Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(226)

Side by Side Diff: jidctflt.c

Issue 1953443002: Update to libjpeg_turbo 1.4.90 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « jfdctint.c ('k') | jidctfst.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * jidctflt.c 2 * jidctflt.c
3 * 3 *
4 * This file was part of the Independent JPEG Group's software:
4 * Copyright (C) 1994-1998, Thomas G. Lane. 5 * Copyright (C) 1994-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software. 6 * Modified 2010 by Guido Vollbeding.
6 * For conditions of distribution and use, see the accompanying README file. 7 * libjpeg-turbo Modifications:
8 * Copyright (C) 2014, D. R. Commander.
9 * For conditions of distribution and use, see the accompanying README.ijg
10 * file.
7 * 11 *
8 * This file contains a floating-point implementation of the 12 * This file contains a floating-point implementation of the
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine 13 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
10 * must also perform dequantization of the input coefficients. 14 * must also perform dequantization of the input coefficients.
11 * 15 *
12 * This implementation should be more accurate than either of the integer 16 * This implementation should be more accurate than either of the integer
13 * IDCT implementations. However, it may not give the same results on all 17 * IDCT implementations. However, it may not give the same results on all
14 * machines because of differences in roundoff behavior. Speed will depend 18 * machines because of differences in roundoff behavior. Speed will depend
15 * on the hardware's floating point capacity. 19 * on the hardware's floating point capacity.
16 * 20 *
17 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT 21 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
18 * on each row (or vice versa, but it's more convenient to emit a row at 22 * on each row (or vice versa, but it's more convenient to emit a row at
19 * a time). Direct algorithms are also available, but they are much more 23 * a time). Direct algorithms are also available, but they are much more
20 * complex and seem not to be any faster when reduced to code. 24 * complex and seem not to be any faster when reduced to code.
21 * 25 *
22 * This implementation is based on Arai, Agui, and Nakajima's algorithm for 26 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
23 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 27 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
24 * Japanese, but the algorithm is described in the Pennebaker & Mitchell 28 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
25 * JPEG textbook (see REFERENCES section in file README). The following code 29 * JPEG textbook (see REFERENCES section in file README.ijg). The following
26 * is based directly on figure 4-8 in P&M. 30 * code is based directly on figure 4-8 in P&M.
27 * While an 8-point DCT cannot be done in less than 11 multiplies, it is 31 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
28 * possible to arrange the computation so that many of the multiplies are 32 * possible to arrange the computation so that many of the multiplies are
29 * simple scalings of the final outputs. These multiplies can then be 33 * simple scalings of the final outputs. These multiplies can then be
30 * folded into the multiplications or divisions by the JPEG quantization 34 * folded into the multiplications or divisions by the JPEG quantization
31 * table entries. The AA&N method leaves only 5 multiplies and 29 adds 35 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
32 * to be done in the DCT itself. 36 * to be done in the DCT itself.
33 * The primary disadvantage of this method is that with a fixed-point 37 * The primary disadvantage of this method is that with a fixed-point
34 * implementation, accuracy is lost due to imprecise representation of the 38 * implementation, accuracy is lost due to imprecise representation of the
35 * scaled quantization values. However, that problem does not arise if 39 * scaled quantization values. However, that problem does not arise if
36 * we use floating point arithmetic. 40 * we use floating point arithmetic.
37 */ 41 */
38 42
39 #define JPEG_INTERNALS 43 #define JPEG_INTERNALS
40 #include "jinclude.h" 44 #include "jinclude.h"
41 #include "jpeglib.h" 45 #include "jpeglib.h"
42 #include "jdct.h"» » /* Private declarations for DCT subsystem */ 46 #include "jdct.h" /* Private declarations for DCT subsystem */
43 47
44 #ifdef DCT_FLOAT_SUPPORTED 48 #ifdef DCT_FLOAT_SUPPORTED
45 49
46 50
47 /* 51 /*
48 * This module is specialized to the case DCTSIZE = 8. 52 * This module is specialized to the case DCTSIZE = 8.
