Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(424)

Side by Side Diff: src/sksl/SkSLIRGenerator.cpp

Issue 1984363002: initial checkin of SkSL compiler (Closed) Base URL: https://skia.googlesource.com/skia@master
Patch Set: fixed CMake build Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/sksl/SkSLIRGenerator.h ('k') | src/sksl/SkSLMain.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkSLIRGenerator.h"
9
10 #include "limits.h"
11
12 #include "ast/SkSLASTBoolLiteral.h"
13 #include "ast/SkSLASTFieldSuffix.h"
14 #include "ast/SkSLASTFloatLiteral.h"
15 #include "ast/SkSLASTIndexSuffix.h"
16 #include "ast/SkSLASTIntLiteral.h"
17 #include "ir/SkSLBinaryExpression.h"
18 #include "ir/SkSLBoolLiteral.h"
19 #include "ir/SkSLBreakStatement.h"
20 #include "ir/SkSLConstructor.h"
21 #include "ir/SkSLContinueStatement.h"
22 #include "ir/SkSLDiscardStatement.h"
23 #include "ir/SkSLDoStatement.h"
24 #include "ir/SkSLExpressionStatement.h"
25 #include "ir/SkSLField.h"
26 #include "ir/SkSLFieldAccess.h"
27 #include "ir/SkSLFloatLiteral.h"
28 #include "ir/SkSLForStatement.h"
29 #include "ir/SkSLFunctionCall.h"
30 #include "ir/SkSLFunctionDeclaration.h"
31 #include "ir/SkSLFunctionDefinition.h"
32 #include "ir/SkSLFunctionReference.h"
33 #include "ir/SkSLIfStatement.h"
34 #include "ir/SkSLIndexExpression.h"
35 #include "ir/SkSLInterfaceBlock.h"
36 #include "ir/SkSLIntLiteral.h"
37 #include "ir/SkSLLayout.h"
38 #include "ir/SkSLPostfixExpression.h"
39 #include "ir/SkSLPrefixExpression.h"
40 #include "ir/SkSLReturnStatement.h"
41 #include "ir/SkSLSwizzle.h"
42 #include "ir/SkSLTernaryExpression.h"
43 #include "ir/SkSLUnresolvedFunction.h"
44 #include "ir/SkSLVariable.h"
45 #include "ir/SkSLVarDeclaration.h"
46 #include "ir/SkSLVarDeclarationStatement.h"
47 #include "ir/SkSLVariableReference.h"
48 #include "ir/SkSLWhileStatement.h"
49
50 namespace SkSL {
51
52 class AutoSymbolTable {
53 public:
54 AutoSymbolTable(IRGenerator* ir)
55 : fIR(ir)
56 , fPrevious(fIR->fSymbolTable) {
57 fIR->pushSymbolTable();
58 }
59
60 ~AutoSymbolTable() {
61 fIR->popSymbolTable();
62 ASSERT(fPrevious == fIR->fSymbolTable);
63 }
64
65 IRGenerator* fIR;
66 std::shared_ptr<SymbolTable> fPrevious;
67 };
68
69 IRGenerator::IRGenerator(std::shared_ptr<SymbolTable> symbolTable,
70 ErrorReporter& errorReporter)
71 : fSymbolTable(std::move(symbolTable))
72 , fErrors(errorReporter) {
73 }
74
75 void IRGenerator::pushSymbolTable() {
76 fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), fErrors));
77 }
78
79 void IRGenerator::popSymbolTable() {
80 fSymbolTable = fSymbolTable->fParent;
81 }
82
83 std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& ext ension) {
84 return std::unique_ptr<Extension>(new Extension(extension.fPosition, extensi on.fName));
85 }
86
87 std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& sta tement) {
88 switch (statement.fKind) {
89 case ASTStatement::kBlock_Kind:
90 return this->convertBlock((ASTBlock&) statement);
91 case ASTStatement::kVarDeclaration_Kind:
92 return this->convertVarDeclarationStatement((ASTVarDeclarationStatem ent&) statement);
93 case ASTStatement::kExpression_Kind:
94 return this->convertExpressionStatement((ASTExpressionStatement&) st atement);
95 case ASTStatement::kIf_Kind:
96 return this->convertIf((ASTIfStatement&) statement);
97 case ASTStatement::kFor_Kind:
98 return this->convertFor((ASTForStatement&) statement);
99 case ASTStatement::kWhile_Kind:
100 return this->convertWhile((ASTWhileStatement&) statement);
101 case ASTStatement::kDo_Kind:
102 return this->convertDo((ASTDoStatement&) statement);
103 case ASTStatement::kReturn_Kind:
104 return this->convertReturn((ASTReturnStatement&) statement);
105 case ASTStatement::kBreak_Kind:
106 return this->convertBreak((ASTBreakStatement&) statement);
107 case ASTStatement::kContinue_Kind:
108 return this->convertContinue((ASTContinueStatement&) statement);
109 case ASTStatement::kDiscard_Kind:
110 return this->convertDiscard((ASTDiscardStatement&) statement);
111 default:
112 ABORT("unsupported statement type: %d\n", statement.fKind);
113 }
114 }
115
116 std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) {
117 AutoSymbolTable table(this);
118 std::vector<std::unique_ptr<Statement>> statements;
119 for (size_t i = 0; i < block.fStatements.size(); i++) {
120 std::unique_ptr<Statement> statement = this->convertStatement(*block.fSt atements[i]);
121 if (!statement) {
122 return nullptr;
123 }
124 statements.push_back(std::move(statement));
125 }
126 return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statement s)));
127 }
128
129 std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(
130 const ASTVarDeclar ationStatement& s) {
131 auto decl = this->convertVarDeclaration(*s.fDeclaration, Variable::kLocal_St orage);
132 if (!decl) {
133 return nullptr;
134 }
135 return std::unique_ptr<Statement>(new VarDeclarationStatement(std::move(decl )));
136 }
137
138 Modifiers IRGenerator::convertModifiers(const ASTModifiers& modifiers) {
139 return Modifiers(modifiers);
140 }
141
142 std::unique_ptr<VarDeclaration> IRGenerator::convertVarDeclaration(const ASTVarD eclaration& decl,
143 Variable::Sto rage storage) {
144 std::vector<std::shared_ptr<Variable>> variables;
145 std::vector<std::vector<std::unique_ptr<Expression>>> sizes;
146 std::vector<std::unique_ptr<Expression>> values;
147 std::shared_ptr<Type> baseType = this->convertType(*decl.fType);
148 if (!baseType) {
149 return nullptr;
150 }
151 for (size_t i = 0; i < decl.fNames.size(); i++) {
