Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1819)

Unified Diff: src/sksl/SkSLIRGenerator.cpp

Issue 1984363002: initial checkin of SkSL compiler (Closed) Base URL: https://skia.googlesource.com/skia@master
Patch Set: fixed CMake build Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/sksl/SkSLIRGenerator.h ('k') | src/sksl/SkSLMain.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/sksl/SkSLIRGenerator.cpp
diff --git a/src/sksl/SkSLIRGenerator.cpp b/src/sksl/SkSLIRGenerator.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..2cc7eacb4d9ec92bd5e0e57c12c8fb6ecb1a7b64
--- /dev/null
+++ b/src/sksl/SkSLIRGenerator.cpp
@@ -0,0 +1,1217 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkSLIRGenerator.h"
+
+#include "limits.h"
+
+#include "ast/SkSLASTBoolLiteral.h"
+#include "ast/SkSLASTFieldSuffix.h"
+#include "ast/SkSLASTFloatLiteral.h"
+#include "ast/SkSLASTIndexSuffix.h"
+#include "ast/SkSLASTIntLiteral.h"
+#include "ir/SkSLBinaryExpression.h"
+#include "ir/SkSLBoolLiteral.h"
+#include "ir/SkSLBreakStatement.h"
+#include "ir/SkSLConstructor.h"
+#include "ir/SkSLContinueStatement.h"
+#include "ir/SkSLDiscardStatement.h"
+#include "ir/SkSLDoStatement.h"
+#include "ir/SkSLExpressionStatement.h"
+#include "ir/SkSLField.h"
+#include "ir/SkSLFieldAccess.h"
+#include "ir/SkSLFloatLiteral.h"
+#include "ir/SkSLForStatement.h"
+#include "ir/SkSLFunctionCall.h"
+#include "ir/SkSLFunctionDeclaration.h"
+#include "ir/SkSLFunctionDefinition.h"
+#include "ir/SkSLFunctionReference.h"
+#include "ir/SkSLIfStatement.h"
+#include "ir/SkSLIndexExpression.h"
+#include "ir/SkSLInterfaceBlock.h"
+#include "ir/SkSLIntLiteral.h"
+#include "ir/SkSLLayout.h"
+#include "ir/SkSLPostfixExpression.h"
+#include "ir/SkSLPrefixExpression.h"
+#include "ir/SkSLReturnStatement.h"
+#include "ir/SkSLSwizzle.h"
+#include "ir/SkSLTernaryExpression.h"
+#include "ir/SkSLUnresolvedFunction.h"
+#include "ir/SkSLVariable.h"
+#include "ir/SkSLVarDeclaration.h"
+#include "ir/SkSLVarDeclarationStatement.h"
+#include "ir/SkSLVariableReference.h"
+#include "ir/SkSLWhileStatement.h"
+
+namespace SkSL {
+
+class AutoSymbolTable {
+public:
+ AutoSymbolTable(IRGenerator* ir)
+ : fIR(ir)
+ , fPrevious(fIR->fSymbolTable) {
+ fIR->pushSymbolTable();
+ }
+
+ ~AutoSymbolTable() {
+ fIR->popSymbolTable();
+ ASSERT(fPrevious == fIR->fSymbolTable);
+ }
+
+ IRGenerator* fIR;
+ std::shared_ptr<SymbolTable> fPrevious;
+};
+
+IRGenerator::IRGenerator(std::shared_ptr<SymbolTable> symbolTable,
+ ErrorReporter& errorReporter)
+: fSymbolTable(std::move(symbolTable))
+, fErrors(errorReporter) {
+}
+
+void IRGenerator::pushSymbolTable() {
+ fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), fErrors));
+}
+
+void IRGenerator::popSymbolTable() {
+ fSymbolTable = fSymbolTable->fParent;
+}
+
+std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) {
+ return std::unique_ptr<Extension>(new Extension(extension.fPosition, extension.fName));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) {
+ switch (statement.fKind) {
+ case ASTStatement::kBlock_Kind:
+ return this->convertBlock((ASTBlock&) statement);
+ case ASTStatement::kVarDeclaration_Kind:
+ return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement);
+ case ASTStatement::kExpression_Kind:
+ return this->convertExpressionStatement((ASTExpressionStatement&) statement);
+ case ASTStatement::kIf_Kind:
+ return this->convertIf((ASTIfStatement&) statement);
+ case ASTStatement::kFor_Kind:
+ return this->convertFor((ASTForStatement&) statement);
+ case ASTStatement::kWhile_Kind:
+ return this->convertWhile((ASTWhileStatement&) statement);
+ case ASTStatement::kDo_Kind:
+ return this->convertDo((ASTDoStatement&) statement);
+ case ASTStatement::kReturn_Kind:
+ return this->convertReturn((ASTReturnStatement&) statement);
+ case ASTStatement::kBreak_Kind:
+ return this->convertBreak((ASTBreakStatement&) statement);
+ case ASTStatement::kContinue_Kind:
+ return this->convertContinue((ASTContinueStatement&) statement);
+ case ASTStatement::kDiscard_Kind:
+ return this->convertDiscard((ASTDiscardStatement&) statement);
+ default:
+ ABORT("unsupported statement type: %d\n", statement.fKind);
+ }
+}
+
+std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
+ AutoSymbolTable table(this);
+ std::vector<std::unique_ptr<Statement>> statements;
+ for (size_t i = 0; i < block.fStatements.size(); i++) {
+ std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]);
+ if (!statement) {
+ return nullptr;
+ }
+ statements.push_back(std::move(statement));
+ }
+ return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statements)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
+ const ASTVarDeclarationStatement& s) {
+ auto decl = this->convertVarDeclaration(*s.fDeclaration, Variable::kLocal_Storage);
+ if (!decl) {
+ return nullptr;
+ }
+ return std::unique_ptr<Statement>(new VarDeclarationStatement(std::move(decl)));
+}
+
+Modifiers IRGenerator::convertModifiers(const ASTModifiers& modifiers) {
+ return Modifiers(modifiers);
+}
+
+std::unique_ptr<VarDeclaration> IRGenerator::convertVarDeclaration(const ASTVarDeclaration& decl,
+ Variable::Storage storage) {
