| Index: src/a64/simulator-a64.cc
|
| diff --git a/src/a64/simulator-a64.cc b/src/a64/simulator-a64.cc
|
| index c80266bea69cfb229e8c7b304e1f8ba356281abc..ca171058ba9e98abf7840560b6c187876ee6da3b 100644
|
| --- a/src/a64/simulator-a64.cc
|
| +++ b/src/a64/simulator-a64.cc
|
| @@ -731,6 +731,16 @@ int64_t Simulator::ExtendValue(unsigned reg_size,
|
| }
|
|
|
|
|
| +template<> double Simulator::FPDefaultNaN<double>() const {
|
| + return kFP64DefaultNaN;
|
| +}
|
| +
|
| +
|
| +template<> float Simulator::FPDefaultNaN<float>() const {
|
| + return kFP32DefaultNaN;
|
| +}
|
| +
|
| +
|
| void Simulator::FPCompare(double val0, double val1) {
|
| AssertSupportedFPCR();
|
|
|
| @@ -2100,8 +2110,8 @@ uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
|
| void Simulator::VisitFPCompare(Instruction* instr) {
|
| AssertSupportedFPCR();
|
|
|
| - unsigned reg_size = instr->FPType() == FP32 ? kSRegSizeInBits
|
| - : kDRegSizeInBits;
|
| + unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
|
| + : kSRegSizeInBits;
|
| double fn_val = fpreg(reg_size, instr->Rn());
|
|
|
| switch (instr->Mask(FPCompareMask)) {
|
| @@ -2123,8 +2133,8 @@ void Simulator::VisitFPConditionalCompare(Instruction* instr) {
|
| if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
|
| // If the condition passes, set the status flags to the result of
|
| // comparing the operands.
|
| - unsigned reg_size = instr->FPType() == FP32 ? kSRegSizeInBits
|
| - : kDRegSizeInBits;
|
| + unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
|
| + : kSRegSizeInBits;
|
| FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
|
| } else {
|
| // If the condition fails, set the status flags to the nzcv immediate.
|
| @@ -2168,8 +2178,8 @@ void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
|
| case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break;
|
| case FNEG_s: set_sreg(fd, -sreg(fn)); break;
|
| case FNEG_d: set_dreg(fd, -dreg(fn)); break;
|
| - case FSQRT_s: set_sreg(fd, std::sqrt(sreg(fn))); break;
|
| - case FSQRT_d: set_dreg(fd, std::sqrt(dreg(fn))); break;
|
| + case FSQRT_s: set_sreg(fd, FPSqrt(sreg(fn))); break;
|
| + case FSQRT_d: set_dreg(fd, FPSqrt(dreg(fn))); break;
|
| case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break;
|
| case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break;
|
| case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
|
| @@ -2428,8 +2438,10 @@ float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
|
|
|
| double Simulator::FPRoundInt(double value, FPRounding round_mode) {
|
| if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
|
| - (value == kFP64NegativeInfinity) || std::isnan(value)) {
|
| + (value == kFP64NegativeInfinity)) {
|
| return value;
|
| + } else if (std::isnan(value)) {
|
| + return FPProcessNaN(value);
|
| }
|
|
|
| double int_result = floor(value);
|
| @@ -2473,8 +2485,9 @@ double Simulator::FPRoundInt(double value, FPRounding round_mode) {
|
| double Simulator::FPToDouble(float value) {
|
| switch (std::fpclassify(value)) {
|
| case FP_NAN: {
|
| - // Convert NaNs as the processor would, assuming that FPCR.DN (default
|
| - // NaN) is not set:
|
| + if (DN()) return kFP64DefaultNaN;
|
| +
|
| + // Convert NaNs as the processor would:
|
| // - The sign is propagated.
|
| // - The payload (mantissa) is transferred entirely, except that the top
|
| // bit is forced to '1', making the result a quiet NaN. The unused
|
| @@ -2513,8 +2526,9 @@ float Simulator::FPToFloat(double value, FPRounding round_mode) {
|
|
|
| switch (std::fpclassify(value)) {
|
| case FP_NAN: {
|
| - // Convert NaNs as the processor would, assuming that FPCR.DN (default
|
| - // NaN) is not set:
|
| + if (DN()) return kFP32DefaultNaN;
|
| +
|
| + // Convert NaNs as the processor would:
|
| // - The sign is propagated.
|
| // - The payload (mantissa) is transferred as much as possible, except
|
| // that the top bit is forced to '1', making the result a quiet NaN.