152 Modifiers modifiers = this->convertModifiers(decl.fModifiers);
153 std::shared_ptr<Type> type = baseType;
154 ASSERT(type->kind() != Type::kArray_Kind);
155 std::vector<std::unique_ptr<Expression>> currentVarSizes;
156 for (size_t j = 0; j < decl.fSizes[i].size(); j++) {
157 if (decl.fSizes[i][j]) {
158 ASTExpression& rawSize = *decl.fSizes[i][j];
159 auto size = this->coerce(this->convertExpression(rawSize), kInt_ Type);
160 if (!size) {
161 return nullptr;
162 }
163 std::string name = type->fName;
164 uint64_t count;
165 if (size->fKind == Expression::kIntLiteral_Kind) {
166 count = ((IntLiteral&) *size).fValue;
167 if (count <= 0) {
168 fErrors.error(size->fPosition, "array size must be posit ive");
169 }
170 name += "[" + to_string(count) + "]";
171 } else {
172 count = -1;
173 name += "[]";
174 }
175 type = std::shared_ptr<Type>(new Type(name, Type::kArray_Kind, t ype, (int) count));
176 currentVarSizes.push_back(std::move(size));
177 } else {
178 type = std::shared_ptr<Type>(new Type(type->fName + "[]", Type:: kArray_Kind, type,
179 -1));
180 currentVarSizes.push_back(nullptr);
181 }
182 }
183 sizes.push_back(std::move(currentVarSizes));
184 auto var = std::make_shared<Variable>(decl.fPosition, modifiers, decl.fN ames[i], type,
185 storage);
186 variables.push_back(var);
187 std::unique_ptr<Expression> value;
188 if (decl.fValues[i]) {
189 value = this->convertExpression(*decl.fValues[i]);
190 if (!value) {
191 return nullptr;
192 }
193 value = this->coerce(std::move(value), type);
194 }
195 fSymbolTable->add(var->fName, var);
196 values.push_back(std::move(value));
197 }
198 return std::unique_ptr<VarDeclaration>(new VarDeclaration(decl.fPosition, st d::move(variables),
199 std::move(sizes), std::move(values)));
200 }
201
202 std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) {
203 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.f Test), kBool_Type);
204 if (!test) {
205 return nullptr;
206 }
207 std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue);
208 if (!ifTrue) {
209 return nullptr;
210 }
211 std::unique_ptr<Statement> ifFalse;
212 if (s.fIfFalse) {
213 ifFalse = this->convertStatement(*s.fIfFalse);
214 if (!ifFalse) {
215 return nullptr;
216 }
217 }
218 return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(tes t),
219 std::move(ifTrue), std::mo ve(ifFalse)));
220 }
221
222 std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) {
223 AutoSymbolTable table(this);
224 std::unique_ptr<Statement> initializer = this->convertStatement(*f.fInitiali zer);
225 if (!initializer) {
226 return nullptr;
227 }
228 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*f.f Test), kBool_Type);
229 if (!test) {
230 return nullptr;
231 }
232 std::unique_ptr<Expression> next = this->convertExpression(*f.fNext);
233 if (!next) {
234 return nullptr;
235 }
236 this->checkValid(*next);
237 std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement) ;
238 if (!statement) {
239 return nullptr;
240 }
241 return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(in itializer),
242 std::move(test), std::mov e(next),
243 std::move(statement)));
244 }
245
246 std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) {
247 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.f Test), kBool_Type);
248 if (!test) {
249 return nullptr;
250 }
251 std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement) ;
252 if (!statement) {
253 return nullptr;
254 }
255 return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move( test),
256 std::move(statement)));
257 }
258
259 std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) {
260 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.f Test), kBool_Type);
261 if (!test) {
262 return nullptr;
263 }
264 std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement) ;
265 if (!statement) {
266 return nullptr;
267 }
268 return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(sta tement),
269 std::move(test)));
270 }
271
272 std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(
273 const ASTExpre ssionStatement& s) {
274 std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression);
275 if (!e) {
276 return nullptr;
277 }
278 this->checkValid(*e);
279 return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
280 }
281
282 std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) {
283 ASSERT(fCurrentFunction);
284 if (r.fExpression) {
285 std::unique_ptr<Expression> result = this->convertExpression(*r.fExpress ion);
286 if (!result) {
287 return nullptr;
288 }
289 if (fCurrentFunction->fReturnType == kVoid_Type) {
290 fErrors.error(result->fPosition, "may not return a value from a void function");
291 } else {
292 result = this->coerce(std::move(result), fCurrentFunction->fReturnTy pe);
293 if (!result) {
294 return nullptr;
295 }
296 }
297 return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)) );
298 } else {
299 if (fCurrentFunction->fReturnType != kVoid_Type) {
300 fErrors.error(r.fPosition, "expected function to return '" +
301 fCurrentFunction->fReturnType->descriptio n() + "'");
302 }
303 return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition));
304 }
305 }
306
307 std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) {
308 return std::unique_ptr<Statement>(new BreakStatement(b.fPosition));
309 }
310
311 std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStateme nt& c) {
312 return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition));
313 }
314
