| Index: jidctflt.c
 | 
| diff --git a/jidctflt.c b/jidctflt.c
 | 
| index 0188ce3dfcd2ce2ebaa57c17da22101de01b6f2a..68c521ed7eebe5aa3b65b6216705b12942be341d 100644
 | 
| --- a/jidctflt.c
 | 
| +++ b/jidctflt.c
 | 
| @@ -1,9 +1,13 @@
 | 
|  /*
 | 
|   * jidctflt.c
 | 
|   *
 | 
| + * This file was part of the Independent JPEG Group's software:
 | 
|   * Copyright (C) 1994-1998, Thomas G. Lane.
 | 
| - * This file is part of the Independent JPEG Group's software.
 | 
| - * For conditions of distribution and use, see the accompanying README file.
 | 
| + * Modified 2010 by Guido Vollbeding.
 | 
| + * libjpeg-turbo Modifications:
 | 
| + * Copyright (C) 2014, D. R. Commander.
 | 
| + * For conditions of distribution and use, see the accompanying README.ijg
 | 
| + * file.
 | 
|   *
 | 
|   * This file contains a floating-point implementation of the
 | 
|   * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 | 
| @@ -22,8 +26,8 @@
 | 
|   * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 | 
|   * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 | 
|   * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 | 
| - * JPEG textbook (see REFERENCES section in file README).  The following code
 | 
| - * is based directly on figure 4-8 in P&M.
 | 
| + * JPEG textbook (see REFERENCES section in file README.ijg).  The following
 | 
| + * code is based directly on figure 4-8 in P&M.
 | 
|   * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 | 
|   * possible to arrange the computation so that many of the multiplies are
 | 
|   * simple scalings of the final outputs.  These multiplies can then be
 | 
| @@ -39,7 +43,7 @@
 | 
|  #define JPEG_INTERNALS
 | 
|  #include "jinclude.h"
 | 
|  #include "jpeglib.h"
 | 
| -#include "jdct.h"		/* Private declarations for DCT subsystem */
 | 
| +#include "jdct.h"               /* Private declarations for DCT subsystem */
 | 
|  
 | 
|  #ifdef DCT_FLOAT_SUPPORTED
 | 
|  
 | 
| @@ -65,21 +69,21 @@
 | 
|   */
 | 
|  
 | 
|  GLOBAL(void)
 | 
| -jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | 
| -		 JCOEFPTR coef_block,
 | 
| -		 JSAMPARRAY output_buf, JDIMENSION output_col)
 | 
| +jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr,
 | 
| +                 JCOEFPTR coef_block,
 | 
| +                 JSAMPARRAY output_buf, JDIMENSION output_col)
 | 
|  {
 | 
|    FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 | 
|    FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
 | 
|    FAST_FLOAT z5, z10, z11, z12, z13;
 | 
|    JCOEFPTR inptr;
 | 
| -  FLOAT_MULT_TYPE * quantptr;
 | 
| -  FAST_FLOAT * wsptr;
 | 
| +  FLOAT_MULT_TYPE *quantptr;
 | 
| +  FAST_FLOAT *wsptr;
 | 
|    JSAMPROW outptr;
 | 
| -  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
 | 
| +  JSAMPLE *range_limit = cinfo->sample_range_limit;
 | 
|    int ctr;
 | 
|    FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
 | 
| -  SHIFT_TEMPS
 | 
| +  #define _0_125 ((FLOAT_MULT_TYPE)0.125)
 | 
|  
 | 
|    /* Pass 1: process columns from input, store into work array. */
 | 
|  
 | 
| @@ -95,14 +99,15 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | 
|       * With typical images and quantization tables, half or more of the
 | 
|       * column DCT calculations can be simplified this way.
 | 
|       */
 | 
| -    
 | 
| +
 | 
|      if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
 | 
| -	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
 | 
| -	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
 | 
| -	inptr[DCTSIZE*7] == 0) {
 | 
| +        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
 | 
| +        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
 | 
| +        inptr[DCTSIZE*7] == 0) {
 | 
|        /* AC terms all zero */
 | 
| -      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 | 
| -      
 | 
| +      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
 | 
| +                                    quantptr[DCTSIZE*0] * _0_125);
 | 
| +
 | 
|        wsptr[DCTSIZE*0] = dcval;
 | 
|        wsptr[DCTSIZE*1] = dcval;
 | 
|        wsptr[DCTSIZE*2] = dcval;
 | 
| @@ -111,53 +116,53 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | 
|        wsptr[DCTSIZE*5] = dcval;
 | 
|        wsptr[DCTSIZE*6] = dcval;
 | 
|        wsptr[DCTSIZE*7] = dcval;
 | 
| -      
 | 
| -      inptr++;			/* advance pointers to next column */
 | 
| +
 | 
| +      inptr++;                  /* advance pointers to next column */
 | 
|        quantptr++;
 | 
|        wsptr++;
 | 
|        continue;
 | 
|      }
 | 
| -    
 | 
| +
 | 
|      /* Even part */
 | 
|  
 | 
| -    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 | 
| -    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
 | 
| -    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
 | 
| -    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
 | 
| +    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
 | 
| +    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
 | 
| +    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
 | 
| +    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
 | 
|  
 | 
| -    tmp10 = tmp0 + tmp2;	/* phase 3 */
 | 
| +    tmp10 = tmp0 + tmp2;        /* phase 3 */