+ std::vector<std::shared_ptr<Variable>> variables;
+ std::vector<std::vector<std::unique_ptr<Expression>>> sizes;
+ std::vector<std::unique_ptr<Expression>> values;
+ std::shared_ptr<Type> baseType = this->convertType(*decl.fType);
+ if (!baseType) {
+ return nullptr;
+ }
+ for (size_t i = 0; i < decl.fNames.size(); i++) {
+ Modifiers modifiers = this->convertModifiers(decl.fModifiers);
+ std::shared_ptr<Type> type = baseType;
+ ASSERT(type->kind() != Type::kArray_Kind);
+ std::vector<std::unique_ptr<Expression>> currentVarSizes;
+ for (size_t j = 0; j < decl.fSizes[i].size(); j++) {
+ if (decl.fSizes[i][j]) {
+ ASTExpression& rawSize = *decl.fSizes[i][j];
+ auto size = this->coerce(this->convertExpression(rawSize), kInt_Type);
+ if (!size) {
+ return nullptr;
+ }
+ std::string name = type->fName;
+ uint64_t count;
+ if (size->fKind == Expression::kIntLiteral_Kind) {
+ count = ((IntLiteral&) *size).fValue;
+ if (count <= 0) {
+ fErrors.error(size->fPosition, "array size must be positive");
+ }
+ name += "[" + to_string(count) + "]";
+ } else {
+ count = -1;
+ name += "[]";
+ }
+ type = std::shared_ptr<Type>(new Type(name, Type::kArray_Kind, type, (int) count));
+ currentVarSizes.push_back(std::move(size));
+ } else {
+ type = std::shared_ptr<Type>(new Type(type->fName + "[]", Type::kArray_Kind, type,
+ -1));
+ currentVarSizes.push_back(nullptr);
+ }
+ }
+ sizes.push_back(std::move(currentVarSizes));
+ auto var = std::make_shared<Variable>(decl.fPosition, modifiers, decl.fNames[i], type,
+ storage);
+ variables.push_back(var);
+ std::unique_ptr<Expression> value;
+ if (decl.fValues[i]) {
+ value = this->convertExpression(*decl.fValues[i]);
+ if (!value) {
+ return nullptr;
+ }
+ value = this->coerce(std::move(value), type);
+ }
+ fSymbolTable->add(var->fName, var);
+ values.push_back(std::move(value));
+ }
+ return std::unique_ptr<VarDeclaration>(new VarDeclaration(decl.fPosition, std::move(variables),
+ std::move(sizes), std::move(values)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
+ std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest), kBool_Type);
+ if (!test) {
+ return nullptr;
+ }
+ std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
+ if (!ifTrue) {
+ return nullptr;
+ }
+ std::unique_ptr<Statement> ifFalse;
+ if (s.fIfFalse) {
+ ifFalse = this->convertStatement(*s.fIfFalse);
+ if (!ifFalse) {
+ return nullptr;
+ }
+ }
+ return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(test),
+ std::move(ifTrue), std::move(ifFalse)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
+ AutoSymbolTable table(this);
+ std::unique_ptr<Statement> initializer = this->convertStatement(*f.fInitializer);
+ if (!initializer) {
+ return nullptr;
+ }
+ std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*f.fTest), kBool_Type);
+ if (!test) {
+ return nullptr;
+ }
+ std::unique_ptr<Expression> next = this->convertExpression(*f.fNext);
+ if (!next) {
+ return nullptr;
+ }
+ this->checkValid(*next);
+ std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement);
+ if (!statement) {
+ return nullptr;
+ }
+ return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(initializer),
+ std::move(test), std::move(next),
+ std::move(statement)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
+ std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest), kBool_Type);
+ if (!test) {
+ return nullptr;
+ }
+ std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement);
+ if (!statement) {
+ return nullptr;
+ }
+ return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move(test),
+ std::move(statement)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
+ std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest), kBool_Type);
+ if (!test) {
+ return nullptr;
+ }
+ std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement);
+ if (!statement) {
+ return nullptr;
+ }
+ return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(statement),
+ std::move(test)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
+ const ASTExpressionStatement& s) {
+ std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
+ if (!e) {
+ return nullptr;
+ }
+ this->checkValid(*e);
+ return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
+ ASSERT(fCurrentFunction);
+ if (r.fExpression) {
+ std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression);
+ if (!result) {
+ return nullptr;
+ }
+ if (fCurrentFunction->fReturnType == kVoid_Type) {
+ fErrors.error(result->fPosition, "may not return a value from a void function");
+ } else {
+ result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
+ if (!result) {
+ return nullptr;
+ }
+ }
+ return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
+ } else {
+ if (fCurrentFunction->fReturnType != kVoid_Type) {
+ fErrors.error(r.fPosition, "expected function to return '" +
+ fCurrentFunction->fReturnType->description() + "'");
+ }
+ return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition));
+ }
+}
+
+std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
+ return std::unique_ptr<Statement>(new BreakStatement(b.fPosition));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) {
+ return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition));