315 std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement & d) {
316 return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition));
317 }
318
319 static std::shared_ptr<Type> expand_generics(std::shared_ptr<Type> type, int i) {
320 if (type->kind() == Type::kGeneric_Kind) {
321 return type->coercibleTypes()[i];
322 }
323 return type;
324 }
325
326 static void expand_generics(FunctionDeclaration& decl,
327 SymbolTable& symbolTable) {
328 for (int i = 0; i < 4; i++) {
329 std::shared_ptr<Type> returnType = expand_generics(decl.fReturnType, i);
330 std::vector<std::shared_ptr<Variable>> arguments;
331 for (const auto& p : decl.fParameters) {
332 arguments.push_back(std::shared_ptr<Variable>(new Variable(
333 p->fPosition ,
334 Modifiers(p- >fModifiers),
335 p->fName,
336 expand_gener ics(p->fType, i),
337 Variable::kP arameter_Storage)));
338 }
339 std::shared_ptr<FunctionDeclaration> expanded(new FunctionDeclaration(
340 decl .fPosition,
341 decl .fName,
342 std: :move(arguments),
343 std: :move(returnType)));
344 symbolTable.add(expanded->fName, expanded);
345 }
346 }
347
348 std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFuncti on& f) {
349 std::shared_ptr<SymbolTable> old = fSymbolTable;
350 AutoSymbolTable table(this);
351 bool isGeneric;
352 std::shared_ptr<Type> returnType = this->convertType(*f.fReturnType);
353 if (!returnType) {
354 return nullptr;
355 }
356 isGeneric = returnType->kind() == Type::kGeneric_Kind;
357 std::vector<std::shared_ptr<Variable>> parameters;
358 for (const auto& param : f.fParameters) {
359 std::shared_ptr<Type> type = this->convertType(*param->fType);
360 if (!type) {
361 return nullptr;
362 }
363 for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) {
364 int size = param->fSizes[j];
365 std::string name = type->name() + "[" + to_string(size) + "]";
366 type = std::shared_ptr<Type>(new Type(std::move(name), Type::kArray_ Kind,
367 std::move(type), size));
368 }
369 std::string name = param->fName;
370 Modifiers modifiers = this->convertModifiers(param->fModifiers);
371 Position pos = param->fPosition;
372 std::shared_ptr<Variable> var = std::shared_ptr<Variable>(new Variable(
373 pos,
374 modifiers,
375 std::move(n ame),
376 type,
377 Variable::k Parameter_Storage));
378 parameters.push_back(std::move(var));
379 isGeneric |= type->kind() == Type::kGeneric_Kind;
380 }
381
382 // find existing declaration
383 std::shared_ptr<FunctionDeclaration> decl;
384 auto entry = (*old)[f.fName];
385 if (entry) {
386 std::vector<std::shared_ptr<FunctionDeclaration>> functions;
387 switch (entry->fKind) {
388 case Symbol::kUnresolvedFunction_Kind:
389 functions = std::static_pointer_cast<UnresolvedFunction>(entry)- >fFunctions;
390 break;
391 case Symbol::kFunctionDeclaration_Kind:
392 functions.push_back(std::static_pointer_cast<FunctionDeclaration >(entry));
393 break;
394 default:
395 fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined");
396 return nullptr;
397 }
398 for (const auto& other : functions) {
399 ASSERT(other->fName == f.fName);
400 if (parameters.size() == other->fParameters.size()) {
401 bool match = true;
402 for (size_t i = 0; i < parameters.size(); i++) {
403 if (parameters[i]->fType != other->fParameters[i]->fType) {
404 match = false;
405 break;
406 }
407 }
408 if (match) {
409 if (returnType != other->fReturnType) {
410 FunctionDeclaration newDecl = FunctionDeclaration(f.fPos ition,
411 f.fNam e,
412 parame ters,
413 return Type);
414 fErrors.error(f.fPosition, "functions '" + newDecl.descr iption() +
415 "' and '" + other->descriptio n() +
416 "' differ only in return type ");
417 return nullptr;
418 }
419 decl = other;
420 for (size_t i = 0; i < parameters.size(); i++) {
421 if (parameters[i]->fModifiers != other->fParameters[i]-> fModifiers) {
422 fErrors.error(f.fPosition, "modifiers on parameter " +
423 to_string(i + 1) + " diff er between " +
424 "declaration and definiti on");
425 return nullptr;
426 }
427 fSymbolTable->add(parameters[i]->fName, decl->fParameter s[i]);
428 }
429 if (other->fDefined) {
430 fErrors.error(f.fPosition, "duplicate definition of " +
431 other->description());
432 }
433 break;
434 }
435 }
436 }
437 }
438 if (!decl) {
439 // couldn't find an existing declaration
440 decl.reset(new FunctionDeclaration(f.fPosition, f.fName, parameters, ret urnType));
441 for (auto var : parameters) {
442 fSymbolTable->add(var->fName, var);
443 }
444 }
445 if (isGeneric) {
446 ASSERT(!f.fBody);
447 expand_generics(*decl, *old);
448 } else {
449 old->add(decl->fName, decl);
450 if (f.fBody) {
451 ASSERT(!fCurrentFunction);
452 fCurrentFunction = decl;
453 decl->fDefined = true;
454 std::unique_ptr<Block> body = this->convertBlock(*f.fBody);
455 fCurrentFunction = nullptr;
456 if (!body) {
457 return nullptr;
458 }
459 return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f. fPosition, decl,
460 st d::move(body)));
461 }
462 }
463 return nullptr;
464 }
465
466 std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInte rfaceBlock& intf) {
467 std::shared_ptr<SymbolTable> old = fSymbolTable;
468 AutoSymbolTable table(this);
469 Modifiers mods = this->convertModifiers(intf.fModifiers);
470 std::vector<Type::Field> fields;
471 for (size_t i = 0; i < intf.fDeclarations.size(); i++) {
472 std::unique_ptr<VarDeclaration> decl = this->convertVarDeclaration(
473 *intf.f Declarations[i],
474 Variabl e::kGlobal_Storage);
475 for (size_t j = 0; j < decl->fVars.size(); j++) {
476 fields.push_back(Type::Field(decl->fVars[j]->fModifiers, decl->fVars [j]->fName,
