; |
| 150 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; |
| 151 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; |
| 152 if (has_alpha) |
| 153 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; |
| 154 } |
| 155 |
| 156 // Bring this value back in range. All of the filter scaling factors |
| 157 // are in fixed point with kShiftBits bits of fractional part. |
| 158 accum[0] >>= ConvolutionFilter1D::kShiftBits; |
| 159 accum[1] >>= ConvolutionFilter1D::kShiftBits; |
| 160 accum[2] >>= ConvolutionFilter1D::kShiftBits; |
| 161 if (has_alpha) |
| 162 accum[3] >>= ConvolutionFilter1D::kShiftBits; |
| 163 |
| 164 // Store the new pixel. |
| 165 out_row[out_x * 4 + 0] = ClampTo8(accum[0]); |
| 166 out_row[out_x * 4 + 1] = ClampTo8(accum[1]); |
| 167 out_row[out_x * 4 + 2] = ClampTo8(accum[2]); |
| 168 if (has_alpha) |
| 169 out_row[out_x * 4 + 3] = ClampTo8(accum[3]); |
| 170 } |
| 171 } |
| 172 |
| 173 // Does vertical convolution to produce one output row. The filter values and |
| 174 // length are given in the first two parameters. These are applied to each |
| 175 // of the rows pointed to in the |source_data_rows| array, with each row |
| 176 // being |pixel_width| wide. |
| 177 // |
| 178 // The output must have room for |pixel_width * 4| bytes. |
| 179 template <bool has_alpha> |
| 180 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| 181 int filter_length, |
| 182 unsigned char* const* source_data_rows, |
| 183 int pixel_width, |
| 184 unsigned char* out_row) { |
| 185 // We go through each column in the output and do a vertical convolution, |
| 186 // generating one output pixel each time. |
| 187 for (int out_x = 0; out_x < pixel_width; out_x++) { |
| 188 // Compute the number of bytes over in each row that the current column |
| 189 // we're convolving starts at. The pixel will cover the next 4 bytes. |
| 190 int byte_offset = out_x * 4; |
| 191 |
| 192 // Apply the filter to one column of pixels. |
| 193 int accum[4] = {0}; |
| 194 for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
| 195 ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; |
| 196 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; |
| 197 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; |
| 198 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; |
| 199 if (has_alpha) |
| 200 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; |
| 201 } |
| 202 |
| 203 // Bring this value back in range. All of the filter scaling factors |
| 204 // are in fixed point with kShiftBits bits of precision. |
| 205 accum[0] >>= ConvolutionFilter1D::kShiftBits; |
| 206 accum[1] >>= ConvolutionFilter1D::kShiftBits; |
| 207 accum[2] >>= ConvolutionFilter1D::kShiftBits; |
| 208 if (has_alpha) |
| 209 accum[3] >>= ConvolutionFilter1D::kShiftBits; |
| 210 |
| 211 // Store the new pixel. |
| 212 out_row[byte_offset + 0] = ClampTo8(accum[0]); |
| 213 out_row[byte_offset + 1] = ClampTo8(accum[1]); |
| 214 out_row[byte_offset + 2] = ClampTo8(accum[2]); |
| 215 if (has_alpha) { |
| 216 unsigned char alpha = ClampTo8(accum[3]); |
| 217 |
| 218 // Make sure the alpha channel doesn't come out smaller than any of the |
| 219 // color channels. We use premultipled alpha channels, so this should |
| 220 // never happen, but rounding errors will cause this from time to time. |
| 221 // These "impossible" colors will cause overflows (and hence random pixel |
| 222 // values) when the resulting bitmap is drawn to the screen. |
| 223 // |
| 224 // We only need to do this when generating the final output row (here). |
| 225 int max_color_channel = std::max( |
| 226 out_row[byte_offset + 0], |
| 227 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); |
| 228 if (alpha < max_color_channel) |
| 229 out_row[byte_offset + 3] = max_color_channel; |
| 230 else |