+}
+
+std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) {
+ return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition));
+}
+
+static std::shared_ptr<Type> expand_generics(std::shared_ptr<Type> type, int i) {
+ if (type->kind() == Type::kGeneric_Kind) {
+ return type->coercibleTypes()[i];
+ }
+ return type;
+}
+
+static void expand_generics(FunctionDeclaration& decl,
+ SymbolTable& symbolTable) {
+ for (int i = 0; i < 4; i++) {
+ std::shared_ptr<Type> returnType = expand_generics(decl.fReturnType, i);
+ std::vector<std::shared_ptr<Variable>> arguments;
+ for (const auto& p : decl.fParameters) {
+ arguments.push_back(std::shared_ptr<Variable>(new Variable(
+ p->fPosition,
+ Modifiers(p->fModifiers),
+ p->fName,
+ expand_generics(p->fType, i),
+ Variable::kParameter_Storage)));
+ }
+ std::shared_ptr<FunctionDeclaration> expanded(new FunctionDeclaration(
+ decl.fPosition,
+ decl.fName,
+ std::move(arguments),
+ std::move(returnType)));
+ symbolTable.add(expanded->fName, expanded);
+ }
+}
+
+std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFunction& f) {
+ std::shared_ptr<SymbolTable> old = fSymbolTable;
+ AutoSymbolTable table(this);
+ bool isGeneric;
+ std::shared_ptr<Type> returnType = this->convertType(*f.fReturnType);
+ if (!returnType) {
+ return nullptr;
+ }
+ isGeneric = returnType->kind() == Type::kGeneric_Kind;
+ std::vector<std::shared_ptr<Variable>> parameters;
+ for (const auto& param : f.fParameters) {
+ std::shared_ptr<Type> type = this->convertType(*param->fType);
+ if (!type) {
+ return nullptr;
+ }
+ for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
+ int size = param->fSizes[j];
+ std::string name = type->name() + "[" + to_string(size) + "]";
+ type = std::shared_ptr<Type>(new Type(std::move(name), Type::kArray_Kind,
+ std::move(type), size));
+ }
+ std::string name = param->fName;
+ Modifiers modifiers = this->convertModifiers(param->fModifiers);
+ Position pos = param->fPosition;
+ std::shared_ptr<Variable> var = std::shared_ptr<Variable>(new Variable(
+ pos,
+ modifiers,
+ std::move(name),
+ type,
+ Variable::kParameter_Storage));
+ parameters.push_back(std::move(var));
+ isGeneric |= type->kind() == Type::kGeneric_Kind;
+ }
+
+ // find existing declaration
+ std::shared_ptr<FunctionDeclaration> decl;
+ auto entry = (*old)[f.fName];
+ if (entry) {
+ std::vector<std::shared_ptr<FunctionDeclaration>> functions;
+ switch (entry->fKind) {
+ case Symbol::kUnresolvedFunction_Kind:
+ functions = std::static_pointer_cast<UnresolvedFunction>(entry)->fFunctions;
+ break;
+ case Symbol::kFunctionDeclaration_Kind:
+ functions.push_back(std::static_pointer_cast<FunctionDeclaration>(entry));
+ break;
+ default:
+ fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined");
+ return nullptr;
+ }
+ for (const auto& other : functions) {
+ ASSERT(other->fName == f.fName);
+ if (parameters.size() == other->fParameters.size()) {
+ bool match = true;
+ for (size_t i = 0; i < parameters.size(); i++) {
+ if (parameters[i]->fType != other->fParameters[i]->fType) {
+ match = false;
+ break;
+ }
+ }
+ if (match) {
+ if (returnType != other->fReturnType) {
+ FunctionDeclaration newDecl = FunctionDeclaration(f.fPosition,
+ f.fName,
+ parameters,
+ returnType);
+ fErrors.error(f.fPosition, "functions '" + newDecl.description() +
+ "' and '" + other->description() +
+ "' differ only in return type");
+ return nullptr;
+ }
+ decl = other;
+ for (size_t i = 0; i < parameters.size(); i++) {
+ if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
+ fErrors.error(f.fPosition, "modifiers on parameter " +
+ to_string(i + 1) + " differ between " +
+ "declaration and definition");
+ return nullptr;
+ }
+ fSymbolTable->add(parameters[i]->fName, decl->fParameters[i]);
+ }
+ if (other->fDefined) {
+ fErrors.error(f.fPosition, "duplicate definition of " +
+ other->description());
+ }
+ break;
+ }
+ }
+ }
+ }
+ if (!decl) {
+ // couldn't find an existing declaration
+ decl.reset(new FunctionDeclaration(f.fPosition, f.fName, parameters, returnType));
+ for (auto var : parameters) {
+ fSymbolTable->add(var->fName, var);
+ }
+ }
+ if (isGeneric) {
+ ASSERT(!f.fBody);
+ expand_generics(*decl, *old);
+ } else {
+ old->add(decl->fName, decl);
+ if (f.fBody) {
+ ASSERT(!fCurrentFunction);
+ fCurrentFunction = decl;
+ decl->fDefined = true;
+ std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
+ fCurrentFunction = nullptr;
+ if (!body) {
+ return nullptr;
+ }
+ return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f.fPosition, decl,
+ std::move(body)));
+ }
+ }
+ return nullptr;
+}
+
+std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) {
+ std::shared_ptr<SymbolTable> old = fSymbolTable;
+ AutoSymbolTable table(this);
+ Modifiers mods = this->convertModifiers(intf.fModifiers);
+ std::vector<Type::Field> fields;
+ for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
+ std::unique_ptr<VarDeclaration> decl = this->convertVarDeclaration(
+ *intf.fDeclarations[i],
+ Variable::kGlobal_Storage);
+ for (size_t j = 0; j < decl->fVars.size(); j++) {
+ fields.push_back(Type::Field(decl->fVars[j]->fModifiers, decl->fVars[j]->fName,
+ decl->fVars[j]->fType));
