| Index: tool/input_sdk/lib/io/crypto.dart
|
| diff --git a/tool/input_sdk/lib/io/crypto.dart b/tool/input_sdk/lib/io/crypto.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..82cff5e5721282d7545afd5cc0053b9a5e8efb88
|
| --- /dev/null
|
| +++ b/tool/input_sdk/lib/io/crypto.dart
|
| @@ -0,0 +1,448 @@
|
| +// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +part of dart.io;
|
| +
|
| +class _CryptoUtils {
|
| + static const int PAD = 61; // '='
|
| + static const int CR = 13; // '\r'
|
| + static const int LF = 10; // '\n'
|
| + static const int LINE_LENGTH = 76;
|
| +
|
| + static const String _encodeTable =
|
| + "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
| +
|
| + static const String _encodeTableUrlSafe =
|
| + "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
|
| +
|
| + // Lookup table used for finding Base 64 alphabet index of a given byte.
|
| + // -2 : Outside Base 64 alphabet.
|
| + // -1 : '\r' or '\n'
|
| + // 0 : = (Padding character).
|
| + // >0 : Base 64 alphabet index of given byte.
|
| + static const List<int> _decodeTable =
|
| + const [ -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -2, -2, -1, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, 62, -2, 63,
|
| + 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, 0, -2, -2,
|
| + -2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
| + 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, 63,
|
| + -2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
|
| + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
|
| + -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2 ];
|
| +
|
| + static String bytesToHex(List<int> bytes) {
|
| + var result = new StringBuffer();
|
| + for (var part in bytes) {
|
| + result.write('${part < 16 ? '0' : ''}${part.toRadixString(16)}');
|
| + }
|
| + return result.toString();
|
| + }
|
| +
|
| + static String bytesToBase64(List<int> bytes,
|
| + [bool urlSafe = false,
|
| + bool addLineSeparator = false]) {
|
| + int len = bytes.length;
|
| + if (len == 0) {
|
| + return "";
|
| + }
|
| + final String lookup = urlSafe ? _encodeTableUrlSafe : _encodeTable;
|
| + // Size of 24 bit chunks.
|
| + final int remainderLength = len.remainder(3);
|
| + final int chunkLength = len - remainderLength;
|
| + // Size of base output.
|
| + int outputLen = ((len ~/ 3) * 4) + ((remainderLength > 0) ? 4 : 0);
|
| + // Add extra for line separators.
|
| + if (addLineSeparator) {
|
| + outputLen += ((outputLen - 1) ~/ LINE_LENGTH) << 1;
|
| + }
|
| + List<int> out = new List<int>(outputLen);
|
| +
|
| + // Encode 24 bit chunks.
|
| + int j = 0, i = 0, c = 0;
|
| + while (i < chunkLength) {
|
| + int x = ((bytes[i++] << 16) & 0xFFFFFF) |
|
| + ((bytes[i++] << 8) & 0xFFFFFF) |
|
| + bytes[i++];
|
| + out[j++] = lookup.codeUnitAt(x >> 18);
|
| + out[j++] = lookup.codeUnitAt((x >> 12) & 0x3F);
|
| + out[j++] = lookup.codeUnitAt((x >> 6) & 0x3F);
|
| + out[j++] = lookup.codeUnitAt(x & 0x3f);
|
| + // Add optional line separator for each 76 char output.
|
| + if (addLineSeparator && ++c == 19 && j < outputLen - 2) {
|
| + out[j++] = CR;
|
| + out[j++] = LF;
|
| + c = 0;
|
| + }
|
| + }
|
| +
|
| + // If input length if not a multiple of 3, encode remaining bytes and
|
| + // add padding.
|
| + if (remainderLength == 1) {
|
| + int x = bytes[i];
|
| + out[j++] = lookup.codeUnitAt(x >> 2);
|
| + out[j++] = lookup.codeUnitAt((x << 4) & 0x3F);
|
| + out[j++] = PAD;
|
| + out[j++] = PAD;
|
| + } else if (remainderLength == 2) {
|
| + int x = bytes[i];
|
| + int y = bytes[i + 1];
|
| + out[j++] = lookup.codeUnitAt(x >> 2);
|
| + out[j++] = lookup.codeUnitAt(((x << 4) | (y >> 4)) & 0x3F);
|
| + out[j++] = lookup.codeUnitAt((y << 2) & 0x3F);
|
| + out[j++] = PAD;
|
| + }
|
| +
|
| + return new String.fromCharCodes(out);
|
| + }
|
| +
|
| + static List<int> base64StringToBytes(String input,
|
| + [bool ignoreInvalidCharacters = true]) {
|
| + int len = input.length;
|
| + if (len == 0) {
|
| + return new List<int>(0);
|
| + }
|
| +
|
| + // Count '\r', '\n' and illegal characters, For illegal characters,
|
| + // if [ignoreInvalidCharacters] is false, throw an exception.