477 decl->fVars[j]->fType));
478 if (decl->fValues[j]) {
479 fErrors.error(decl->fPosition,
480 "initializers are not permitted on interface block fields");
481 }
482 if (decl->fVars[j]->fModifiers.fFlags & (Modifiers::kIn_Flag |
483 Modifiers::kOut_Flag |
484 Modifiers::kUniform_Flag |
485 Modifiers::kConst_Flag)) {
486 fErrors.error(decl->fPosition,
487 "interface block fields may not have storage quali fiers");
488 }
489 }
490 }
491 std::shared_ptr<Type> type = std::shared_ptr<Type>(new Type(intf.fInterfaceN ame, fields));
492 std::string name = intf.fValueName.length() > 0 ? intf.fValueName : intf.fIn terfaceName;
493 std::shared_ptr<Variable> var = std::shared_ptr<Variable>(new Variable(intf. fPosition, mods,
494 name, type,
495 Variable::kGloba l_Storage));
496 if (intf.fValueName.length()) {
497 old->add(intf.fValueName, var);
498
499 } else {
500 for (size_t i = 0; i < fields.size(); i++) {
501 std::shared_ptr<Field> field = std::shared_ptr<Field>(new Field(intf .fPosition, var,
502 (int ) i));
503 old->add(fields[i].fName, field);
504 }
505 }
506 return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, va r));
507 }
508
509 std::shared_ptr<Type> IRGenerator::convertType(const ASTType& type) {
510 std::shared_ptr<Symbol> result = (*fSymbolTable)[type.fName];
511 if (result && result->fKind == Symbol::kType_Kind) {
512 return std::static_pointer_cast<Type>(result);
513 }
514 fErrors.error(type.fPosition, "unknown type '" + type.fName + "'");
515 return nullptr;
516 }
517
518 std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) {
519 switch (expr.fKind) {
520 case ASTExpression::kIdentifier_Kind:
521 return this->convertIdentifier((ASTIdentifier&) expr);
522 case ASTExpression::kBool_Kind:
523 return std::unique_ptr<Expression>(new BoolLiteral(expr.fPosition,
524 ((ASTBoolLiteral& ) expr).fValue));
525 case ASTExpression::kInt_Kind:
526 return std::unique_ptr<Expression>(new IntLiteral(expr.fPosition,
527 ((ASTIntLiteral&) expr).fValue));
528 case ASTExpression::kFloat_Kind:
529 return std::unique_ptr<Expression>(new FloatLiteral(expr.fPosition,
530 ((ASTFloatLitera l&) expr).fValue));
531 case ASTExpression::kBinary_Kind:
532 return this->convertBinaryExpression((ASTBinaryExpression&) expr);
533 case ASTExpression::kPrefix_Kind:
534 return this->convertPrefixExpression((ASTPrefixExpression&) expr);
535 case ASTExpression::kSuffix_Kind:
536 return this->convertSuffixExpression((ASTSuffixExpression&) expr);
537 case ASTExpression::kTernary_Kind:
538 return this->convertTernaryExpression((ASTTernaryExpression&) expr);
539 default:
540 ABORT("unsupported expression type: %d\n", expr.fKind);
541 }
542 }
543
544 std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) {
545 std::shared_ptr<Symbol> result = (*fSymbolTable)[identifier.fText];
546 if (!result) {
547 fErrors.error(identifier.fPosition, "unknown identifier '" + identifier. fText + "'");
548 return nullptr;
549 }
550 switch (result->fKind) {
551 case Symbol::kFunctionDeclaration_Kind: {
552 std::vector<std::shared_ptr<FunctionDeclaration>> f = {
553 std::static_pointer_cast<FunctionDeclaration>(result)
554 };
555 return std::unique_ptr<FunctionReference>(new FunctionReference(iden tifier.fPosition,
556 std: :move(f)));
557 }
558 case Symbol::kUnresolvedFunction_Kind: {
559 auto f = std::static_pointer_cast<UnresolvedFunction>(result);
560 return std::unique_ptr<FunctionReference>(new FunctionReference(iden tifier.fPosition,
561 f->f Functions));
562 }
563 case Symbol::kVariable_Kind: {
564 std::shared_ptr<Variable> var = std::static_pointer_cast<Variable>(r esult);
565 this->markReadFrom(var);
566 return std::unique_ptr<VariableReference>(new VariableReference(iden tifier.fPosition,
567 std: :move(var)));
568 }
569 case Symbol::kField_Kind: {
570 std::shared_ptr<Field> field = std::static_pointer_cast<Field>(resul t);
571 VariableReference* base = new VariableReference(identifier.fPosition , field->fOwner);
572 return std::unique_ptr<Expression>(new FieldAccess(std::unique_ptr<E xpression>(base),
573 field->fFieldInde x));
574 }
575 case Symbol::kType_Kind: {
576 auto t = std::static_pointer_cast<Type>(result);
577 return std::unique_ptr<TypeReference>(new TypeReference(identifier.f Position,
578 std::move(t) ));
579 }
580 default:
581 ABORT("unsupported symbol type %d\n", result->fKind);
582 }
583
584 }
585
586 std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr ,
587 std::shared_ptr<Type> type) {
588 if (!expr) {
589 return nullptr;
590 }
591 if (*expr->fType == *type) {
592 return expr;
593 }
594 this->checkValid(*expr);
595 if (*expr->fType == *kInvalid_Type) {
596 return nullptr;
597 }
598 if (!expr->fType->canCoerceTo(type)) {
599 fErrors.error(expr->fPosition, "expected '" + type->description() + "', but found '" +
600 expr->fType->description() + "'");
601 return nullptr;
602 }
603 if (type->kind() == Type::kScalar_Kind) {
604 std::vector<std::unique_ptr<Expression>> args;
605 args.push_back(std::move(expr));
606 ASTIdentifier id(Position(), type->description());
607 std::unique_ptr<Expression> ctor = this->convertIdentifier(id);
608 ASSERT(ctor);
609 return this->call(Position(), std::move(ctor), std::move(args));
610 }
611 ABORT("cannot coerce %s to %s", expr->fType->description().c_str(),
612 type->description().c_str());
613 }
614
615 /**
616 * Determines the operand and result types of a binary expression. Returns true if the expression is
617 * legal, false otherwise. If false, the values of the out parameters are undefi ned.