49 */ 53 */
50 54
51 #if DCTSIZE != 8 55 #if DCTSIZE != 8
52 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 56 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
53 #endif 57 #endif
54 58
55 59
56 /* Dequantize a coefficient by multiplying it by the multiplier-table 60 /* Dequantize a coefficient by multiplying it by the multiplier-table
57 * entry; produce a float result. 61 * entry; produce a float result.
58 */ 62 */
59 63
60 #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) 64 #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
61 65
62 66
63 /* 67 /*
64 * Perform dequantization and inverse DCT on one block of coefficients. 68 * Perform dequantization and inverse DCT on one block of coefficients.
65 */ 69 */
66 70
67 GLOBAL(void) 71 GLOBAL(void)
68 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, 72 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr,
69 » » JCOEFPTR coef_block, 73 JCOEFPTR coef_block,
70 » » JSAMPARRAY output_buf, JDIMENSION output_col) 74 JSAMPARRAY output_buf, JDIMENSION output_col)
71 { 75 {
72 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 76 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
73 FAST_FLOAT tmp10, tmp11, tmp12, tmp13; 77 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
74 FAST_FLOAT z5, z10, z11, z12, z13; 78 FAST_FLOAT z5, z10, z11, z12, z13;
75 JCOEFPTR inptr; 79 JCOEFPTR inptr;
76 FLOAT_MULT_TYPE * quantptr; 80 FLOAT_MULT_TYPE *quantptr;
77 FAST_FLOAT * wsptr; 81 FAST_FLOAT *wsptr;
78 JSAMPROW outptr; 82 JSAMPROW outptr;
79 JSAMPLE *range_limit = IDCT_range_limit(cinfo); 83 JSAMPLE *range_limit = cinfo->sample_range_limit;
80 int ctr; 84 int ctr;
81 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ 85 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
82 SHIFT_TEMPS 86 #define _0_125 ((FLOAT_MULT_TYPE)0.125)
83 87
84 /* Pass 1: process columns from input, store into work array. */ 88 /* Pass 1: process columns from input, store into work array. */
85 89
86 inptr = coef_block; 90 inptr = coef_block;
87 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; 91 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
88 wsptr = workspace; 92 wsptr = workspace;
89 for (ctr = DCTSIZE; ctr > 0; ctr--) { 93 for (ctr = DCTSIZE; ctr > 0; ctr--) {
90 /* Due to quantization, we will usually find that many of the input 94 /* Due to quantization, we will usually find that many of the input
91 * coefficients are zero, especially the AC terms. We can exploit this 95 * coefficients are zero, especially the AC terms. We can exploit this
92 * by short-circuiting the IDCT calculation for any column in which all 96 * by short-circuiting the IDCT calculation for any column in which all
93 * the AC terms are zero. In that case each output is equal to the 97 * the AC terms are zero. In that case each output is equal to the
94 * DC coefficient (with scale factor as needed). 98 * DC coefficient (with scale factor as needed).
95 * With typical images and quantization tables, half or more of the 99 * With typical images and quantization tables, half or more of the
96 * column DCT calculations can be simplified this way. 100 * column DCT calculations can be simplified this way.
