Index: simd/jchuff-sse2.asm |
diff --git a/simd/jchuff-sse2.asm b/simd/jchuff-sse2.asm |
new file mode 100644 |
index 0000000000000000000000000000000000000000..1d82273f289dde531f3c5da45f6ac73b2e32cb3a |
--- /dev/null |
+++ b/simd/jchuff-sse2.asm |
@@ -0,0 +1,427 @@ |
+; |
+; jchuff-sse2.asm - Huffman entropy encoding (SSE2) |
+; |
+; Copyright 2009-2011, 2014-2016 D. R. Commander. |
+; Copyright 2015 Matthieu Darbois |
+; |
+; Based on |
+; x86 SIMD extension for IJG JPEG library |
+; Copyright (C) 1999-2006, MIYASAKA Masaru. |
+; For conditions of distribution and use, see copyright notice in jsimdext.inc |
+; |
+; This file should be assembled with NASM (Netwide Assembler), |
+; can *not* be assembled with Microsoft's MASM or any compatible |
+; assembler (including Borland's Turbo Assembler). |
+; NASM is available from http://nasm.sourceforge.net/ or |
+; http://sourceforge.net/project/showfiles.php?group_id=6208 |
+; |
+; This file contains an SSE2 implementation for Huffman coding of one block. |
+; The following code is based directly on jchuff.c; see jchuff.c for more |
+; details. |
+; |
+; [TAB8] |
+ |
+%include "jsimdext.inc" |
+ |
+; -------------------------------------------------------------------------- |
+ SECTION SEG_CONST |
+ |
+ alignz 16 |
+ global EXTN(jconst_huff_encode_one_block) |
+ |
+EXTN(jconst_huff_encode_one_block): |
+ |
+%include "jpeg_nbits_table.inc" |
+ |
+ alignz 16 |
+ |
+; -------------------------------------------------------------------------- |
+ SECTION SEG_TEXT |
+ BITS 32 |
+ |
+; These macros perform the same task as the emit_bits() function in the |
+; original libjpeg code. In addition to reducing overhead by explicitly |
+; inlining the code, additional performance is achieved by taking into |
+; account the size of the bit buffer and waiting until it is almost full |
+; before emptying it. This mostly benefits 64-bit platforms, since 6 |
+; bytes can be stored in a 64-bit bit buffer before it has to be emptied. |
+ |
+%macro EMIT_BYTE 0 |
+ sub put_bits, 8 ; put_bits -= 8; |
+ mov edx, put_buffer |
+ mov ecx, put_bits |
+ shr edx, cl ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits); |
+ mov byte [eax], dl ; *buffer++ = c; |
+ add eax, 1 |
+ cmp dl, 0xFF ; need to stuff a zero byte? |
+ jne %%.EMIT_BYTE_END |
+ mov byte [eax], 0 ; *buffer++ = 0; |
+ add eax, 1 |
+%%.EMIT_BYTE_END: |
+%endmacro |
+ |
+%macro PUT_BITS 1 |
+ add put_bits, ecx ; put_bits += size; |
+ shl put_buffer, cl ; put_buffer = (put_buffer << size); |
+ or put_buffer, %1 |
+%endmacro |
+ |
+%macro CHECKBUF15 0 |
+ cmp put_bits, 16 ; if (put_bits > 31) { |
+ jl %%.CHECKBUF15_END |
+ mov eax, POINTER [esp+buffer] |
+ EMIT_BYTE |
+ EMIT_BYTE |
+ mov POINTER [esp+buffer], eax |
+%%.CHECKBUF15_END: |
+%endmacro |
+ |
+%macro EMIT_BITS 1 |
+ PUT_BITS %1 |
+ CHECKBUF15 |
+%endmacro |
+ |
+%macro kloop_prepare 37 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3) |
+ pxor xmm4, xmm4 ; __m128i neg = _mm_setzero_si128(); |
+ pxor xmm5, xmm5 ; __m128i neg = _mm_setzero_si128(); |
+ pxor xmm6, xmm6 ; __m128i neg = _mm_setzero_si128(); |