|
| @@ -2565,23 +2579,37 @@ void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
|
| unsigned fn = instr->Rn();
|
| unsigned fm = instr->Rm();
|
|
|
| + // Fmaxnm and Fminnm have special NaN handling.
|
| + switch (instr->Mask(FPDataProcessing2SourceMask)) {
|
| + case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); return;
|
| + case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); return;
|
| + case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); return;
|
| + case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); return;
|
| + default:
|
| + break; // Fall through.
|
| + }
|
| +
|
| + if (FPProcessNaNs(instr)) return;
|
| +
|
| switch (instr->Mask(FPDataProcessing2SourceMask)) {
|
| - case FADD_s: set_sreg(fd, sreg(fn) + sreg(fm)); break;
|
| - case FADD_d: set_dreg(fd, dreg(fn) + dreg(fm)); break;
|
| - case FSUB_s: set_sreg(fd, sreg(fn) - sreg(fm)); break;
|
| - case FSUB_d: set_dreg(fd, dreg(fn) - dreg(fm)); break;
|
| - case FMUL_s: set_sreg(fd, sreg(fn) * sreg(fm)); break;
|
| - case FMUL_d: set_dreg(fd, dreg(fn) * dreg(fm)); break;
|
| - case FDIV_s: set_sreg(fd, sreg(fn) / sreg(fm)); break;
|
| - case FDIV_d: set_dreg(fd, dreg(fn) / dreg(fm)); break;
|
| + case FADD_s: set_sreg(fd, FPAdd(sreg(fn), sreg(fm))); break;
|
| + case FADD_d: set_dreg(fd, FPAdd(dreg(fn), dreg(fm))); break;
|
| + case FSUB_s: set_sreg(fd, FPSub(sreg(fn), sreg(fm))); break;
|
| + case FSUB_d: set_dreg(fd, FPSub(dreg(fn), dreg(fm))); break;
|
| + case FMUL_s: set_sreg(fd, FPMul(sreg(fn), sreg(fm))); break;
|
| + case FMUL_d: set_dreg(fd, FPMul(dreg(fn), dreg(fm))); break;
|
| + case FDIV_s: set_sreg(fd, FPDiv(sreg(fn), sreg(fm))); break;
|
| + case FDIV_d: set_dreg(fd, FPDiv(dreg(fn), dreg(fm))); break;
|
| case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
|
| case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
|
| case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
|
| case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
|
| - case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); break;
|
| - case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); break;
|
| - case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); break;
|
| - case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); break;
|
| + case FMAXNM_s:
|
| + case FMAXNM_d:
|
| + case FMINNM_s:
|
| + case FMINNM_d:
|
| + // These were handled before the standard FPProcessNaNs() stage.
|
| + UNREACHABLE();
|
| default: UNIMPLEMENTED();
|
| }
|
| }
|
| @@ -2598,33 +2626,62 @@ void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
|
| // The C99 (and C++11) fma function performs a fused multiply-accumulate.
|
| switch (instr->Mask(FPDataProcessing3SourceMask)) {
|
| // fd = fa +/- (fn * fm)
|
| - case FMADD_s: set_sreg(fd, fmaf(sreg(fn), sreg(fm), sreg(fa))); break;
|
| - case FMSUB_s: set_sreg(fd, fmaf(-sreg(fn), sreg(fm), sreg(fa))); break;
|
| - case FMADD_d: set_dreg(fd, fma(dreg(fn), dreg(fm), dreg(fa))); break;
|
| - case FMSUB_d: set_dreg(fd, fma(-dreg(fn), dreg(fm), dreg(fa))); break;
|
| - // Variants of the above where the result is negated.
|
| - case FNMADD_s: set_sreg(fd, -fmaf(sreg(fn), sreg(fm), sreg(fa))); break;
|
| - case FNMSUB_s: set_sreg(fd, -fmaf(-sreg(fn), sreg(fm), sreg(fa))); break;
|
| - case FNMADD_d: set_dreg(fd, -fma(dreg(fn), dreg(fm), dreg(fa))); break;
|
| - case FNMSUB_d: set_dreg(fd, -fma(-dreg(fn), dreg(fm), dreg(fa))); break;
|
| + case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break;
|
| + case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break;
|
| + case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break;
|
| + case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break;
|
| + // Negated variants of the above.