|
| + int extrasLen = 0;
|
| + for (int i = 0; i < len; i++) {
|
| + int c = _decodeTable[input.codeUnitAt(i)];
|
| + if (c < 0) {
|
| + extrasLen++;
|
| + if(c == -2 && !ignoreInvalidCharacters) {
|
| + throw new FormatException('Invalid character: ${input[i]}');
|
| + }
|
| + }
|
| + }
|
| +
|
| + if ((len - extrasLen) % 4 != 0) {
|
| + throw new FormatException('''Size of Base 64 characters in Input
|
| + must be a multiple of 4. Input: $input''');
|
| + }
|
| +
|
| + // Count pad characters, ignore illegal characters at the end.
|
| + int padLength = 0;
|
| + for (int i = len - 1; i >= 0; i--) {
|
| + int currentCodeUnit = input.codeUnitAt(i);
|
| + if (_decodeTable[currentCodeUnit] > 0) break;
|
| + if (currentCodeUnit == PAD) padLength++;
|
| + }
|
| + int outputLen = (((len - extrasLen) * 6) >> 3) - padLength;
|
| + List<int> out = new List<int>(outputLen);
|
| +
|
| + for (int i = 0, o = 0; o < outputLen;) {
|
| + // Accumulate 4 valid 6 bit Base 64 characters into an int.
|
| + int x = 0;
|
| + for (int j = 4; j > 0;) {
|
| + int c = _decodeTable[input.codeUnitAt(i++)];
|
| + if (c >= 0) {
|
| + x = ((x << 6) & 0xFFFFFF) | c;
|
| + j--;
|
| + }
|
| + }
|
| + out[o++] = x >> 16;
|
| + if (o < outputLen) {
|
| + out[o++] = (x >> 8) & 0xFF;
|
| + if (o < outputLen) out[o++] = x & 0xFF;
|
| + }
|
| + }
|
| + return out;
|
| + }
|
| +
|
| +}
|
| +
|
| +// Constants.
|
| +const _MASK_8 = 0xff;
|
| +const _MASK_32 = 0xffffffff;
|
| +const _BITS_PER_BYTE = 8;
|
| +const _BYTES_PER_WORD = 4;
|
| +
|
| +// Base class encapsulating common behavior for cryptographic hash
|
| +// functions.
|
| +abstract class _HashBase {
|
| + // Hasher state.
|
| + final int _chunkSizeInWords;
|
| + final int _digestSizeInWords;
|
| + final bool _bigEndianWords;
|
| + int _lengthInBytes = 0;
|
| + List<int> _pendingData;
|
| + List<int> _currentChunk;
|
| + List<int> _h;
|
| + bool _digestCalled = false;
|
| +
|
| + _HashBase(this._chunkSizeInWords,
|
| + this._digestSizeInWords,
|
| + this._bigEndianWords)
|
| + : _pendingData = [] {
|
| + _currentChunk = new List(_chunkSizeInWords);
|
| + _h = new List(_digestSizeInWords);
|
| + }
|
| +
|
| + // Update the hasher with more data.
|
| + add(List<int> data) {
|
| + if (_digestCalled) {
|
| + throw new StateError(
|
| + 'Hash update method called after digest was retrieved');
|
| + }
|
| + _lengthInBytes += data.length;
|
| + _pendingData.addAll(data);
|
| + _iterate();
|
| + }
|
| +
|
| + // Finish the hash computation and return the digest string.
|
| + List<int> close() {
|
| + if (_digestCalled) {
|
| + return _resultAsBytes();
|
| + }
|
| + _digestCalled = true;
|
| + _finalizeData();
|
| + _iterate();
|
| + assert(_pendingData.length == 0);
|
| + return _resultAsBytes();
|
| + }
|
| +
|
| + // Returns the block size of the hash in bytes.
|
| + int get blockSize {
|
| + return _chunkSizeInWords * _BYTES_PER_WORD;
|
| + }
|
| +
|
| + // Create a fresh instance of this Hash.
|
| + newInstance();
|
| +
|
| + // One round of the hash computation.
|
| + _updateHash(List<int> m);
|
| +
|
| + // Helper methods.
|
| + _add32(x, y) => (x + y) & _MASK_32;
|
| + _roundUp(val, n) => (val + n - 1) & -n;
|
| +
|
| + // Rotate left limiting to unsigned 32-bit values.