+ if (decl->fValues[j]) {
+ fErrors.error(decl->fPosition,
+ "initializers are not permitted on interface block fields");
+ }
+ if (decl->fVars[j]->fModifiers.fFlags & (Modifiers::kIn_Flag |
+ Modifiers::kOut_Flag |
+ Modifiers::kUniform_Flag |
+ Modifiers::kConst_Flag)) {
+ fErrors.error(decl->fPosition,
+ "interface block fields may not have storage qualifiers");
+ }
+ }
+ }
+ std::shared_ptr<Type> type = std::shared_ptr<Type>(new Type(intf.fInterfaceName, fields));
+ std::string name = intf.fValueName.length() > 0 ? intf.fValueName : intf.fInterfaceName;
+ std::shared_ptr<Variable> var = std::shared_ptr<Variable>(new Variable(intf.fPosition, mods,
+ name, type,
+ Variable::kGlobal_Storage));
+ if (intf.fValueName.length()) {
+ old->add(intf.fValueName, var);
+
+ } else {
+ for (size_t i = 0; i < fields.size(); i++) {
+ std::shared_ptr<Field> field = std::shared_ptr<Field>(new Field(intf.fPosition, var,
+ (int) i));
+ old->add(fields[i].fName, field);
+ }
+ }
+ return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, var));
+}
+
+std::shared_ptr<Type> IRGenerator::convertType(const ASTType& type) {
+ std::shared_ptr<Symbol> result = (*fSymbolTable)[type.fName];
+ if (result && result->fKind == Symbol::kType_Kind) {
+ return std::static_pointer_cast<Type>(result);
+ }
+ fErrors.error(type.fPosition, "unknown type '" + type.fName + "'");
+ return nullptr;
+}
+
+std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
+ switch (expr.fKind) {
+ case ASTExpression::kIdentifier_Kind:
+ return this->convertIdentifier((ASTIdentifier&) expr);
+ case ASTExpression::kBool_Kind:
+ return std::unique_ptr<Expression>(new BoolLiteral(expr.fPosition,
+ ((ASTBoolLiteral&) expr).fValue));
+ case ASTExpression::kInt_Kind:
+ return std::unique_ptr<Expression>(new IntLiteral(expr.fPosition,
+ ((ASTIntLiteral&) expr).fValue));
+ case ASTExpression::kFloat_Kind:
+ return std::unique_ptr<Expression>(new FloatLiteral(expr.fPosition,
+ ((ASTFloatLiteral&) expr).fValue));
+ case ASTExpression::kBinary_Kind:
+ return this->convertBinaryExpression((ASTBinaryExpression&) expr);
+ case ASTExpression::kPrefix_Kind:
+ return this->convertPrefixExpression((ASTPrefixExpression&) expr);
+ case ASTExpression::kSuffix_Kind:
+ return this->convertSuffixExpression((ASTSuffixExpression&) expr);
+ case ASTExpression::kTernary_Kind:
+ return this->convertTernaryExpression((ASTTernaryExpression&) expr);
+ default:
+ ABORT("unsupported expression type: %d\n", expr.fKind);
+ }
+}
+
+std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
+ std::shared_ptr<Symbol> result = (*fSymbolTable)[identifier.fText];
+ if (!result) {
+ fErrors.error(identifier.fPosition, "unknown identifier '" + identifier.fText + "'");
+ return nullptr;
+ }
+ switch (result->fKind) {
+ case Symbol::kFunctionDeclaration_Kind: {
+ std::vector<std::shared_ptr<FunctionDeclaration>> f = {
+ std::static_pointer_cast<FunctionDeclaration>(result)
+ };
+ return std::unique_ptr<FunctionReference>(new FunctionReference(identifier.fPosition,
+ std::move(f)));
+ }
+ case Symbol::kUnresolvedFunction_Kind: {
+ auto f = std::static_pointer_cast<UnresolvedFunction>(result);
+ return std::unique_ptr<FunctionReference>(new FunctionReference(identifier.fPosition,
+ f->fFunctions));
+ }
+ case Symbol::kVariable_Kind: {
+ std::shared_ptr<Variable> var = std::static_pointer_cast<Variable>(result);
+ this->markReadFrom(var);
+ return std::unique_ptr<VariableReference>(new VariableReference(identifier.fPosition,
+ std::move(var)));
+ }
+ case Symbol::kField_Kind: {
+ std::shared_ptr<Field> field = std::static_pointer_cast<Field>(result);
+ VariableReference* base = new VariableReference(identifier.fPosition, field->fOwner);
+ return std::unique_ptr<Expression>(new FieldAccess(std::unique_ptr<Expression>(base),
+ field->fFieldIndex));
+ }
+ case Symbol::kType_Kind: {
+ auto t = std::static_pointer_cast<Type>(result);
+ return std::unique_ptr<TypeReference>(new TypeReference(identifier.fPosition,
+ std::move(t)));
+ }
+ default:
+ ABORT("unsupported symbol type %d\n", result->fKind);
+ }
+
+}
+
+std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
+ std::shared_ptr<Type> type) {
+ if (!expr) {
+ return nullptr;
+ }
+ if (*expr->fType == *type) {
+ return expr;
+ }
+ this->checkValid(*expr);
+ if (*expr->fType == *kInvalid_Type) {
+ return nullptr;
+ }
+ if (!expr->fType->canCoerceTo(type)) {
+ fErrors.error(expr->fPosition, "expected '" + type->description() + "', but found '" +
+ expr->fType->description() + "'");
+ return nullptr;
+ }
+ if (type->kind() == Type::kScalar_Kind) {
+ std::vector<std::unique_ptr<Expression>> args;
+ args.push_back(std::move(expr));
+ ASTIdentifier id(Position(), type->description());
+ std::unique_ptr<Expression> ctor = this->convertIdentifier(id);
+ ASSERT(ctor);
+ return this->call(Position(), std::move(ctor), std::move(args));
+ }
+ ABORT("cannot coerce %s to %s", expr->fType->description().c_str(),
+ type->description().c_str());
+}
+
+/**
+ * Determines the operand and result types of a binary expression. Returns true if the expression is
+ * legal, false otherwise. If false, the values of the out parameters are undefined.