| 231 out_row[byte_offset + 3] = alpha; |
| 232 } else { |
| 233 // No alpha channel, the image is opaque. |
| 234 out_row[byte_offset + 3] = 0xff; |
| 235 } |
| 236 } |
| 237 } |
| 238 |
| 239 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, |
| 240 int filter_length, |
| 241 unsigned char* const* source_data_rows, |
| 242 int pixel_width, |
| 243 unsigned char* out_row, |
| 244 bool source_has_alpha) { |
| 245 if (source_has_alpha) { |
| 246 ConvolveVertically<true>(filter_values, filter_length, source_data_rows, |
| 247 pixel_width, out_row); |
| 248 } else { |
| 249 ConvolveVertically<false>(filter_values, filter_length, source_data_rows, |
| 250 pixel_width, out_row); |
| 251 } |
| 252 } |
| 253 |
| 254 } // namespace |
| 255 |
| 256 // ConvolutionFilter1D --------------------------------------------------------- |
| 257 |
| 258 ConvolutionFilter1D::ConvolutionFilter1D() : max_filter_(0) {} |
| 259 |
| 260 ConvolutionFilter1D::~ConvolutionFilter1D() {} |
| 261 |
| 262 void ConvolutionFilter1D::AddFilter(int filter_offset, |
| 263 const float* filter_values, |
| 264 int filter_length) { |
| 265 SkASSERT(filter_length > 0); |
| 266 |
| 267 std::vector<Fixed> fixed_values; |
| 268 fixed_values.reserve(filter_length); |
| 269 |
| 270 for (int i = 0; i < filter_length; ++i) |
| 271 fixed_values.push_back(FloatToFixed(filter_values[i])); |
| 272 |
| 273 AddFilter(filter_offset, &fixed_values[0], filter_length); |
| 274 } |
| 275 |
| 276 void ConvolutionFilter1D::AddFilter(int filter_offset, |
| 277 const Fixed* filter_values, |
| 278 int filter_length) { |
| 279 // It is common for leading/trailing filter values to be zeros. In such |
| 280 // cases it is beneficial to only store the central factors. |
| 281 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on |
| 282 // a 1080p image this optimization gives a ~10% speed improvement. |
| 283 int filter_size = filter_length; |
| 284 int first_non_zero = 0; |
| 285 while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) |
| 286 first_non_zero++; |
| 287 |
| 288 if (first_non_zero < filter_length) { |
| 289 // Here we have at least one non-zero factor. |
| 290 int last_non_zero = filter_length - 1; |
| 291 while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) |
| 292 last_non_zero--; |
| 293 |
| 294 filter_offset += first_non_zero; |
| 295 filter_length = last_non_zero + 1 - first_non_zero; |
| 296 SkASSERT(filter_length > 0); |
| 297 |
| 298 for (int i = first_non_zero; i <= last_non_zero; i++) |
| 299 filter_values_.push_back(filter_values[i]); |
| 300 } else { |
| 301 // Here all the factors were zeroes. |
| 302 filter_length = 0; |
| 303 } |
| 304 |
| 305 FilterInstance instance; |
| 306 |
| 307 // We pushed filter_length elements onto filter_values_ |
| 308 instance.data_location = |
| 309 (static_cast<int>(filter_values_.size()) - filter_length); |
| 310 instance.offset = filter_offset; |
| 311 instance.trimmed_length = filter_length; |
| 312 instance.length = filter_size; |
| 313 filters_.push_back(instance); |
| 314 |
| 315 max_filter_ = std::max(max_filter_, filter_length); |
| 316 } |
| 317 |
| 318 const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter( |
| 319 int* specified_filter_length, |
| 320 int* filter_offset, |
| 321 int* filter_length) const { |
| 322 const FilterInstance& filter = filters_[0]; |
| 323 *filter_offset = filter.offset; |
| 324 *filter_length = filter.trimmed_length; |
| 325 *specified_filter_length = filter.length; |
| 326 if (filter.trimmed_length == 0) |
| 327 return NULL; |
| 328 |
| 329 return &filter_values_[filter.data_location]; |
| 330 } |
| 331 |
| 332 typedef void (*ConvolveVertically_pointer)( |
| 333 const ConvolutionFilter1D::Fixed* filter_values, |
| 334 int filter_length, |
| 335 unsigned char* const* source_data_rows, |
| 336 int pixel_width, |