 | 
|      tmp11 = tmp0 - tmp2;
 | 
|  
 | 
| -    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
 | 
| +    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
 | 
|      tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
 | 
|  
 | 
| -    tmp0 = tmp10 + tmp13;	/* phase 2 */
 | 
| +    tmp0 = tmp10 + tmp13;       /* phase 2 */
 | 
|      tmp3 = tmp10 - tmp13;
 | 
|      tmp1 = tmp11 + tmp12;
 | 
|      tmp2 = tmp11 - tmp12;
 | 
| -    
 | 
| +
 | 
|      /* Odd part */
 | 
|  
 | 
| -    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
 | 
| -    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
 | 
| -    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
 | 
| -    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
 | 
| +    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
 | 
| +    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
 | 
| +    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
 | 
| +    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
 | 
|  
 | 
| -    z13 = tmp6 + tmp5;		/* phase 6 */
 | 
| +    z13 = tmp6 + tmp5;          /* phase 6 */
 | 
|      z10 = tmp6 - tmp5;
 | 
|      z11 = tmp4 + tmp7;
 | 
|      z12 = tmp4 - tmp7;
 | 
|  
 | 
| -    tmp7 = z11 + z13;		/* phase 5 */
 | 
| +    tmp7 = z11 + z13;           /* phase 5 */
 | 
|      tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
 | 
|  
 | 
|      z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
 | 
| -    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
 | 
| -    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
 | 
| +    tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
 | 
| +    tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
 | 
|  
 | 
| -    tmp6 = tmp12 - tmp7;	/* phase 2 */
 | 
| +    tmp6 = tmp12 - tmp7;        /* phase 2 */
 | 
|      tmp5 = tmp11 - tmp6;
 | 
| -    tmp4 = tmp10 + tmp5;
 | 
| +    tmp4 = tmp10 - tmp5;
 | 
|  
 | 
|      wsptr[DCTSIZE*0] = tmp0 + tmp7;
 | 
|      wsptr[DCTSIZE*7] = tmp0 - tmp7;
 | 
| @@ -165,16 +170,15 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | 
|      wsptr[DCTSIZE*6] = tmp1 - tmp6;
 | 
|      wsptr[DCTSIZE*2] = tmp2 + tmp5;
 | 
|      wsptr[DCTSIZE*5] = tmp2 - tmp5;
 | 
| -    wsptr[DCTSIZE*4] = tmp3 + tmp4;
 | 
| -    wsptr[DCTSIZE*3] = tmp3 - tmp4;
 | 
| +    wsptr[DCTSIZE*3] = tmp3 + tmp4;
 | 
| +    wsptr[DCTSIZE*4] = tmp3 - tmp4;
 | 
|  
 | 
| -    inptr++;			/* advance pointers to next column */
 | 
| +    inptr++;                    /* advance pointers to next column */
 | 
|      quantptr++;
 | 
|      wsptr++;
 | 
|    }
 | 
| -  
 | 
| +
 | 
|    /* Pass 2: process rows from work array, store into output array. */
 | 
| -  /* Note that we must descale the results by a factor of 8 == 2**3. */
 | 
|  
 | 
|    wsptr = workspace;
 | 
|    for (ctr = 0; ctr < DCTSIZE; ctr++) {
 | 
| @@ -184,11 +188,13 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | 
|       * the simplification applies less often (typically 5% to 10% of the time).
 | 
|       * And testing floats for zero is relatively expensive, so we don't bother.
 | 
|       */
 | 
| -    
 | 
| +
 | 
|      /* Even part */
 | 
|  
 | 
| -    tmp10 = wsptr[0] + wsptr[4];
 | 
| -    tmp11 = wsptr[0] - wsptr[4];
 | 
| +    /* Apply signed->unsigned and prepare float->int conversion */
 | 
| +    z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
 | 
| +    tmp10 = z5 + wsptr[4];
 | 
| +    tmp11 = z5 - wsptr[4];
 | 
|  
 | 
|      tmp13 = wsptr[2] + wsptr[6];
 | 
|      tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
 | 
| @@ -209,33 +215,25 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 | 
|      tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
 | 
|  
 | 
|      z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
 | 
| -    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
 | 
| -    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
 | 
| +    tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
 | 
| +    tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
 | 
|  
 | 
|      tmp6 = tmp12 - tmp7;
 | 
|      tmp5 = tmp11 - tmp6;
 | 
| -    tmp4 = tmp10 + tmp5;
 | 
| -
 | 
| -    /* Final output stage: scale down by a factor of 8 and range-limit */
 | 
| -
 | 
| -    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
 | 
| -			    & RANGE_MASK];
 | 
| -    
 | 
| -    wsptr += DCTSIZE;		/* advance pointer to next row */
 | 
| +    tmp4 = tmp10 - tmp5;
 | 
| +
 | 
| +    /* Final output stage: float->int conversion and range-limit */
 | 
| +
 | 
| +    outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
 | 
| +    outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
 | 
| +    outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
 | 
| +    outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
 | 
| +    outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
 | 
| +    outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
 | 
| +    outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
 | 
| +    outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
 | 
| +
 | 
| +    wsptr += DCTSIZE;           /* advance pointer to next row */
 | 
|    }
 | 
|  }
 | 
|  
 | 
| 
 |