618 */
619 static bool determine_binary_type(Token::Kind op, std::shared_ptr<Type> left,
620 std::shared_ptr<Type> right,
621 std::shared_ptr<Type>* outLeftType,
622 std::shared_ptr<Type>* outRightType,
623 std::shared_ptr<Type>* outResultType,
624 bool tryFlipped) {
625 bool isLogical;
626 switch (op) {
627 case Token::EQEQ: // fall through
628 case Token::NEQ: // fall through
629 case Token::LT: // fall through
630 case Token::GT: // fall through
631 case Token::LTEQ: // fall through
632 case Token::GTEQ:
633 isLogical = true;
634 break;
635 case Token::LOGICALOR: // fall through
636 case Token::LOGICALAND: // fall through
637 case Token::LOGICALXOR: // fall through
638 case Token::LOGICALOREQ: // fall through
639 case Token::LOGICALANDEQ: // fall through
640 case Token::LOGICALXOREQ:
641 *outLeftType = kBool_Type;
642 *outRightType = kBool_Type;
643 *outResultType = kBool_Type;
644 return left->canCoerceTo(kBool_Type) && right->canCoerceTo(kBool_Typ e);
645 case Token::STAR: // fall through
646 case Token::STAREQ:
647 // FIXME need to handle non-square matrices
648 if (left->kind() == Type::kMatrix_Kind && right->kind() == Type::kVe ctor_Kind) {
649 *outLeftType = left;
650 *outRightType = right;
651 *outResultType = right;
652 return left->rows() == right->columns();
653 }
654 if (left->kind() == Type::kVector_Kind && right->kind() == Type::kMa trix_Kind) {
655 *outLeftType = left;
656 *outRightType = right;
657 *outResultType = left;
658 return left->columns() == right->columns();
659 }
660 // fall through
661 default:
662 isLogical = false;
663 }
664 // FIXME: need to disallow illegal operations like vec3 > vec3. Also do not currently have
665 // full support for numbers other than float.
666 if (left == right) {
667 *outLeftType = left;
668 *outRightType = left;
669 if (isLogical) {
670 *outResultType = kBool_Type;
671 } else {
672 *outResultType = left;
673 }
674 return true;
675 }
676 // FIXME: incorrect for shift operations
677 if (left->canCoerceTo(right)) {
678 *outLeftType = right;
679 *outRightType = right;
680 if (isLogical) {
681 *outResultType = kBool_Type;
682 } else {
683 *outResultType = right;
684 }
685 return true;
686 }
687 if ((left->kind() == Type::kVector_Kind || left->kind() == Type::kMatrix_Kin d) &&
688 (right->kind() == Type::kScalar_Kind)) {
689 if (determine_binary_type(op, left->componentType(), right, outLeftType, outRightType,
690 outResultType, false)) {
691 *outLeftType = (*outLeftType)->toCompound(left->columns(), left->row s());
692 if (!isLogical) {
693 *outResultType = (*outResultType)->toCompound(left->columns(), l eft->rows());
694 }
695 return true;
696 }
697 return false;
698 }
699 if (tryFlipped) {
700 return determine_binary_type(op, right, left, outRightType, outLeftType, outResultType,
701 false);
702 }
703 return false;
704 }
705
706 std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
707 const ASTBinaryExpre ssion& expression) {
708 std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft );
709 if (!left) {
710 return nullptr;
711 }
712 std::unique_ptr<Expression> right = this->convertExpression(*expression.fRig ht);
713 if (!right) {
714 return nullptr;
715 }
716 std::shared_ptr<Type> leftType;
717 std::shared_ptr<Type> rightType;
718 std::shared_ptr<Type> resultType;
719 if (!determine_binary_type(expression.fOperator, left->fType, right->fType, &leftType,
720 &rightType, &resultType, true)) {
721 fErrors.error(expression.fPosition, "type mismatch: '" +
722 Token::OperatorName(expression.fOper ator) +
723 "' cannot operate on '" + left->fTyp e->fName +
724 "', '" + right->fType->fName + "'");
725 return nullptr;
726 }
727 switch (expression.fOperator) {
728 case Token::EQ: // fall through
729 case Token::PLUSEQ: // fall through
730 case Token::MINUSEQ: // fall through
731 case Token::STAREQ: // fall through
732 case Token::SLASHEQ: // fall through
733 case Token::PERCENTEQ: // fall through
734 case Token::SHLEQ: // fall through
735 case Token::SHREQ: // fall through
736 case Token::BITWISEOREQ: // fall through
737 case Token::BITWISEXOREQ: // fall through
738 case Token::BITWISEANDEQ: // fall through
739 case Token::LOGICALOREQ: // fall through
740 case Token::LOGICALXOREQ: // fall through
741 case Token::LOGICALANDEQ:
742 this->markWrittenTo(*left);
743 default:
744 break;
745 }
746 return std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition ,
747 this->coerce(std::mo ve(left), leftType),
748 expression.fOperator ,
749 this->coerce(std::mo ve(right),
750 rightTy pe),
751 resultType));
752 }
753
754 std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
755 const ASTTernaryExpre ssion& expression) {
756 std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*exp ression.fTest),
757 kBool_Type);
758 if (!test) {
759 return nullptr;
760 }
761 std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIf True);
762 if (!ifTrue) {
763 return nullptr;
764 }
765 std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fI fFalse);
766 if (!ifFalse) {
767 return nullptr;
768 }
769 std::shared_ptr<Type> trueType;
770 std::shared_ptr<Type> falseType;
771 std::shared_ptr<Type> resultType;
772 if (!determine_binary_type(Token::EQEQ, ifTrue->fType, ifFalse->fType, &true Type,
773 &falseType, &resultType, true)) {
774 fErrors.error(expression.fPosition, "ternary operator result mismatch: ' " +