|
| + int _rotl32(int val, int shift) {
|
| + var mod_shift = shift & 31;
|
| + return ((val << mod_shift) & _MASK_32) |
|
| + ((val & _MASK_32) >> (32 - mod_shift));
|
| + }
|
| +
|
| +
|
| + // Compute the final result as a list of bytes from the hash words.
|
| + _resultAsBytes() {
|
| + var result = [];
|
| + for (var i = 0; i < _h.length; i++) {
|
| + result.addAll(_wordToBytes(_h[i]));
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + // Converts a list of bytes to a chunk of 32-bit words.
|
| + _bytesToChunk(List<int> data, int dataIndex) {
|
| + assert((data.length - dataIndex) >= (_chunkSizeInWords * _BYTES_PER_WORD));
|
| +
|
| + for (var wordIndex = 0; wordIndex < _chunkSizeInWords; wordIndex++) {
|
| + var w3 = _bigEndianWords ? data[dataIndex] : data[dataIndex + 3];
|
| + var w2 = _bigEndianWords ? data[dataIndex + 1] : data[dataIndex + 2];
|
| + var w1 = _bigEndianWords ? data[dataIndex + 2] : data[dataIndex + 1];
|
| + var w0 = _bigEndianWords ? data[dataIndex + 3] : data[dataIndex];
|
| + dataIndex += 4;
|
| + var word = (w3 & 0xff) << 24;
|
| + word |= (w2 & _MASK_8) << 16;
|
| + word |= (w1 & _MASK_8) << 8;
|
| + word |= (w0 & _MASK_8);
|
| + _currentChunk[wordIndex] = word;
|
| + }
|
| + }
|
| +
|
| + // Convert a 32-bit word to four bytes.
|
| + _wordToBytes(int word) {
|
| + List<int> bytes = new List(_BYTES_PER_WORD);
|
| + bytes[0] = (word >> (_bigEndianWords ? 24 : 0)) & _MASK_8;
|
| + bytes[1] = (word >> (_bigEndianWords ? 16 : 8)) & _MASK_8;
|
| + bytes[2] = (word >> (_bigEndianWords ? 8 : 16)) & _MASK_8;
|
| + bytes[3] = (word >> (_bigEndianWords ? 0 : 24)) & _MASK_8;
|
| + return bytes;
|
| + }
|
| +
|
| + // Iterate through data updating the hash computation for each
|
| + // chunk.
|
| + _iterate() {
|
| + var len = _pendingData.length;
|
| + var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD;
|
| + if (len >= chunkSizeInBytes) {
|
| + var index = 0;
|
| + for (; (len - index) >= chunkSizeInBytes; index += chunkSizeInBytes) {
|
| + _bytesToChunk(_pendingData, index);
|
| + _updateHash(_currentChunk);
|
| + }
|
| + _pendingData = _pendingData.sublist(index, len);
|
| + }
|
| + }
|
| +
|
| + // Finalize the data. Add a 1 bit to the end of the message. Expand with
|
| + // 0 bits and add the length of the message.
|
| + _finalizeData() {
|
| + _pendingData.add(0x80);
|
| + var contentsLength = _lengthInBytes + 9;
|
| + var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD;
|
| + var finalizedLength = _roundUp(contentsLength, chunkSizeInBytes);
|
| + var zeroPadding = finalizedLength - contentsLength;
|
| + for (var i = 0; i < zeroPadding; i++) {
|
| + _pendingData.add(0);
|
| + }
|
| + var lengthInBits = _lengthInBytes * _BITS_PER_BYTE;
|
| + assert(lengthInBits < pow(2, 32));
|
| + if (_bigEndianWords) {
|
| + _pendingData.addAll(_wordToBytes(0));
|
| + _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32));
|
| + } else {
|
| + _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32));
|
| + _pendingData.addAll(_wordToBytes(0));
|
| + }
|
| + }
|
| +}
|
| +
|
| +// The MD5 hasher is used to compute an MD5 message digest.
|
| +class _MD5 extends _HashBase {
|
| + _MD5() : super(16, 4, false) {
|
| + _h[0] = 0x67452301;
|
| + _h[1] = 0xefcdab89;
|
| + _h[2] = 0x98badcfe;
|
| + _h[3] = 0x10325476;
|
| + }
|
| +
|
| + // Returns a new instance of this Hash.