+ */
+static bool determine_binary_type(Token::Kind op, std::shared_ptr<Type> left,
+ std::shared_ptr<Type> right,
+ std::shared_ptr<Type>* outLeftType,
+ std::shared_ptr<Type>* outRightType,
+ std::shared_ptr<Type>* outResultType,
+ bool tryFlipped) {
+ bool isLogical;
+ switch (op) {
+ case Token::EQEQ: // fall through
+ case Token::NEQ: // fall through
+ case Token::LT: // fall through
+ case Token::GT: // fall through
+ case Token::LTEQ: // fall through
+ case Token::GTEQ:
+ isLogical = true;
+ break;
+ case Token::LOGICALOR: // fall through
+ case Token::LOGICALAND: // fall through
+ case Token::LOGICALXOR: // fall through
+ case Token::LOGICALOREQ: // fall through
+ case Token::LOGICALANDEQ: // fall through
+ case Token::LOGICALXOREQ:
+ *outLeftType = kBool_Type;
+ *outRightType = kBool_Type;
+ *outResultType = kBool_Type;
+ return left->canCoerceTo(kBool_Type) && right->canCoerceTo(kBool_Type);
+ case Token::STAR: // fall through
+ case Token::STAREQ:
+ // FIXME need to handle non-square matrices
+ if (left->kind() == Type::kMatrix_Kind && right->kind() == Type::kVector_Kind) {
+ *outLeftType = left;
+ *outRightType = right;
+ *outResultType = right;
+ return left->rows() == right->columns();
+ }
+ if (left->kind() == Type::kVector_Kind && right->kind() == Type::kMatrix_Kind) {
+ *outLeftType = left;
+ *outRightType = right;
+ *outResultType = left;
+ return left->columns() == right->columns();
+ }
+ // fall through
+ default:
+ isLogical = false;
+ }
+ // FIXME: need to disallow illegal operations like vec3 > vec3. Also do not currently have
+ // full support for numbers other than float.
+ if (left == right) {
+ *outLeftType = left;
+ *outRightType = left;
+ if (isLogical) {
+ *outResultType = kBool_Type;
+ } else {
+ *outResultType = left;
+ }
+ return true;
+ }
+ // FIXME: incorrect for shift operations
+ if (left->canCoerceTo(right)) {
+ *outLeftType = right;
+ *outRightType = right;
+ if (isLogical) {
+ *outResultType = kBool_Type;
+ } else {
+ *outResultType = right;
+ }
+ return true;
+ }
+ if ((left->kind() == Type::kVector_Kind || left->kind() == Type::kMatrix_Kind) &&
+ (right->kind() == Type::kScalar_Kind)) {
+ if (determine_binary_type(op, left->componentType(), right, outLeftType, outRightType,
+ outResultType, false)) {
+ *outLeftType = (*outLeftType)->toCompound(left->columns(), left->rows());
+ if (!isLogical) {
+ *outResultType = (*outResultType)->toCompound(left->columns(), left->rows());
+ }
+ return true;
+ }
+ return false;
+ }
+ if (tryFlipped) {
+ return determine_binary_type(op, right, left, outRightType, outLeftType, outResultType,
+ false);
+ }
+ return false;
+}
+
+std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
+ const ASTBinaryExpression& expression) {
+ std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft);
+ if (!left) {
+ return nullptr;
+ }
+ std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight);
+ if (!right) {
+ return nullptr;
+ }
+ std::shared_ptr<Type> leftType;
+ std::shared_ptr<Type> rightType;
+ std::shared_ptr<Type> resultType;
+ if (!determine_binary_type(expression.fOperator, left->fType, right->fType, &leftType,
+ &rightType, &resultType, true)) {
+ fErrors.error(expression.fPosition, "type mismatch: '" +
+ Token::OperatorName(expression.fOperator) +
+ "' cannot operate on '" + left->fType->fName +
+ "', '" + right->fType->fName + "'");
+ return nullptr;
+ }
+ switch (expression.fOperator) {
+ case Token::EQ: // fall through
+ case Token::PLUSEQ: // fall through
+ case Token::MINUSEQ: // fall through
+ case Token::STAREQ: // fall through
+ case Token::SLASHEQ: // fall through
+ case Token::PERCENTEQ: // fall through
+ case Token::SHLEQ: // fall through
+ case Token::SHREQ: // fall through
+ case Token::BITWISEOREQ: // fall through
+ case Token::BITWISEXOREQ: // fall through
+ case Token::BITWISEANDEQ: // fall through
+ case Token::LOGICALOREQ: // fall through
+ case Token::LOGICALXOREQ: // fall through
+ case Token::LOGICALANDEQ:
+ this->markWrittenTo(*left);
+ default:
+ break;
+ }
+ return std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition,
+ this->coerce(std::move(left), leftType),
+ expression.fOperator,
+ this->coerce(std::move(right),
+ rightType),
+ resultType));
+}
+
+std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
+ const ASTTernaryExpression& expression) {
+ std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest),
+ kBool_Type);
+ if (!test) {
+ return nullptr;
+ }
+ std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue);
+ if (!ifTrue) {
+ return nullptr;
+ }
+ std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse);
+ if (!ifFalse) {
+ return nullptr;
+ }
+ std::shared_ptr<Type> trueType;
+ std::shared_ptr<Type> falseType;
+ std::shared_ptr<Type> resultType;
+ if (!determine_binary_type(Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType,