775 ifTrue->fType->fName + "', '" +
776 ifFalse->fType->fName + "'");
777 return nullptr;
778 }
779 ASSERT(trueType == falseType);
780 ifTrue = this->coerce(std::move(ifTrue), trueType);
781 ifFalse = this->coerce(std::move(ifFalse), falseType);
782 return std::unique_ptr<Expression>(new TernaryExpression(expression.fPositio n,
783 std::move(test),
784 std::move(ifTrue),
785 std::move(ifFalse)) );
786 }
787
788 std::unique_ptr<Expression> IRGenerator::call(
789 Position position,
790 std::shared_ptr<FunctionDeclaration> fu nction,
791 std::vector<std::unique_ptr<Expression> > arguments) {
792 if (function->fParameters.size() != arguments.size()) {
793 std::string msg = "call to '" + function->fName + "' expected " +
794 to_string(function->fParameters.size()) +
795 " argument";
796 if (function->fParameters.size() != 1) {
797 msg += "s";
798 }
799 msg += ", but found " + to_string(arguments.size());
800 fErrors.error(position, msg);
801 return nullptr;
802 }
803 for (size_t i = 0; i < arguments.size(); i++) {
804 arguments[i] = this->coerce(std::move(arguments[i]), function->fParamete rs[i]->fType);
805 if (arguments[i] && (function->fParameters[i]->fModifiers.fFlags & Modif iers::kOut_Flag)) {
806 this->markWrittenTo(*arguments[i]);
807 }
808 }
809 return std::unique_ptr<FunctionCall>(new FunctionCall(position, std::move(fu nction),
810 std::move(arguments))) ;
811 }
812
813 /**
814 * Determines the cost of coercing the arguments of a function to the required t ypes. Returns true
815 * if the cost could be computed, false if the call is not valid. Cost has no pa rticular meaning
816 * other than "lower costs are preferred".
817 */
818 bool IRGenerator::determineCallCost(std::shared_ptr<FunctionDeclaration> functio n,
819 const std::vector<std::unique_ptr<Expression >>& arguments,
820 int* outCost) {
821 if (function->fParameters.size() != arguments.size()) {
822 return false;
823 }
824 int total = 0;
825 for (size_t i = 0; i < arguments.size(); i++) {
826 int cost;
827 if (arguments[i]->fType->determineCoercionCost(function->fParameters[i]- >fType, &cost)) {
828 total += cost;
829 } else {
830 return false;
831 }
832 }
833 *outCost = total;
834 return true;
835 }
836
837 std::unique_ptr<Expression> IRGenerator::call(Position position,
838 std::unique_ptr<Expression> functi onValue,
839 std::vector<std::unique_ptr<Expres sion>> arguments) {
840 if (functionValue->fKind == Expression::kTypeReference_Kind) {
841 return this->convertConstructor(position,
842 ((TypeReference&) *functionValue).fValue ,
843 std::move(arguments));
844 }
845 if (functionValue->fKind != Expression::kFunctionReference_Kind) {
846 fErrors.error(position, "'" + functionValue->description() + "' is not a function");
847 return nullptr;
848 }
849 FunctionReference* ref = (FunctionReference*) functionValue.get();
850 int bestCost = INT_MAX;
851 std::shared_ptr<FunctionDeclaration> best;
852 if (ref->fFunctions.size() > 1) {
853 for (const auto& f : ref->fFunctions) {
854 int cost;
855 if (this->determineCallCost(f, arguments, &cost) && cost < bestCost) {
856 bestCost = cost;
857 best = f;
858 }
859 }
860 if (best) {
861 return this->call(position, std::move(best), std::move(arguments));
862 }
863 std::string msg = "no match for " + ref->fFunctions[0]->fName + "(";
864 std::string separator = "";
865 for (size_t i = 0; i < arguments.size(); i++) {
866 msg += separator;
867 separator = ", ";
868 msg += arguments[i]->fType->description();
869 }
870 msg += ")";
871 fErrors.error(position, msg);
872 return nullptr;
873 }
874 return this->call(position, ref->fFunctions[0], std::move(arguments));
875 }
876
877 std::unique_ptr<Expression> IRGenerator::convertConstructor(
878 Position position,
879 std::shared_ptr<Type> type,
880 std::vector<std::unique_ptr< Expression>> args) {
881 // FIXME: add support for structs and arrays
882 Type::Kind kind = type->kind();
883 if (!type->isNumber() && kind != Type::kVector_Kind && kind != Type::kMatrix _Kind) {
884 fErrors.error(position, "cannot construct '" + type->description() + "'" );
885 return nullptr;
886 }
887 if (type == kFloat_Type && args.size() == 1 &&
888 args[0]->fKind == Expression::kIntLiteral_Kind) {
889 int64_t value = ((IntLiteral&) *args[0]).fValue;
890 return std::unique_ptr<Expression>(new FloatLiteral(position, (double) v alue));
891 }
892 if (args.size() == 1 && args[0]->fType == type) {
893 // argument is already the right type, just return it
894 return std::move(args[0]);
895 }
896 if (type->isNumber()) {
897 if (args.size() != 1) {
898 fErrors.error(position, "invalid arguments to '" + type->description () +
899 "' constructor, (expected exactly 1 argument , but found " +
900 to_string(args.size()) + ")");
901 }
902 if (args[0]->fType == kBool_Type) {
903 std::unique_ptr<IntLiteral> zero(new IntLiteral(position, 0));
904 std::unique_ptr<IntLiteral> one(new IntLiteral(position, 1));
905 return std::unique_ptr<Expression>(
906 new TernaryExpression(position, std::mo ve(args[0]),
907 this->coerce(std: :move(one), type),
908 this->coerce(std: :move(zero),
909 type )));
910 } else if (!args[0]->fType->isNumber()) {
911 fErrors.error(position, "invalid argument to '" + type->description( ) +
912 "' constructor (expected a number or bool, b ut found '" +
913 args[0]->fType->description() + "')");
914 }
915 } else {