|
| + case FNMADD_s:
|
| + set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
|
| + break;
|
| + case FNMSUB_s:
|
| + set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
|
| + break;
|
| + case FNMADD_d:
|
| + set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
|
| + break;
|
| + case FNMSUB_d:
|
| + set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
|
| + break;
|
| default: UNIMPLEMENTED();
|
| }
|
| }
|
|
|
|
|
| template <typename T>
|
| -T Simulator::FPMax(T a, T b) {
|
| - if (IsSignallingNaN(a)) {
|
| - return a;
|
| - } else if (IsSignallingNaN(b)) {
|
| - return b;
|
| - } else if (std::isnan(a)) {
|
| - ASSERT(IsQuietNaN(a));
|
| - return a;
|
| - } else if (std::isnan(b)) {
|
| - ASSERT(IsQuietNaN(b));
|
| - return b;
|
| +T Simulator::FPAdd(T op1, T op2) {
|
| + // NaNs should be handled elsewhere.
|
| + ASSERT(!std::isnan(op1) && !std::isnan(op2));
|
| +
|
| + if (isinf(op1) && isinf(op2) && (op1 != op2)) {
|
| + // inf + -inf returns the default NaN.
|
| + return FPDefaultNaN<T>();
|
| + } else {
|
| + // Other cases should be handled by standard arithmetic.
|
| + return op1 + op2;
|
| + }
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPDiv(T op1, T op2) {
|
| + // NaNs should be handled elsewhere.
|
| + ASSERT(!std::isnan(op1) && !std::isnan(op2));
|
| +
|
| + if ((isinf(op1) && isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) {
|
| + // inf / inf and 0.0 / 0.0 return the default NaN.
|
| + return FPDefaultNaN<T>();
|
| + } else {
|
| + // Other cases should be handled by standard arithmetic.
|
| + return op1 / op2;
|
| }
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPMax(T a, T b) {
|
| + // NaNs should be handled elsewhere.
|
| + ASSERT(!std::isnan(a) && !std::isnan(b));
|
|
|
| if ((a == 0.0) && (b == 0.0) &&
|
| (copysign(1.0, a) != copysign(1.0, b))) {
|
| @@ -2643,22 +2700,15 @@ T Simulator::FPMaxNM(T a, T b) {
|
| } else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
|
| b = kFP64NegativeInfinity;
|
| }
|
| - return FPMax(a, b);
|
| +
|
| + T result = FPProcessNaNs(a, b);
|
| + return std::isnan(result) ? result : FPMax(a, b);
|
| }
|
|
|
| template <typename T>
|
| T Simulator::FPMin(T a, T b) {
|
| - if (IsSignallingNaN(a)) {
|
| - return a;
|
| - } else if (IsSignallingNaN(b)) {
|
| - return b;
|
| - } else if (std::isnan(a)) {
|
| - ASSERT(IsQuietNaN(a));
|
| - return a;
|
| - } else if (std::isnan(b)) {
|
| - ASSERT(IsQuietNaN(b));
|
| - return b;
|
| - }
|
| + // NaNs should be handled elsewhere.
|
| + ASSERT(!isnan(a) && !isnan(b));
|
|
|
| if ((a == 0.0) && (b == 0.0) &&
|
| (copysign(1.0, a) != copysign(1.0, b))) {
|
| @@ -2677,7 +2727,168 @@ T Simulator::FPMinNM(T a, T b) {
|
| } else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
|
| b = kFP64PositiveInfinity;
|
| }
|
| - return FPMin(a, b);
|
| +
|
| + T result = FPProcessNaNs(a, b);
|
| + return isnan(result) ? result : FPMin(a, b);
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPMul(T op1, T op2) {
|
| + // NaNs should be handled elsewhere.
|
| + ASSERT(!std::isnan(op1) && !std::isnan(op2));
|
| +
|
| + if ((isinf(op1) && (op2 == 0.0)) || (isinf(op2) && (op1 == 0.0))) {
|
| + // inf * 0.0 returns the default NaN.
|
| + return FPDefaultNaN<T>();
|
| + } else {
|
| + // Other cases should be handled by standard arithmetic.
|
| + return op1 * op2;
|
| + }
|
| +}
|
| +
|
| +
|
| +template<typename T>
|
| +T Simulator::FPMulAdd(T a, T op1, T op2) {
|
| + T result = FPProcessNaNs3(a, op1, op2);
|
| +
|
| + T sign_a = copysign(1.0, a);
|
| + T sign_prod = copysign(1.0, op1) * copysign(1.0, op2);
|
| + bool isinf_prod = std::isinf(op1) || std::isinf(op2);
|
| + bool operation_generates_nan =
|
| + (std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0
|
| + (std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf
|
| + (std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf
|
| +
|
| + if (std::isnan(result)) {
|
| + // Generated NaNs override quiet NaNs propagated from a.