+ &falseType, &resultType, true)) {
+ fErrors.error(expression.fPosition, "ternary operator result mismatch: '" +
+ ifTrue->fType->fName + "', '" +
+ ifFalse->fType->fName + "'");
+ return nullptr;
+ }
+ ASSERT(trueType == falseType);
+ ifTrue = this->coerce(std::move(ifTrue), trueType);
+ ifFalse = this->coerce(std::move(ifFalse), falseType);
+ return std::unique_ptr<Expression>(new TernaryExpression(expression.fPosition,
+ std::move(test),
+ std::move(ifTrue),
+ std::move(ifFalse)));
+}
+
+std::unique_ptr<Expression> IRGenerator::call(
+ Position position,
+ std::shared_ptr<FunctionDeclaration> function,
+ std::vector<std::unique_ptr<Expression>> arguments) {
+ if (function->fParameters.size() != arguments.size()) {
+ std::string msg = "call to '" + function->fName + "' expected " +
+ to_string(function->fParameters.size()) +
+ " argument";
+ if (function->fParameters.size() != 1) {
+ msg += "s";
+ }
+ msg += ", but found " + to_string(arguments.size());
+ fErrors.error(position, msg);
+ return nullptr;
+ }
+ for (size_t i = 0; i < arguments.size(); i++) {
+ arguments[i] = this->coerce(std::move(arguments[i]), function->fParameters[i]->fType);
+ if (arguments[i] && (function->fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
+ this->markWrittenTo(*arguments[i]);
+ }
+ }
+ return std::unique_ptr<FunctionCall>(new FunctionCall(position, std::move(function),
+ std::move(arguments)));
+}
+
+/**
+ * Determines the cost of coercing the arguments of a function to the required types. Returns true
+ * if the cost could be computed, false if the call is not valid. Cost has no particular meaning
+ * other than "lower costs are preferred".
+ */
+bool IRGenerator::determineCallCost(std::shared_ptr<FunctionDeclaration> function,
+ const std::vector<std::unique_ptr<Expression>>& arguments,
+ int* outCost) {
+ if (function->fParameters.size() != arguments.size()) {
+ return false;
+ }
+ int total = 0;
+ for (size_t i = 0; i < arguments.size(); i++) {
+ int cost;
+ if (arguments[i]->fType->determineCoercionCost(function->fParameters[i]->fType, &cost)) {
+ total += cost;
+ } else {
+ return false;
+ }
+ }
+ *outCost = total;
+ return true;
+}
+
+std::unique_ptr<Expression> IRGenerator::call(Position position,
+ std::unique_ptr<Expression> functionValue,
+ std::vector<std::unique_ptr<Expression>> arguments) {
+ if (functionValue->fKind == Expression::kTypeReference_Kind) {
+ return this->convertConstructor(position,
+ ((TypeReference&) *functionValue).fValue,
+ std::move(arguments));
+ }
+ if (functionValue->fKind != Expression::kFunctionReference_Kind) {
+ fErrors.error(position, "'" + functionValue->description() + "' is not a function");
+ return nullptr;
+ }
+ FunctionReference* ref = (FunctionReference*) functionValue.get();
+ int bestCost = INT_MAX;
+ std::shared_ptr<FunctionDeclaration> best;
+ if (ref->fFunctions.size() > 1) {
+ for (const auto& f : ref->fFunctions) {
+ int cost;
+ if (this->determineCallCost(f, arguments, &cost) && cost < bestCost) {
+ bestCost = cost;
+ best = f;
+ }
+ }
+ if (best) {
+ return this->call(position, std::move(best), std::move(arguments));
+ }
+ std::string msg = "no match for " + ref->fFunctions[0]->fName + "(";
+ std::string separator = "";
+ for (size_t i = 0; i < arguments.size(); i++) {
+ msg += separator;
+ separator = ", ";
+ msg += arguments[i]->fType->description();
+ }
+ msg += ")";
+ fErrors.error(position, msg);
+ return nullptr;
+ }
+ return this->call(position, ref->fFunctions[0], std::move(arguments));
+}
+
+std::unique_ptr<Expression> IRGenerator::convertConstructor(
+ Position position,
+ std::shared_ptr<Type> type,
+ std::vector<std::unique_ptr<Expression>> args) {
+ // FIXME: add support for structs and arrays
+ Type::Kind kind = type->kind();
+ if (!type->isNumber() && kind != Type::kVector_Kind && kind != Type::kMatrix_Kind) {
+ fErrors.error(position, "cannot construct '" + type->description() + "'");
+ return nullptr;
+ }
+ if (type == kFloat_Type && args.size() == 1 &&
+ args[0]->fKind == Expression::kIntLiteral_Kind) {
+ int64_t value = ((IntLiteral&) *args[0]).fValue;
+ return std::unique_ptr<Expression>(new FloatLiteral(position, (double) value));
+ }
+ if (args.size() == 1 && args[0]->fType == type) {
+ // argument is already the right type, just return it
+ return std::move(args[0]);
+ }
+ if (type->isNumber()) {
+ if (args.size() != 1) {
+ fErrors.error(position, "invalid arguments to '" + type->description() +
+ "' constructor, (expected exactly 1 argument, but found " +
+ to_string(args.size()) + ")");
+ }
+ if (args[0]->fType == kBool_Type) {
+ std::unique_ptr<IntLiteral> zero(new IntLiteral(position, 0));
+ std::unique_ptr<IntLiteral> one(new IntLiteral(position, 1));
+ return std::unique_ptr<Expression>(
+ new TernaryExpression(position, std::move(args[0]),
+ this->coerce(std::move(one), type),
+ this->coerce(std::move(zero),