916 ASSERT(kind == Type::kVector_Kind || kind == Type::kMatrix_Kind);
917 int actual = 0;
918 for (size_t i = 0; i < args.size(); i++) {
919 if (args[i]->fType->kind() == Type::kVector_Kind ||
920 args[i]->fType->kind() == Type::kMatrix_Kind) {
921 int columns = args[i]->fType->columns();
922 int rows = args[i]->fType->rows();
923 args[i] = this->coerce(std::move(args[i]),
924 type->componentType()->toCompound(columns , rows));
925 actual += args[i]->fType->rows() * args[i]->fType->columns();
926 } else if (args[i]->fType->kind() == Type::kScalar_Kind) {
927 actual += 1;
928 if (type->kind() != Type::kScalar_Kind) {
929 args[i] = this->coerce(std::move(args[i]), type->componentTy pe());
930 }
931 } else {
932 fErrors.error(position, "'" + args[i]->fType->description() + "' is not a valid "
933 "parameter to '" + type->description() + "' constructor");
934 return nullptr;
935 }
936 }
937 int min = type->rows() * type->columns();
938 int max = type->columns() > 1 ? INT_MAX : min;
939 if ((actual < min || actual > max) &&
940 !((kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) && (act ual == 1))) {
941 fErrors.error(position, "invalid arguments to '" + type->description () +
942 "' constructor (expected " + to_string(min) + " scalar" +
943 (min == 1 ? "" : "s") + ", but found " + to_ string(actual) +
944 ")");
945 return nullptr;
946 }
947 }
948 return std::unique_ptr<Expression>(new Constructor(position, std::move(type) , std::move(args)));
949 }
950
951 std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(
952 const ASTPrefixExpre ssion& expression) {
953 std::unique_ptr<Expression> base = this->convertExpression(*expression.fOper and);
954 if (!base) {
955 return nullptr;
956 }
957 switch (expression.fOperator) {
958 case Token::PLUS:
959 if (!base->fType->isNumber() && base->fType->kind() != Type::kVector _Kind) {
960 fErrors.error(expression.fPosition,
961 "'+' cannot operate on '" + base->fType->descripti on() + "'");
962 return nullptr;
963 }
964 return base;
965 case Token::MINUS:
966 if (!base->fType->isNumber() && base->fType->kind() != Type::kVector _Kind) {
967 fErrors.error(expression.fPosition,
968 "'-' cannot operate on '" + base->fType->descripti on() + "'");
969 return nullptr;
970 }
971 if (base->fKind == Expression::kIntLiteral_Kind) {
972 return std::unique_ptr<Expression>(new IntLiteral(base->fPositio n,
973 -((IntLiteral& ) *base).fValue));
974 }
975 if (base->fKind == Expression::kFloatLiteral_Kind) {
976 double value = -((FloatLiteral&) *base).fValue;
977 return std::unique_ptr<Expression>(new FloatLiteral(base->fPosit ion, value));
978 }
979 return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS , std::move(base)));
980 case Token::PLUSPLUS:
981 if (!base->fType->isNumber()) {
982 fErrors.error(expression.fPosition,
983 "'" + Token::OperatorName(expression.fOperator) +
984 "' cannot operate on '" + base->fType->description () + "'");
985 return nullptr;
986 }
987 this->markWrittenTo(*base);
988 break;
989 case Token::MINUSMINUS:
990 if (!base->fType->isNumber()) {
991 fErrors.error(expression.fPosition,
992 "'" + Token::OperatorName(expression.fOperator) +
993 "' cannot operate on '" + base->fType->description () + "'");
994 return nullptr;
995 }
996 this->markWrittenTo(*base);
997 break;
998 case Token::NOT:
999 if (base->fType != kBool_Type) {
1000 fErrors.error(expression.fPosition,
1001 "'" + Token::OperatorName(expression.fOperator) +
1002 "' cannot operate on '" + base->fType->description () + "'");
1003 return nullptr;
1004 }
1005 break;
1006 default:
1007 ABORT("unsupported prefix operator\n");
1008 }
1009 return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator ,
1010 std::move(base)));
1011 }
1012
1013 std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression > base,
1014 const ASTExpression& index ) {
1015 if (base->fType->kind() != Type::kArray_Kind && base->fType->kind() != Type: :kMatrix_Kind) {
1016 fErrors.error(base->fPosition, "expected array, but found '" + base->fTy pe->description() +
1017 "'");
1018 return nullptr;
1019 }
1020 std::unique_ptr<Expression> converted = this->convertExpression(index);
1021 if (!converted) {
1022 return nullptr;
1023 }
1024 converted = this->coerce(std::move(converted), kInt_Type);
1025 if (!converted) {
1026 return nullptr;
1027 }
1028 return std::unique_ptr<Expression>(new IndexExpression(std::move(base), std: :move(converted)));
1029 }
1030
1031 std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression > base,
1032 const std::string& field) {
1033 auto fields = base->fType->fields();
1034 for (size_t i = 0; i < fields.size(); i++) {
1035 if (fields[i].fName == field) {
1036 return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
1037 }
1038 }
1039 fErrors.error(base->fPosition, "type '" + base->fType->description() + "' do es not have a "
1040 "field named '" + field + "");
1041 return nullptr;
1042 }
1043
1044 std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expressi on> base,
1045 const std::string& field s) {
1046 if (base->fType->kind() != Type::kVector_Kind) {
1047 fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType->de scription() + "'");
1048 return nullptr;
1049 }
1050 std::vector<int> swizzleComponents;
1051 for (char c : fields) {
1052 switch (c) {
1053 case 'x': // fall through
1054 case 'r': // fall through
1055 case 's':