97 */ 101 */
98 102
99 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && 103 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
100 » inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && 104 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
101 » inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && 105 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
102 » inptr[DCTSIZE*7] == 0) { 106 inptr[DCTSIZE*7] == 0) {
103 /* AC terms all zero */ 107 /* AC terms all zero */
104 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); 108 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
105 109 quantptr[DCTSIZE*0] * _0_125);
110
106 wsptr[DCTSIZE*0] = dcval; 111 wsptr[DCTSIZE*0] = dcval;
107 wsptr[DCTSIZE*1] = dcval; 112 wsptr[DCTSIZE*1] = dcval;
108 wsptr[DCTSIZE*2] = dcval; 113 wsptr[DCTSIZE*2] = dcval;
109 wsptr[DCTSIZE*3] = dcval; 114 wsptr[DCTSIZE*3] = dcval;
110 wsptr[DCTSIZE*4] = dcval; 115 wsptr[DCTSIZE*4] = dcval;
111 wsptr[DCTSIZE*5] = dcval; 116 wsptr[DCTSIZE*5] = dcval;
112 wsptr[DCTSIZE*6] = dcval; 117 wsptr[DCTSIZE*6] = dcval;
113 wsptr[DCTSIZE*7] = dcval; 118 wsptr[DCTSIZE*7] = dcval;
114 119
115 inptr++;» » » /* advance pointers to next column */ 120 inptr++; /* advance pointers to next column */
116 quantptr++; 121 quantptr++;
117 wsptr++; 122 wsptr++;
118 continue; 123 continue;
119 } 124 }
120 125
121 /* Even part */ 126 /* Even part */
122 127
123 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); 128 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
124 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); 129 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
125 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); 130 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
126 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); 131 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
127 132
128 tmp10 = tmp0 + tmp2;» /* phase 3 */ 133 tmp10 = tmp0 + tmp2; /* phase 3 */
129 tmp11 = tmp0 - tmp2; 134 tmp11 = tmp0 - tmp2;
130 135
131 tmp13 = tmp1 + tmp3;» /* phases 5-3 */ 136 tmp13 = tmp1 + tmp3; /* phases 5-3 */
132 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ 137 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
133 138
134 tmp0 = tmp10 + tmp13;» /* phase 2 */ 139 tmp0 = tmp10 + tmp13; /* phase 2 */
135 tmp3 = tmp10 - tmp13; 140 tmp3 = tmp10 - tmp13;
136 tmp1 = tmp11 + tmp12; 141 tmp1 = tmp11 + tmp12;
137 tmp2 = tmp11 - tmp12; 142 tmp2 = tmp11 - tmp12;
138 143
139 /* Odd part */ 144 /* Odd part */
140 145
141 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); 146 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
142 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); 147 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
143 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); 148 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
144 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); 149 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
145 150
146 z13 = tmp6 + tmp5;» » /* phase 6 */ 151 z13 = tmp6 + tmp5; /* phase 6 */
147 z10 = tmp6 - tmp5; 152 z10 = tmp6 - tmp5;
148 z11 = tmp4 + tmp7; 153 z11 = tmp4 + tmp7;
149 z12 = tmp4 - tmp7; 154 z12 = tmp4 - tmp7;
150 155
151 tmp7 = z11 + z13;» » /* phase 5 */ 156 tmp7 = z11 + z13; /* phase 5 */
152 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ 157 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
153 158
154 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ 159 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
155 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ 160 tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
156 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ 161 tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
157 162
158 tmp6 = tmp12 - tmp7;» /* phase 2 */ 163 tmp6 = tmp12 - tmp7; /* phase 2 */
159 tmp5 = tmp11 - tmp6; 164 tmp5 = tmp11 - tmp6;
160 tmp4 = tmp10 + tmp5; 165 tmp4 = tmp10 - tmp5;
161 166
162 wsptr[DCTSIZE*0] = tmp0 + tmp7; 167 wsptr[DCTSIZE*0] = tmp0 + tmp7;
163 wsptr[DCTSIZE*7] = tmp0 - tmp7; 168 wsptr[DCTSIZE*7] = tmp0 - tmp7;
164 wsptr[DCTSIZE*1] = tmp1 + tmp6; 169 wsptr[DCTSIZE*1] = tmp1 + tmp6;
165 wsptr[DCTSIZE*6] = tmp1 - tmp6; 170 wsptr[DCTSIZE*6] = tmp1 - tmp6;
166 wsptr[DCTSIZE*2] = tmp2 + tmp5; 171 wsptr[DCTSIZE*2] = tmp2 + tmp5;
167 wsptr[DCTSIZE*5] = tmp2 - tmp5; 172 wsptr[DCTSIZE*5] = tmp2 - tmp5;
168 wsptr[DCTSIZE*4] = tmp3 + tmp4; 173 wsptr[DCTSIZE*3] = tmp3 + tmp4;
169 wsptr[DCTSIZE*3] = tmp3 - tmp4; 174 wsptr[DCTSIZE*4] = tmp3 - tmp4;
170 175
171 inptr++;» » » /* advance pointers to next column */ 176 inptr++; /* advance pointers to next column */
172 quantptr++; 177 quantptr++;
173 wsptr++; 178 wsptr++;
174 } 179 }
175 180
176 /* Pass 2: process rows from work array, store into output array. */ 181 /* Pass 2: process rows from work array, store into output array. */
177 /* Note that we must descale the results by a factor of 8 == 2**3. */
178 182
179 wsptr = workspace; 183 wsptr = workspace;
180 for (ctr = 0; ctr < DCTSIZE; ctr++) { 184 for (ctr = 0; ctr < DCTSIZE; ctr++) {
181 outptr = output_buf[ctr] + output_col; 185 outptr = output_buf[ctr] + output_col;
182 /* Rows of zeroes can be exploited in the same way as we did with columns. 186 /* Rows of zeroes can be exploited in the same way as we did with columns.