+ pxor xmm7, xmm7 ; __m128i neg = _mm_setzero_si128(); |
+ pinsrw %34, word [esi + %2 * SIZEOF_WORD], 0 ; xmm_shadow[0] = block[jno0]; |
+ pinsrw %35, word [esi + %10 * SIZEOF_WORD], 0 ; xmm_shadow[8] = block[jno8]; |
+ pinsrw %36, word [esi + %18 * SIZEOF_WORD], 0 ; xmm_shadow[16] = block[jno16]; |
+ pinsrw %37, word [esi + %26 * SIZEOF_WORD], 0 ; xmm_shadow[24] = block[jno24]; |
+ pinsrw %34, word [esi + %3 * SIZEOF_WORD], 1 ; xmm_shadow[1] = block[jno1]; |
+ pinsrw %35, word [esi + %11 * SIZEOF_WORD], 1 ; xmm_shadow[9] = block[jno9]; |
+ pinsrw %36, word [esi + %19 * SIZEOF_WORD], 1 ; xmm_shadow[17] = block[jno17]; |
+ pinsrw %37, word [esi + %27 * SIZEOF_WORD], 1 ; xmm_shadow[25] = block[jno25]; |
+ pinsrw %34, word [esi + %4 * SIZEOF_WORD], 2 ; xmm_shadow[2] = block[jno2]; |
+ pinsrw %35, word [esi + %12 * SIZEOF_WORD], 2 ; xmm_shadow[10] = block[jno10]; |
+ pinsrw %36, word [esi + %20 * SIZEOF_WORD], 2 ; xmm_shadow[18] = block[jno18]; |
+ pinsrw %37, word [esi + %28 * SIZEOF_WORD], 2 ; xmm_shadow[26] = block[jno26]; |
+ pinsrw %34, word [esi + %5 * SIZEOF_WORD], 3 ; xmm_shadow[3] = block[jno3]; |
+ pinsrw %35, word [esi + %13 * SIZEOF_WORD], 3 ; xmm_shadow[11] = block[jno11]; |
+ pinsrw %36, word [esi + %21 * SIZEOF_WORD], 3 ; xmm_shadow[19] = block[jno19]; |
+ pinsrw %37, word [esi + %29 * SIZEOF_WORD], 3 ; xmm_shadow[27] = block[jno27]; |
+ pinsrw %34, word [esi + %6 * SIZEOF_WORD], 4 ; xmm_shadow[4] = block[jno4]; |
+ pinsrw %35, word [esi + %14 * SIZEOF_WORD], 4 ; xmm_shadow[12] = block[jno12]; |
+ pinsrw %36, word [esi + %22 * SIZEOF_WORD], 4 ; xmm_shadow[20] = block[jno20]; |
+ pinsrw %37, word [esi + %30 * SIZEOF_WORD], 4 ; xmm_shadow[28] = block[jno28]; |
+ pinsrw %34, word [esi + %7 * SIZEOF_WORD], 5 ; xmm_shadow[5] = block[jno5]; |
+ pinsrw %35, word [esi + %15 * SIZEOF_WORD], 5 ; xmm_shadow[13] = block[jno13]; |
+ pinsrw %36, word [esi + %23 * SIZEOF_WORD], 5 ; xmm_shadow[21] = block[jno21]; |
+ pinsrw %37, word [esi + %31 * SIZEOF_WORD], 5 ; xmm_shadow[29] = block[jno29]; |
+ pinsrw %34, word [esi + %8 * SIZEOF_WORD], 6 ; xmm_shadow[6] = block[jno6]; |
+ pinsrw %35, word [esi + %16 * SIZEOF_WORD], 6 ; xmm_shadow[14] = block[jno14]; |
+ pinsrw %36, word [esi + %24 * SIZEOF_WORD], 6 ; xmm_shadow[22] = block[jno22]; |
+ pinsrw %37, word [esi + %32 * SIZEOF_WORD], 6 ; xmm_shadow[30] = block[jno30]; |
+ pinsrw %34, word [esi + %9 * SIZEOF_WORD], 7 ; xmm_shadow[7] = block[jno7]; |
+ pinsrw %35, word [esi + %17 * SIZEOF_WORD], 7 ; xmm_shadow[15] = block[jno15]; |
+ pinsrw %36, word [esi + %25 * SIZEOF_WORD], 7 ; xmm_shadow[23] = block[jno23]; |
+%if %1 != 32 |
+ pinsrw %37, word [esi + %33 * SIZEOF_WORD], 7 ; xmm_shadow[31] = block[jno31]; |
+%else |
+ pinsrw %37, ecx, 7 ; xmm_shadow[31] = block[jno31]; |
+%endif |
+ pcmpgtw xmm4, %34 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ pcmpgtw xmm5, %35 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ pcmpgtw xmm6, %36 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ pcmpgtw xmm7, %37 ; neg = _mm_cmpgt_epi16(neg, x1); |
+ paddw %34, xmm4 ; x1 = _mm_add_epi16(x1, neg); |
+ paddw %35, xmm5 ; x1 = _mm_add_epi16(x1, neg); |