| 337 unsigned char* out_row, |
| 338 bool has_alpha); |
| 339 typedef void (*Convolve4RowsHorizontally_pointer)( |
| 340 const unsigned char* src_data[4], |
| 341 const ConvolutionFilter1D& filter, |
| 342 unsigned char* out_row[4]); |
| 343 typedef void (*ConvolveHorizontally_pointer)(const unsigned char* src_data, |
| 344 const ConvolutionFilter1D& filter, |
| 345 unsigned char* out_row, |
| 346 bool has_alpha); |
| 347 |
| 348 struct ConvolveProcs { |
| 349 // This is how many extra pixels may be read by the |
| 350 // conolve*horizontally functions. |
| 351 int extra_horizontal_reads; |
| 352 ConvolveVertically_pointer convolve_vertically; |
| 353 Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; |
| 354 ConvolveHorizontally_pointer convolve_horizontally; |
| 355 }; |
| 356 |
| 357 void SetupSIMD(ConvolveProcs* procs) { |
| 358 #ifdef SIMD_SSE2 |
| 359 procs->extra_horizontal_reads = 3; |
| 360 procs->convolve_vertically = &ConvolveVertically_SSE2; |
| 361 procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; |
| 362 procs->convolve_horizontally = &ConvolveHorizontally_SSE2; |
| 363 #elif defined SIMD_MIPS_DSPR2 |
| 364 procs->extra_horizontal_reads = 3; |
| 365 procs->convolve_vertically = &ConvolveVertically_mips_dspr2; |
| 366 procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2; |
| 367 #endif |
| 368 } |
| 369 |
| 370 void BGRAConvolve2D(const unsigned char* source_data, |
| 371 int source_byte_row_stride, |
| 372 bool source_has_alpha, |
| 373 const ConvolutionFilter1D& filter_x, |
| 374 const ConvolutionFilter1D& filter_y, |
| 375 int output_byte_row_stride, |
| 376 unsigned char* output, |
| 377 bool use_simd_if_possible) { |
| 378 ConvolveProcs simd; |
| 379 simd.extra_horizontal_reads = 0; |
| 380 simd.convolve_vertically = NULL; |
| 381 simd.convolve_4rows_horizontally = NULL; |
| 382 simd.convolve_horizontally = NULL; |
| 383 if (use_simd_if_possible) { |
| 384 SetupSIMD(&simd); |
| 385 } |
| 386 |
| 387 int max_y_filter_size = filter_y.max_filter(); |
| 388 |
| 389 // The next row in the input that we will generate a horizontally |
| 390 // convolved row for. If the filter doesn't start at the beginning of the |
| 391 // image (this is the case when we are only resizing a subset), then we |
| 392 // don't want to generate any output rows before that. Compute the starting |
| 393 // row for convolution as the first pixel for the first vertical filter. |
| 394 int filter_offset, filter_length; |
| 395 const ConvolutionFilter1D::Fixed* filter_values = |
| 396 filter_y.FilterForValue(0, &filter_offset, &filter_length); |
| 397 int next_x_row = filter_offset; |
| 398 |
| 399 // We loop over each row in the input doing a horizontal convolution. This |
| 400 // will result in a horizontally convolved image. We write the results into |
| 401 // a circular buffer of convolved rows and do vertical convolution as rows |
| 402 // are available. This prevents us from having to store the entire |
| 403 // intermediate image and helps cache coherency. |
| 404 // We will need four extra rows to allow horizontal convolution could be done |
| 405 // simultaneously. We also padding each row in row buffer to be aligned-up to |
| 406 // 16 bytes. |
| 407 // TODO(jiesun): We do not use aligned load from row buffer in vertical |
| 408 // convolution pass yet. Somehow Windows does not like it. |
| 409 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; |
| 410 int row_buffer_height = |
| 411 max_y_filter_size + (simd.convolve_4rows_horizontally ? 4 : 0); |
| 412 CircularRowBuffer row_buffer(row_buffer_width, row_buffer_height, |
| 413 filter_offset); |
| 414 |
| 415 // Loop over every possible output row, processing just enough horizontal |
| 416 // convolutions to run each subsequent vertical convolution. |