+ type)));
+ } else if (!args[0]->fType->isNumber()) {
+ fErrors.error(position, "invalid argument to '" + type->description() +
+ "' constructor (expected a number or bool, but found '" +
+ args[0]->fType->description() + "')");
+ }
+ } else {
+ ASSERT(kind == Type::kVector_Kind || kind == Type::kMatrix_Kind);
+ int actual = 0;
+ for (size_t i = 0; i < args.size(); i++) {
+ if (args[i]->fType->kind() == Type::kVector_Kind ||
+ args[i]->fType->kind() == Type::kMatrix_Kind) {
+ int columns = args[i]->fType->columns();
+ int rows = args[i]->fType->rows();
+ args[i] = this->coerce(std::move(args[i]),
+ type->componentType()->toCompound(columns, rows));
+ actual += args[i]->fType->rows() * args[i]->fType->columns();
+ } else if (args[i]->fType->kind() == Type::kScalar_Kind) {
+ actual += 1;
+ if (type->kind() != Type::kScalar_Kind) {
+ args[i] = this->coerce(std::move(args[i]), type->componentType());
+ }
+ } else {
+ fErrors.error(position, "'" + args[i]->fType->description() + "' is not a valid "
+ "parameter to '" + type->description() + "' constructor");
+ return nullptr;
+ }
+ }
+ int min = type->rows() * type->columns();
+ int max = type->columns() > 1 ? INT_MAX : min;
+ if ((actual < min || actual > max) &&
+ !((kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) && (actual == 1))) {
+ fErrors.error(position, "invalid arguments to '" + type->description() +
+ "' constructor (expected " + to_string(min) + " scalar" +
+ (min == 1 ? "" : "s") + ", but found " + to_string(actual) +
+ ")");
+ return nullptr;
+ }
+ }
+ return std::unique_ptr<Expression>(new Constructor(position, std::move(type), std::move(args)));
+}
+
+std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
+ const ASTPrefixExpression& expression) {
+ std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand);
+ if (!base) {
+ return nullptr;
+ }
+ switch (expression.fOperator) {
+ case Token::PLUS:
+ if (!base->fType->isNumber() && base->fType->kind() != Type::kVector_Kind) {
+ fErrors.error(expression.fPosition,
+ "'+' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ return base;
+ case Token::MINUS:
+ if (!base->fType->isNumber() && base->fType->kind() != Type::kVector_Kind) {
+ fErrors.error(expression.fPosition,
+ "'-' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ if (base->fKind == Expression::kIntLiteral_Kind) {
+ return std::unique_ptr<Expression>(new IntLiteral(base->fPosition,
+ -((IntLiteral&) *base).fValue));
+ }
+ if (base->fKind == Expression::kFloatLiteral_Kind) {
+ double value = -((FloatLiteral&) *base).fValue;
+ return std::unique_ptr<Expression>(new FloatLiteral(base->fPosition, value));
+ }
+ return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base)));
+ case Token::PLUSPLUS:
+ if (!base->fType->isNumber()) {
+ fErrors.error(expression.fPosition,
+ "'" + Token::OperatorName(expression.fOperator) +
+ "' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ this->markWrittenTo(*base);
+ break;
+ case Token::MINUSMINUS:
+ if (!base->fType->isNumber()) {
+ fErrors.error(expression.fPosition,
+ "'" + Token::OperatorName(expression.fOperator) +
+ "' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ this->markWrittenTo(*base);
+ break;
+ case Token::NOT:
+ if (base->fType != kBool_Type) {
+ fErrors.error(expression.fPosition,
+ "'" + Token::OperatorName(expression.fOperator) +
+ "' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ break;
+ default:
+ ABORT("unsupported prefix operator\n");
+ }
+ return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator,
+ std::move(base)));
+}
+
+std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
+ const ASTExpression& index) {
+ if (base->fType->kind() != Type::kArray_Kind && base->fType->kind() != Type::kMatrix_Kind) {
+ fErrors.error(base->fPosition, "expected array, but found '" + base->fType->description() +
+ "'");
+ return nullptr;
+ }
+ std::unique_ptr<Expression> converted = this->convertExpression(index);
+ if (!converted) {
+ return nullptr;
+ }
+ converted = this->coerce(std::move(converted), kInt_Type);
+ if (!converted) {
+ return nullptr;
+ }
+ return std::unique_ptr<Expression>(new IndexExpression(std::move(base), std::move(converted)));
+}
+
+std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
+ const std::string& field) {
+ auto fields = base->fType->fields();
+ for (size_t i = 0; i < fields.size(); i++) {
+ if (fields[i].fName == field) {
+ return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
+ }
+ }
+ fErrors.error(base->fPosition, "type '" + base->fType->description() + "' does not have a "
+ "field named '" + field + "");
+ return nullptr;
+}
+
+std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
+ const std::string& fields) {
+ if (base->fType->kind() != Type::kVector_Kind) {
+ fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ std::vector<int> swizzleComponents;
