Index: jidctflt.c |
diff --git a/jidctflt.c b/jidctflt.c |
index 0188ce3dfcd2ce2ebaa57c17da22101de01b6f2a..68c521ed7eebe5aa3b65b6216705b12942be341d 100644 |
--- a/jidctflt.c |
+++ b/jidctflt.c |
@@ -1,9 +1,13 @@ |
/* |
* jidctflt.c |
* |
+ * This file was part of the Independent JPEG Group's software: |
* Copyright (C) 1994-1998, Thomas G. Lane. |
- * This file is part of the Independent JPEG Group's software. |
- * For conditions of distribution and use, see the accompanying README file. |
+ * Modified 2010 by Guido Vollbeding. |
+ * libjpeg-turbo Modifications: |
+ * Copyright (C) 2014, D. R. Commander. |
+ * For conditions of distribution and use, see the accompanying README.ijg |
+ * file. |
* |
* This file contains a floating-point implementation of the |
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
@@ -22,8 +26,8 @@ |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell |
- * JPEG textbook (see REFERENCES section in file README). The following code |
- * is based directly on figure 4-8 in P&M. |
+ * JPEG textbook (see REFERENCES section in file README.ijg). The following |
+ * code is based directly on figure 4-8 in P&M. |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is |
* possible to arrange the computation so that many of the multiplies are |
* simple scalings of the final outputs. These multiplies can then be |
@@ -39,7 +43,7 @@ |
#define JPEG_INTERNALS |
#include "jinclude.h" |
#include "jpeglib.h" |
-#include "jdct.h" /* Private declarations for DCT subsystem */ |
+#include "jdct.h" /* Private declarations for DCT subsystem */ |
#ifdef DCT_FLOAT_SUPPORTED |
@@ -65,21 +69,21 @@ |
*/ |
GLOBAL(void) |
-jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
- JCOEFPTR coef_block, |
- JSAMPARRAY output_buf, JDIMENSION output_col) |
+jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr, |
+ JCOEFPTR coef_block, |
+ JSAMPARRAY output_buf, JDIMENSION output_col) |
{ |
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
FAST_FLOAT z5, z10, z11, z12, z13; |
JCOEFPTR inptr; |
- FLOAT_MULT_TYPE * quantptr; |
- FAST_FLOAT * wsptr; |
+ FLOAT_MULT_TYPE *quantptr; |
+ FAST_FLOAT *wsptr; |
JSAMPROW outptr; |
- JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
+ JSAMPLE *range_limit = cinfo->sample_range_limit; |
int ctr; |
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
- SHIFT_TEMPS |
+ #define _0_125 ((FLOAT_MULT_TYPE)0.125) |
/* Pass 1: process columns from input, store into work array. */ |
@@ -95,14 +99,15 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
* With typical images and quantization tables, half or more of the |
* column DCT calculations can be simplified this way. |
*/ |
- |
+ |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
- inptr[DCTSIZE*7] == 0) { |
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
+ inptr[DCTSIZE*7] == 0) { |
/* AC terms all zero */ |
- FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
- |
+ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], |
+ quantptr[DCTSIZE*0] * _0_125); |
+ |
wsptr[DCTSIZE*0] = dcval; |
wsptr[DCTSIZE*1] = dcval; |
wsptr[DCTSIZE*2] = dcval; |
@@ -111,53 +116,53 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
wsptr[DCTSIZE*5] = dcval; |
wsptr[DCTSIZE*6] = dcval; |
wsptr[DCTSIZE*7] = dcval; |
- |
- inptr++; /* advance pointers to next column */ |
+ |
+ inptr++; /* advance pointers to next column */ |
quantptr++; |
wsptr++; |
continue; |
} |
- |
+ |
/* Even part */ |
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125); |
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125); |
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125); |
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125); |
- tmp10 = tmp0 + tmp2; /* phase 3 */ |
+ tmp10 = tmp0 + tmp2; /* phase 3 */ |
tmp11 = tmp0 - tmp2; |
- tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
- tmp0 = tmp10 + tmp13; /* phase 2 */ |
+ tmp0 = tmp10 + tmp13; /* phase 2 */ |
tmp3 = tmp10 - tmp13; |
tmp1 = tmp11 + tmp12; |
tmp2 = tmp11 - tmp12; |
- |
+ |
/* Odd part */ |
- tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
- tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
- tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
- tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
+ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125); |
+ tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125); |
+ tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125); |
+ tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125); |
- z13 = tmp6 + tmp5; /* phase 6 */ |
+ z13 = tmp6 + tmp5; /* phase 6 */ |
z10 = tmp6 - tmp5; |
z11 = tmp4 + tmp7; |
z12 = tmp4 - tmp7; |
- tmp7 = z11 + z13; /* phase 5 */ |
+ tmp7 = z11 + z13; /* phase 5 */ |
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
- tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
- tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
+ tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ |
+ tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ |
- tmp6 = tmp12 - tmp7; /* phase 2 */ |
+ tmp6 = tmp12 - tmp7; /* phase 2 */ |
tmp5 = tmp11 - tmp6; |
- tmp4 = tmp10 + tmp5; |
+ tmp4 = tmp10 - tmp5; |
wsptr[DCTSIZE*0] = tmp0 + tmp7; |
wsptr[DCTSIZE*7] = tmp0 - tmp7; |
@@ -165,16 +170,15 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
wsptr[DCTSIZE*6] = tmp1 - tmp6; |
wsptr[DCTSIZE*2] = tmp2 + tmp5; |
wsptr[DCTSIZE*5] = tmp2 - tmp5; |
- wsptr[DCTSIZE*4] = tmp3 + tmp4; |
- wsptr[DCTSIZE*3] = tmp3 - tmp4; |
+ wsptr[DCTSIZE*3] = tmp3 + tmp4; |
+ wsptr[DCTSIZE*4] = tmp3 - tmp4; |
- inptr++; /* advance pointers to next column */ |
+ inptr++; /* advance pointers to next column */ |
quantptr++; |
wsptr++; |
} |
- |
+ |
/* Pass 2: process rows from work array, store into output array. */ |
- /* Note that we must descale the results by a factor of 8 == 2**3. */ |
wsptr = workspace; |
for (ctr = 0; ctr < DCTSIZE; ctr++) { |
@@ -184,11 +188,13 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
* the simplification applies less often (typically 5% to 10% of the time). |
* And testing floats for zero is relatively expensive, so we don't bother. |
*/ |
- |
+ |
/* Even part */ |
- tmp10 = wsptr[0] + wsptr[4]; |
- tmp11 = wsptr[0] - wsptr[4]; |
+ /* Apply signed->unsigned and prepare float->int conversion */ |
+ z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5); |
+ tmp10 = z5 + wsptr[4]; |
+ tmp11 = z5 - wsptr[4]; |
tmp13 = wsptr[2] + wsptr[6]; |
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
@@ -209,33 +215,25 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
- tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
- tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
+ tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ |
+ tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ |
tmp6 = tmp12 - tmp7; |
tmp5 = tmp11 - tmp6; |
- tmp4 = tmp10 + tmp5; |
- |
- /* Final output stage: scale down by a factor of 8 and range-limit */ |
- |
- outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) |
- & RANGE_MASK]; |
- outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) |
- & RANGE_MASK]; |
- outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) |
- & RANGE_MASK]; |
- outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) |
- & RANGE_MASK]; |
- outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) |
- & RANGE_MASK]; |
- outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) |
- & RANGE_MASK]; |
- outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) |
- & RANGE_MASK]; |
- outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) |
- & RANGE_MASK]; |
- |
- wsptr += DCTSIZE; /* advance pointer to next row */ |
+ tmp4 = tmp10 - tmp5; |
+ |
+ /* Final output stage: float->int conversion and range-limit */ |
+ |
+ outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK]; |
+ outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK]; |
+ outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK]; |
+ outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK]; |
+ outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK]; |
+ outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK]; |
+ outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK]; |
+ outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK]; |
+ |
+ wsptr += DCTSIZE; /* advance pointer to next row */ |
} |
} |