| 417 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); |
| 418 int num_output_rows = filter_y.num_values(); |
| 419 |
| 420 // We need to check which is the last line to convolve before we advance 4 |
| 421 // lines in one iteration. |
| 422 int last_filter_offset, last_filter_length; |
| 423 |
| 424 // SSE2 can access up to 3 extra pixels past the end of the |
| 425 // buffer. At the bottom of the image, we have to be careful |
| 426 // not to access data past the end of the buffer. Normally |
| 427 // we fall back to the C++ implementation for the last row. |
| 428 // If the last row is less than 3 pixels wide, we may have to fall |
| 429 // back to the C++ version for more rows. Compute how many |
| 430 // rows we need to avoid the SSE implementation for here. |
| 431 filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, |
| 432 &last_filter_length); |
| 433 int avoid_simd_rows = |
| 434 1 + |
| 435 simd.extra_horizontal_reads / (last_filter_offset + last_filter_length); |
| 436 |
| 437 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, |
| 438 &last_filter_length); |
| 439 |
| 440 for (int out_y = 0; out_y < num_output_rows; out_y++) { |
| 441 filter_values = |
| 442 filter_y.FilterForValue(out_y, &filter_offset, &filter_length); |
| 443 |
| 444 // Generate output rows until we have enough to run the current filter. |
| 445 while (next_x_row < filter_offset + filter_length) { |
| 446 if (simd.convolve_4rows_horizontally && |
| 447 next_x_row + 3 < |
| 448 last_filter_offset + last_filter_length - avoid_simd_rows) { |
| 449 const unsigned char* src[4]; |
| 450 unsigned char* out_row[4]; |
| 451 for (int i = 0; i < 4; ++i) { |
| 452 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; |
| 453 out_row[i] = row_buffer.AdvanceRow(); |
| 454 } |
| 455 simd.convolve_4rows_horizontally(src, filter_x, out_row); |
| 456 next_x_row += 4; |
| 457 } else { |
| 458 // Check if we need to avoid SSE2 for this row. |
| 459 if (simd.convolve_horizontally && |
| 460 next_x_row < |
| 461 last_filter_offset + last_filter_length - avoid_simd_rows) { |
| 462 simd.convolve_horizontally( |
| 463 &source_data[next_x_row * source_byte_row_stride], filter_x, |
| 464 row_buffer.AdvanceRow(), source_has_alpha); |
| 465 } else { |
| 466 if (source_has_alpha) { |
| 467 ConvolveHorizontally<true>( |
| 468 &source_data[next_x_row * source_byte_row_stride], filter_x, |
| 469 row_buffer.AdvanceRow()); |
| 470 } else { |
| 471 ConvolveHorizontally<false>( |
| 472 &source_data[next_x_row * source_byte_row_stride], filter_x, |
| 473 row_buffer.AdvanceRow()); |
| 474 } |
| 475 } |
| 476 next_x_row++; |
| 477 } |
| 478 } |
| 479 |
| 480 // Compute where in the output image this row of final data will go. |
| 481 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; |
| 482 |
| 483 // Get the list of rows that the circular buffer has, in order. |
| 484 int first_row_in_circular_buffer; |
| 485 unsigned char* const* rows_to_convolve = |
| 486 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); |
| 487 |
| 488 // Now compute the start of the subset of those rows that the filter |
| 489 // needs. |
| 490 unsigned char* const* first_row_for_filter = |
| 491 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; |
| 492 |
| 493 if (simd.convolve_vertically) { |
| 494 simd.convolve_vertically(filter_values, filter_length, |
| 495 first_row_for_filter, filter_x.num_values(), |
| 496 cur_output_row, source_has_alpha); |
| 497 } else { |
| 498 ConvolveVertically(filter_values, filter_length, first_row_for_filter, |
| 499 filter_x.num_values(), cur_output_row, |
| 500 source_has_alpha); |
| 501 } |
| 502 } |
| 503 } |
| 504 |
| 505 void SingleChannelConvolveX1D(const unsigned char* source_data, |
| 506 int source_byte_row_stride, |
| 507 int input_channel_index, |
| 508 int input_channel_count, |