|
| + _MD5 newInstance() {
|
| + return new _MD5();
|
| + }
|
| +
|
| + static const _k = const [
|
| + 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a,
|
| + 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
| + 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340,
|
| + 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
|
| + 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8,
|
| + 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
| + 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa,
|
| + 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
| + 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92,
|
| + 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
| + 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 ];
|
| +
|
| + static const _r = const [
|
| + 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14,
|
| + 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11,
|
| + 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6,
|
| + 10, 15, 21, 6, 10, 15, 21 ];
|
| +
|
| + // Compute one iteration of the MD5 algorithm with a chunk of
|
| + // 16 32-bit pieces.
|
| + void _updateHash(List<int> m) {
|
| + assert(m.length == 16);
|
| +
|
| + var a = _h[0];
|
| + var b = _h[1];
|
| + var c = _h[2];
|
| + var d = _h[3];
|
| +
|
| + var t0;
|
| + var t1;
|
| +
|
| + for (var i = 0; i < 64; i++) {
|
| + if (i < 16) {
|
| + t0 = (b & c) | ((~b & _MASK_32) & d);
|
| + t1 = i;
|
| + } else if (i < 32) {
|
| + t0 = (d & b) | ((~d & _MASK_32) & c);
|
| + t1 = ((5 * i) + 1) % 16;
|
| + } else if (i < 48) {
|
| + t0 = b ^ c ^ d;
|
| + t1 = ((3 * i) + 5) % 16;
|
| + } else {
|
| + t0 = c ^ (b | (~d & _MASK_32));
|
| + t1 = (7 * i) % 16;
|
| + }
|
| +
|
| + var temp = d;
|
| + d = c;
|
| + c = b;
|
| + b = _add32(b, _rotl32(_add32(_add32(a, t0),
|
| + _add32(_k[i], m[t1])),
|
| + _r[i]));
|
| + a = temp;
|
| + }
|
| +
|
| + _h[0] = _add32(a, _h[0]);
|
| + _h[1] = _add32(b, _h[1]);
|
| + _h[2] = _add32(c, _h[2]);
|
| + _h[3] = _add32(d, _h[3]);
|
| + }
|
| +}
|
| +
|
| +// The SHA1 hasher is used to compute an SHA1 message digest.
|
| +class _SHA1 extends _HashBase {
|
| + // Construct a SHA1 hasher object.
|
| + _SHA1() : _w = new List(80), super(16, 5, true) {
|
| + _h[0] = 0x67452301;
|
| + _h[1] = 0xEFCDAB89;
|
| + _h[2] = 0x98BADCFE;
|
| + _h[3] = 0x10325476;
|
| + _h[4] = 0xC3D2E1F0;
|
| + }
|
| +
|
| + // Returns a new instance of this Hash.
|
| + _SHA1 newInstance() {
|
| + return new _SHA1();
|
| + }
|
| +
|
| + // Compute one iteration of the SHA1 algorithm with a chunk of
|
| + // 16 32-bit pieces.
|
| + void _updateHash(List<int> m) {
|
| + assert(m.length == 16);
|
| +
|
| + var a = _h[0];
|
| + var b = _h[1];
|
| + var c = _h[2];
|
| + var d = _h[3];
|
| + var e = _h[4];
|
| +
|
| + for (var i = 0; i < 80; i++) {
|
| + if (i < 16) {
|
| + _w[i] = m[i];
|
| + } else {
|
| + var n = _w[i - 3] ^ _w[i - 8] ^ _w[i - 14] ^ _w[i - 16];
|
| + _w[i] = _rotl32(n, 1);
|
| + }
|
| + var t = _add32(_add32(_rotl32(a, 5), e), _w[i]);
|
| + if (i < 20) {
|
| + t = _add32(_add32(t, (b & c) | (~b & d)), 0x5A827999);
|
| + } else if (i < 40) {
|
| + t = _add32(_add32(t, (b ^ c ^ d)), 0x6ED9EBA1);
|
| + } else if (i < 60) {
|
| + t = _add32(_add32(t, (b & c) | (b & d) | (c & d)), 0x8F1BBCDC);
|
| + } else {
|
| + t = _add32(_add32(t, b ^ c ^ d), 0xCA62C1D6);
|
| + }
|
| +
|
| + e = d;
|
| + d = c;
|
| + c = _rotl32(b, 30);
|
| + b = a;
|
| + a = t & _MASK_32;
|
| + }
|
| +
|
| + _h[0] = _add32(a, _h[0]);
|
| + _h[1] = _add32(b, _h[1]);
|
| + _h[2] = _add32(c, _h[2]);
|
| + _h[3] = _add32(d, _h[3]);
|
| + _h[4] = _add32(e, _h[4]);
|
| + }
|
| +
|
| + List<int> _w;
|
| +}
|
|
|