1056 swizzleComponents.push_back(0);
1057 break;
1058 case 'y': // fall through
1059 case 'g': // fall through
1060 case 't':
1061 if (base->fType->columns() >= 2) {
1062 swizzleComponents.push_back(1);
1063 break;
1064 }
1065 // fall through
1066 case 'z': // fall through
1067 case 'b': // fall through
1068 case 'p':
1069 if (base->fType->columns() >= 3) {
1070 swizzleComponents.push_back(2);
1071 break;
1072 }
1073 // fall through
1074 case 'w': // fall through
1075 case 'a': // fall through
1076 case 'q':
1077 if (base->fType->columns() >= 4) {
1078 swizzleComponents.push_back(3);
1079 break;
1080 }
1081 // fall through
1082 default:
1083 fErrors.error(base->fPosition, "invalid swizzle component '" + s td::string(1, c) +
1084 "'");
1085 return nullptr;
1086 }
1087 }
1088 ASSERT(swizzleComponents.size() > 0);
1089 if (swizzleComponents.size() > 4) {
1090 fErrors.error(base->fPosition, "too many components in swizzle mask '" + fields + "'");
1091 return nullptr;
1092 }
1093 return std::unique_ptr<Expression>(new Swizzle(std::move(base), swizzleCompo nents));
1094 }
1095
1096 std::unique_ptr<Expression> IRGenerator::convertSuffixExpression(
1097 const ASTSuffixExpre ssion& expression) {
1098 std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase );
1099 if (!base) {
1100 return nullptr;
1101 }
1102 switch (expression.fSuffix->fKind) {
1103 case ASTSuffix::kIndex_Kind:
1104 return this->convertIndex(std::move(base),
1105 *((ASTIndexSuffix&) *expression.fSuffix).f Expression);
1106 case ASTSuffix::kCall_Kind: {
1107 auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArgumen ts;
1108 std::vector<std::unique_ptr<Expression>> arguments;
1109 for (size_t i = 0; i < rawArguments->size(); i++) {
1110 std::unique_ptr<Expression> converted =
1111 this->convertExpression(*(*rawArguments)[i]);
1112 if (!converted) {
1113 return nullptr;
1114 }
1115 arguments.push_back(std::move(converted));
1116 }
1117 return this->call(expression.fPosition, std::move(base), std::move(a rguments));
1118 }
1119 case ASTSuffix::kField_Kind: {
1120 switch (base->fType->kind()) {
1121 case Type::kVector_Kind:
1122 return this->convertSwizzle(std::move(base),
1123 ((ASTFieldSuffix&) *expression.f Suffix).fField);
1124 case Type::kStruct_Kind:
1125 return this->convertField(std::move(base),
1126 ((ASTFieldSuffix&) *expression.fSu ffix).fField);
1127 default:
1128 fErrors.error(base->fPosition, "cannot swizzle value of type '" +
1129 base->fType->description() + "'");
1130 return nullptr;
1131 }
1132 }
1133 case ASTSuffix::kPostIncrement_Kind:
1134 if (!base->fType->isNumber()) {
1135 fErrors.error(expression.fPosition,
1136 "'++' cannot operate on '" + base->fType->descript ion() + "'");
1137 return nullptr;
1138 }
1139 this->markWrittenTo(*base);
1140 return std::unique_ptr<Expression>(new PostfixExpression(std::move(b ase),
1141 Token::PLUS PLUS));
1142 case ASTSuffix::kPostDecrement_Kind:
1143 if (!base->fType->isNumber()) {
1144 fErrors.error(expression.fPosition,
1145 "'--' cannot operate on '" + base->fType->descript ion() + "'");
1146 return nullptr;
1147 }
1148 this->markWrittenTo(*base);
1149 return std::unique_ptr<Expression>(new PostfixExpression(std::move(b ase),
1150 Token::MINU SMINUS));
1151 default:
1152 ABORT("unsupported suffix operator");
1153 }
1154 }
1155
1156 void IRGenerator::checkValid(const Expression& expr) {
1157 switch (expr.fKind) {
1158 case Expression::kFunctionReference_Kind:
1159 fErrors.error(expr.fPosition, "expected '(' to begin function call") ;
1160 break;
1161 case Expression::kTypeReference_Kind:
1162 fErrors.error(expr.fPosition, "expected '(' to begin constructor inv ocation");
1163 break;
1164 default:
1165 ASSERT(expr.fType != kInvalid_Type);
1166 break;
1167 }
1168 }
1169
1170 void IRGenerator::markReadFrom(std::shared_ptr<Variable> var) {
1171 var->fIsReadFrom = true;
1172 }
1173
1174 static bool has_duplicates(const Swizzle& swizzle) {
1175 int bits = 0;
1176 for (int idx : swizzle.fComponents) {
1177 ASSERT(idx >= 0 && idx <= 3);
1178 int bit = 1 << idx;
1179 if (bits & bit) {
1180 return true;
1181 }
1182 bits |= bit;
1183 }
1184 return false;
1185 }
1186
1187 void IRGenerator::markWrittenTo(const Expression& expr) {
1188 switch (expr.fKind) {
1189 case Expression::kVariableReference_Kind: {
1190 const Variable& var = *((VariableReference&) expr).fVariable;
1191 if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUn iform_Flag)) {
1192 fErrors.error(expr.fPosition,
1193 "cannot modify immutable variable '" + var.fName + "'");
1194 }
1195 var.fIsWrittenTo = true;
1196 break;
1197 }
1198 case Expression::kFieldAccess_Kind:
1199 this->markWrittenTo(*((FieldAccess&) expr).fBase);
1200 break;
1201 case Expression::kSwizzle_Kind:
1202 if (has_duplicates((Swizzle&) expr)) {
1203 fErrors.error(expr.fPosition,
1204 "cannot write to the same swizzle field more than once");
1205 }
1206 this->markWrittenTo(*((Swizzle&) expr).fBase);
1207 break;
1208 case Expression::kIndex_Kind:
1209 this->markWrittenTo(*((IndexExpression&) expr).fBase);
1210 break;
1211 default:
1212 fErrors.error(expr.fPosition, "cannot assign to '" + expr.descriptio n() + "'");
1213 break;
1214 }
1215 }
1216
1217 }
OLDNEW
« no previous file with comments | « src/sksl/SkSLIRGenerator.h ('k') | src/sksl/SkSLMain.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698