| 509 const ConvolutionFilter1D& filter, |
| 510 const SkISize& image_size, |
| 511 unsigned char* output, |
| 512 int output_byte_row_stride, |
| 513 int output_channel_index, |
| 514 int output_channel_count, |
| 515 bool absolute_values) { |
| 516 int filter_offset, filter_length, filter_size; |
| 517 // Very much unlike BGRAConvolve2D, here we expect to have the same filter |
| 518 // for all pixels. |
| 519 const ConvolutionFilter1D::Fixed* filter_values = |
| 520 filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); |
| 521 |
| 522 if (filter_values == NULL || image_size.width() < filter_size) { |
| 523 NOTREACHED(); |
| 524 return; |
| 525 } |
| 526 |
| 527 int centrepoint = filter_length / 2; |
| 528 if (filter_size - filter_offset != 2 * filter_offset) { |
| 529 // This means the original filter was not symmetrical AND |
| 530 // got clipped from one side more than from the other. |
| 531 centrepoint = filter_size / 2 - filter_offset; |
| 532 } |
| 533 |
| 534 const unsigned char* source_data_row = source_data; |
| 535 unsigned char* output_row = output; |
| 536 |
| 537 for (int r = 0; r < image_size.height(); ++r) { |
| 538 unsigned char* target_byte = output_row + output_channel_index; |
| 539 // Process the lead part, padding image to the left with the first pixel. |
| 540 int c = 0; |
| 541 for (; c < centrepoint; ++c, target_byte += output_channel_count) { |
| 542 int accval = 0; |
| 543 int i = 0; |
| 544 int pixel_byte_index = input_channel_index; |
| 545 for (; i < centrepoint - c; ++i) // Padding part. |
| 546 accval += filter_values[i] * source_data_row[pixel_byte_index]; |
| 547 |
| 548 for (; i < filter_length; ++i, pixel_byte_index += input_channel_count) |
| 549 accval += filter_values[i] * source_data_row[pixel_byte_index]; |
| 550 |
| 551 *target_byte = BringBackTo8(accval, absolute_values); |
| 552 } |
| 553 |
| 554 // Now for the main event. |
| 555 for (; c < image_size.width() - centrepoint; |
| 556 ++c, target_byte += output_channel_count) { |
| 557 int accval = 0; |
| 558 int pixel_byte_index = |
| 559 (c - centrepoint) * input_channel_count + input_channel_index; |
| 560 |
| 561 for (int i = 0; i < filter_length; |
| 562 ++i, pixel_byte_index += input_channel_count) { |
| 563 accval += filter_values[i] * source_data_row[pixel_byte_index]; |
| 564 } |
| 565 |
| 566 *target_byte = BringBackTo8(accval, absolute_values); |
| 567 } |
| 568 |
| 569 for (; c < image_size.width(); ++c, target_byte += output_channel_count) { |
| 570 int accval = 0; |
| 571 int overlap_taps = image_size.width() - c + centrepoint; |
| 572 int pixel_byte_index = |
| 573 (c - centrepoint) * input_channel_count + input_channel_index; |
| 574 int i = 0; |
| 575 for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count) |
| 576 accval += filter_values[i] * source_data_row[pixel_byte_index]; |
| 577 |
| 578 for (; i < filter_length; ++i) |
| 579 accval += filter_values[i] * source_data_row[pixel_byte_index]; |
| 580 |
| 581 *target_byte = BringBackTo8(accval, absolute_values); |
| 582 } |
| 583 |
| 584 source_data_row += source_byte_row_stride; |
| 585 output_row += output_byte_row_stride; |
| 586 } |
| 587 } |
| 588 |
| 589 void SingleChannelConvolveY1D(const unsigned char* source_data, |
| 590 int source_byte_row_stride, |
| 591 int input_channel_index, |
| 592 int input_channel_count, |
| 593 const ConvolutionFilter1D& filter, |
| 594 const SkISize& image_size, |
| 595 unsigned char* output, |
| 596 int output_byte_row_stride, |
| 597 int output_channel_index, |
| 598 int output_channel_count, |
| 599 bool absolute_values) { |
| 600 int filter_offset, filter_length, filter_size; |
| 601 // Very much unlike BGRAConvolve2D, here we expect to have the same filter |
| 602 // for all pixels. |
| 603 const ConvolutionFilter1D::Fixed* filter_values = |