183 * However, the column calculation has created many nonzero AC terms, so 187 * However, the column calculation has created many nonzero AC terms, so
184 * the simplification applies less often (typically 5% to 10% of the time). 188 * the simplification applies less often (typically 5% to 10% of the time).
185 * And testing floats for zero is relatively expensive, so we don't bother. 189 * And testing floats for zero is relatively expensive, so we don't bother.
186 */ 190 */
187 191
188 /* Even part */ 192 /* Even part */
189 193
190 tmp10 = wsptr[0] + wsptr[4]; 194 /* Apply signed->unsigned and prepare float->int conversion */
191 tmp11 = wsptr[0] - wsptr[4]; 195 z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
196 tmp10 = z5 + wsptr[4];
197 tmp11 = z5 - wsptr[4];
192 198
193 tmp13 = wsptr[2] + wsptr[6]; 199 tmp13 = wsptr[2] + wsptr[6];
194 tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; 200 tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
195 201
196 tmp0 = tmp10 + tmp13; 202 tmp0 = tmp10 + tmp13;
197 tmp3 = tmp10 - tmp13; 203 tmp3 = tmp10 - tmp13;
198 tmp1 = tmp11 + tmp12; 204 tmp1 = tmp11 + tmp12;
199 tmp2 = tmp11 - tmp12; 205 tmp2 = tmp11 - tmp12;
200 206
201 /* Odd part */ 207 /* Odd part */
202 208
203 z13 = wsptr[5] + wsptr[3]; 209 z13 = wsptr[5] + wsptr[3];
204 z10 = wsptr[5] - wsptr[3]; 210 z10 = wsptr[5] - wsptr[3];
205 z11 = wsptr[1] + wsptr[7]; 211 z11 = wsptr[1] + wsptr[7];
206 z12 = wsptr[1] - wsptr[7]; 212 z12 = wsptr[1] - wsptr[7];
207 213
208 tmp7 = z11 + z13; 214 tmp7 = z11 + z13;
209 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); 215 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
210 216
211 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ 217 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
212 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ 218 tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
213 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ 219 tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
214 220
215 tmp6 = tmp12 - tmp7; 221 tmp6 = tmp12 - tmp7;
216 tmp5 = tmp11 - tmp6; 222 tmp5 = tmp11 - tmp6;
217 tmp4 = tmp10 + tmp5; 223 tmp4 = tmp10 - tmp5;
218 224
219 /* Final output stage: scale down by a factor of 8 and range-limit */ 225 /* Final output stage: float->int conversion and range-limit */
220 226
221 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) 227 outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
222 » » » & RANGE_MASK]; 228 outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
223 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) 229 outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
224 » » » & RANGE_MASK]; 230 outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
225 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) 231 outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
226 » » » & RANGE_MASK]; 232 outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
227 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) 233 outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
228 » » » & RANGE_MASK]; 234 outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
229 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) 235
230 » » » & RANGE_MASK]; 236 wsptr += DCTSIZE; /* advance pointer to next row */
231 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
232 » » » & RANGE_MASK];
233 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
234 » » » & RANGE_MASK];
235 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
236 » » » & RANGE_MASK];
237
238 wsptr += DCTSIZE;» » /* advance pointer to next row */
239 } 237 }
240 } 238 }
241 239
242 #endif /* DCT_FLOAT_SUPPORTED */ 240 #endif /* DCT_FLOAT_SUPPORTED */
OLDNEW
« no previous file with comments | « jfdctint.c ('k') | jidctfst.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698