|
| + if (operation_generates_nan && IsQuietNaN(a)) {
|
| + return FPDefaultNaN<T>();
|
| + } else {
|
| + return result;
|
| + }
|
| + }
|
| +
|
| + // If the operation would produce a NaN, return the default NaN.
|
| + if (operation_generates_nan) {
|
| + return FPDefaultNaN<T>();
|
| + }
|
| +
|
| + // Work around broken fma implementations for exact zero results: The sign of
|
| + // exact 0.0 results is positive unless both a and op1 * op2 are negative.
|
| + if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) {
|
| + return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0;
|
| + }
|
| +
|
| + result = FusedMultiplyAdd(op1, op2, a);
|
| + ASSERT(!std::isnan(result));
|
| +
|
| + // Work around broken fma implementations for rounded zero results: If a is
|
| + // 0.0, the sign of the result is the sign of op1 * op2 before rounding.
|
| + if ((a == 0.0) && (result == 0.0)) {
|
| + return copysign(0.0, sign_prod);
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPSqrt(T op) {
|
| + if (std::isnan(op)) {
|
| + return FPProcessNaN(op);
|
| + } else if (op < 0.0) {
|
| + return FPDefaultNaN<T>();
|
| + } else {
|
| + return std::sqrt(op);
|
| + }
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPSub(T op1, T op2) {
|
| + // NaNs should be handled elsewhere.
|
| + ASSERT(!std::isnan(op1) && !std::isnan(op2));
|
| +
|
| + if (isinf(op1) && isinf(op2) && (op1 == op2)) {
|
| + // inf - inf returns the default NaN.
|
| + return FPDefaultNaN<T>();
|
| + } else {
|
| + // Other cases should be handled by standard arithmetic.
|
| + return op1 - op2;
|
| + }
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPProcessNaN(T op) {
|
| + ASSERT(std::isnan(op));
|
| + return DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPProcessNaNs(T op1, T op2) {
|
| + if (IsSignallingNaN(op1)) {
|
| + return FPProcessNaN(op1);
|
| + } else if (IsSignallingNaN(op2)) {
|
| + return FPProcessNaN(op2);
|
| + } else if (std::isnan(op1)) {
|
| + ASSERT(IsQuietNaN(op1));
|
| + return FPProcessNaN(op1);
|
| + } else if (std::isnan(op2)) {
|
| + ASSERT(IsQuietNaN(op2));
|
| + return FPProcessNaN(op2);
|
| + } else {
|
| + return 0.0;
|
| + }
|
| +}
|
| +
|
| +
|
| +template <typename T>
|
| +T Simulator::FPProcessNaNs3(T op1, T op2, T op3) {
|
| + if (IsSignallingNaN(op1)) {
|
| + return FPProcessNaN(op1);
|
| + } else if (IsSignallingNaN(op2)) {
|
| + return FPProcessNaN(op2);
|
| + } else if (IsSignallingNaN(op3)) {
|
| + return FPProcessNaN(op3);
|
| + } else if (std::isnan(op1)) {
|
| + ASSERT(IsQuietNaN(op1));
|
| + return FPProcessNaN(op1);
|
| + } else if (std::isnan(op2)) {
|
| + ASSERT(IsQuietNaN(op2));
|
| + return FPProcessNaN(op2);
|
| + } else if (std::isnan(op3)) {
|
| + ASSERT(IsQuietNaN(op3));
|
| + return FPProcessNaN(op3);
|
| + } else {
|
| + return 0.0;
|
| + }
|
| +}
|
| +
|
| +
|
| +bool Simulator::FPProcessNaNs(Instruction* instr) {
|
| + unsigned fd = instr->Rd();
|
| + unsigned fn = instr->Rn();
|
| + unsigned fm = instr->Rm();
|
| + bool done = false;
|
| +
|
| + if (instr->Mask(FP64) == FP64) {
|
| + double result = FPProcessNaNs(dreg(fn), dreg(fm));
|
| + if (std::isnan(result)) {
|
| + set_dreg(fd, result);
|
| + done = true;
|
| + }
|
| + } else {
|
| + float result = FPProcessNaNs(sreg(fn), sreg(fm));
|
| + if (std::isnan(result)) {
|
| + set_sreg(fd, result);
|
| + done = true;
|
| + }
|
| + }
|
| +
|
| + return done;
|
| }
|
|
|
|
|
|
|