| 604 filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); |
| 605 |
| 606 if (filter_values == NULL || image_size.height() < filter_size) { |
| 607 NOTREACHED(); |
| 608 return; |
| 609 } |
| 610 |
| 611 int centrepoint = filter_length / 2; |
| 612 if (filter_size - filter_offset != 2 * filter_offset) { |
| 613 // This means the original filter was not symmetrical AND |
| 614 // got clipped from one side more than from the other. |
| 615 centrepoint = filter_size / 2 - filter_offset; |
| 616 } |
| 617 |
| 618 for (int c = 0; c < image_size.width(); ++c) { |
| 619 unsigned char* target_byte = |
| 620 output + c * output_channel_count + output_channel_index; |
| 621 int r = 0; |
| 622 |
| 623 for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) { |
| 624 int accval = 0; |
| 625 int i = 0; |
| 626 int pixel_byte_index = c * input_channel_count + input_channel_index; |
| 627 |
| 628 for (; i < centrepoint - r; ++i) // Padding part. |
| 629 accval += filter_values[i] * source_data[pixel_byte_index]; |
| 630 |
| 631 for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride) |
| 632 accval += filter_values[i] * source_data[pixel_byte_index]; |
| 633 |
| 634 *target_byte = BringBackTo8(accval, absolute_values); |
| 635 } |
| 636 |
| 637 for (; r < image_size.height() - centrepoint; |
| 638 ++r, target_byte += output_byte_row_stride) { |
| 639 int accval = 0; |
| 640 int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + |
| 641 c * input_channel_count + input_channel_index; |
| 642 for (int i = 0; i < filter_length; |
| 643 ++i, pixel_byte_index += source_byte_row_stride) { |
| 644 accval += filter_values[i] * source_data[pixel_byte_index]; |
| 645 } |
| 646 |
| 647 *target_byte = BringBackTo8(accval, absolute_values); |
| 648 } |
| 649 |
| 650 for (; r < image_size.height(); |
| 651 ++r, target_byte += output_byte_row_stride) { |
| 652 int accval = 0; |
| 653 int overlap_taps = image_size.height() - r + centrepoint; |
| 654 int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + |
| 655 c * input_channel_count + input_channel_index; |
| 656 int i = 0; |
| 657 for (; i < overlap_taps - 1; |
| 658 ++i, pixel_byte_index += source_byte_row_stride) { |
| 659 accval += filter_values[i] * source_data[pixel_byte_index]; |
| 660 } |
| 661 |
| 662 for (; i < filter_length; ++i) |
| 663 accval += filter_values[i] * source_data[pixel_byte_index]; |
| 664 |
| 665 *target_byte = BringBackTo8(accval, absolute_values); |
| 666 } |
| 667 } |
| 668 } |
| 669 |
| 670 void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter, |
| 671 float kernel_sigma, |
| 672 bool derivative) { |
| 673 DCHECK(filter != NULL); |
| 674 DCHECK_GT(kernel_sigma, 0.0); |
| 675 const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f); |
| 676 const int kernel_size = tail_length * 2 + 1; |
| 677 const float sigmasq = kernel_sigma * kernel_sigma; |
| 678 std::vector<float> kernel_weights(kernel_size, 0.0); |
| 679 float kernel_sum = 1.0f; |
| 680 |
| 681 kernel_weights[tail_length] = 1.0f; |
| 682 |
| 683 for (int ii = 1; ii <= tail_length; ++ii) { |
| 684 float v = std::exp(-0.5f * ii * ii / sigmasq); |
| 685 kernel_weights[tail_length + ii] = v; |
| 686 kernel_weights[tail_length - ii] = v; |
| 687 kernel_sum += 2.0f * v; |
| 688 } |
| 689 |
| 690 for (int i = 0; i < kernel_size; ++i) |
| 691 kernel_weights[i] /= kernel_sum; |
| 692 |
| 693 if (derivative) { |
| 694 kernel_weights[tail_length] = 0.0; |
| 695 for (int ii = 1; ii <= tail_length; ++ii) { |
| 696 float v = sigmasq * kernel_weights[tail_length + ii] / ii; |
| 697 kernel_weights[tail_length + ii] = v; |
| 698 kernel_weights[tail_length - ii] = -v; |
| 699 } |
| 700 } |
| 701 |
| 702 filter->AddFilter(0, &kernel_weights[0], kernel_weights.size()); |
| 703 } |
| 704 |
| 705 } // namespace skia |
OLD | NEW |