+ for (char c : fields) {
+ switch (c) {
+ case 'x': // fall through
+ case 'r': // fall through
+ case 's':
+ swizzleComponents.push_back(0);
+ break;
+ case 'y': // fall through
+ case 'g': // fall through
+ case 't':
+ if (base->fType->columns() >= 2) {
+ swizzleComponents.push_back(1);
+ break;
+ }
+ // fall through
+ case 'z': // fall through
+ case 'b': // fall through
+ case 'p':
+ if (base->fType->columns() >= 3) {
+ swizzleComponents.push_back(2);
+ break;
+ }
+ // fall through
+ case 'w': // fall through
+ case 'a': // fall through
+ case 'q':
+ if (base->fType->columns() >= 4) {
+ swizzleComponents.push_back(3);
+ break;
+ }
+ // fall through
+ default:
+ fErrors.error(base->fPosition, "invalid swizzle component '" + std::string(1, c) +
+ "'");
+ return nullptr;
+ }
+ }
+ ASSERT(swizzleComponents.size() > 0);
+ if (swizzleComponents.size() > 4) {
+ fErrors.error(base->fPosition, "too many components in swizzle mask '" + fields + "'");
+ return nullptr;
+ }
+ return std::unique_ptr<Expression>(new Swizzle(std::move(base), swizzleComponents));
+}
+
+std::unique_ptr<Expression> IRGenerator::convertSuffixExpression(
+ const ASTSuffixExpression& expression) {
+ std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase);
+ if (!base) {
+ return nullptr;
+ }
+ switch (expression.fSuffix->fKind) {
+ case ASTSuffix::kIndex_Kind:
+ return this->convertIndex(std::move(base),
+ *((ASTIndexSuffix&) *expression.fSuffix).fExpression);
+ case ASTSuffix::kCall_Kind: {
+ auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments;
+ std::vector<std::unique_ptr<Expression>> arguments;
+ for (size_t i = 0; i < rawArguments->size(); i++) {
+ std::unique_ptr<Expression> converted =
+ this->convertExpression(*(*rawArguments)[i]);
+ if (!converted) {
+ return nullptr;
+ }
+ arguments.push_back(std::move(converted));
+ }
+ return this->call(expression.fPosition, std::move(base), std::move(arguments));
+ }
+ case ASTSuffix::kField_Kind: {
+ switch (base->fType->kind()) {
+ case Type::kVector_Kind:
+ return this->convertSwizzle(std::move(base),
+ ((ASTFieldSuffix&) *expression.fSuffix).fField);
+ case Type::kStruct_Kind:
+ return this->convertField(std::move(base),
+ ((ASTFieldSuffix&) *expression.fSuffix).fField);
+ default:
+ fErrors.error(base->fPosition, "cannot swizzle value of type '" +
+ base->fType->description() + "'");
+ return nullptr;
+ }
+ }
+ case ASTSuffix::kPostIncrement_Kind:
+ if (!base->fType->isNumber()) {
+ fErrors.error(expression.fPosition,
+ "'++' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ this->markWrittenTo(*base);
+ return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
+ Token::PLUSPLUS));
+ case ASTSuffix::kPostDecrement_Kind:
+ if (!base->fType->isNumber()) {
+ fErrors.error(expression.fPosition,
+ "'--' cannot operate on '" + base->fType->description() + "'");
+ return nullptr;
+ }
+ this->markWrittenTo(*base);
+ return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
+ Token::MINUSMINUS));
+ default:
+ ABORT("unsupported suffix operator");
+ }
+}
+
+void IRGenerator::checkValid(const Expression& expr) {
+ switch (expr.fKind) {
+ case Expression::kFunctionReference_Kind:
+ fErrors.error(expr.fPosition, "expected '(' to begin function call");
+ break;
+ case Expression::kTypeReference_Kind:
+ fErrors.error(expr.fPosition, "expected '(' to begin constructor invocation");
+ break;
+ default:
+ ASSERT(expr.fType != kInvalid_Type);
+ break;
+ }
+}
+
+void IRGenerator::markReadFrom(std::shared_ptr<Variable> var) {
+ var->fIsReadFrom = true;
+}
+
+static bool has_duplicates(const Swizzle& swizzle) {
+ int bits = 0;
+ for (int idx : swizzle.fComponents) {
+ ASSERT(idx >= 0 && idx <= 3);
+ int bit = 1 << idx;
+ if (bits & bit) {
+ return true;
+ }
+ bits |= bit;
+ }
+ return false;
+}
+
+void IRGenerator::markWrittenTo(const Expression& expr) {
+ switch (expr.fKind) {
+ case Expression::kVariableReference_Kind: {
+ const Variable& var = *((VariableReference&) expr).fVariable;
+ if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) {
+ fErrors.error(expr.fPosition,
+ "cannot modify immutable variable '" + var.fName + "'");
+ }
+ var.fIsWrittenTo = true;
+ break;
+ }
+ case Expression::kFieldAccess_Kind:
+ this->markWrittenTo(*((FieldAccess&) expr).fBase);
+ break;
+ case Expression::kSwizzle_Kind:
+ if (has_duplicates((Swizzle&) expr)) {
+ fErrors.error(expr.fPosition,
+ "cannot write to the same swizzle field more than once");
+ }
+ this->markWrittenTo(*((Swizzle&) expr).fBase);
+ break;
+ case Expression::kIndex_Kind:
+ this->markWrittenTo(*((IndexExpression&) expr).fBase);
+ break;
+ default:
+ fErrors.error(expr.fPosition, "cannot assign to '" + expr.description() + "'");
+ break;
+ }
+}
+
+}
« no previous file with comments | « src/sksl/SkSLIRGenerator.h ('k') | src/sksl/SkSLMain.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698