+ paddw %36, xmm6 ; x1 = _mm_add_epi16(x1, neg); |
+ paddw %37, xmm7 ; x1 = _mm_add_epi16(x1, neg); |
+ pxor %34, xmm4 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor %35, xmm5 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor %36, xmm6 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor %37, xmm7 ; x1 = _mm_xor_si128(x1, neg); |
+ pxor xmm4, %34 ; neg = _mm_xor_si128(neg, x1); |
+ pxor xmm5, %35 ; neg = _mm_xor_si128(neg, x1); |
+ pxor xmm6, %36 ; neg = _mm_xor_si128(neg, x1); |
+ pxor xmm7, %37 ; neg = _mm_xor_si128(neg, x1); |
+ movdqa XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34 ; _mm_storeu_si128((__m128i *)(t1 + ko), x1); |
+ movdqa XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35 ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1); |
+ movdqa XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36 ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1); |
+ movdqa XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37 ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1); |
+ movdqa XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4 ; _mm_storeu_si128((__m128i *)(t2 + ko), neg); |
+ movdqa XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5 ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg); |
+ movdqa XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6 ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg); |
+ movdqa XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7 ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg); |
+%endmacro |
+ |
+; |
+; Encode a single block's worth of coefficients. |
+; |
+; GLOBAL(JOCTET*) |
+; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer, |
+; JCOEFPTR block, int last_dc_val, |
+; c_derived_tbl *dctbl, c_derived_tbl *actbl) |
+; |
+ |
+; eax + 8 = working_state *state |
+; eax + 12 = JOCTET *buffer |
+; eax + 16 = JCOEFPTR block |
+; eax + 20 = int last_dc_val |
+; eax + 24 = c_derived_tbl *dctbl |
+; eax + 28 = c_derived_tbl *actbl |
+ |
+%define pad 6*SIZEOF_DWORD ; Align to 16 bytes |
+%define t1 pad |
+%define t2 t1+(DCTSIZE2*SIZEOF_WORD) |
+%define block t2+(DCTSIZE2*SIZEOF_WORD) |
+%define actbl block+SIZEOF_DWORD |
+%define buffer actbl+SIZEOF_DWORD |
+%define temp buffer+SIZEOF_DWORD |
+%define temp2 temp+SIZEOF_DWORD |
+%define temp3 temp2+SIZEOF_DWORD |
+%define temp4 temp3+SIZEOF_DWORD |
+%define temp5 temp4+SIZEOF_DWORD |
+%define gotptr temp5+SIZEOF_DWORD ; void *gotptr |
+%define put_buffer ebx |
+%define put_bits edi |
+ |
+ align 16 |
+ global EXTN(jsimd_huff_encode_one_block_sse2) |
+ |
+EXTN(jsimd_huff_encode_one_block_sse2): |
+ push ebp |
+ mov eax,esp ; eax = original ebp |
+ sub esp, byte 4 |
+ and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits |
+ mov [esp],eax |
+ mov ebp,esp ; ebp = aligned ebp |
+ sub esp, temp5+9*SIZEOF_DWORD-pad |
+ push ebx |
+ push ecx |
+; push edx ; need not be preserved |
+ push esi |
+ push edi |
+ push ebp |
+ |
+ mov esi, POINTER [eax+8] ; (working_state *state) |
+ mov put_buffer, DWORD [esi+8] ; put_buffer = state->cur.put_buffer; |
+ mov put_bits, DWORD [esi+12] ; put_bits = state->cur.put_bits; |
+ push esi ; esi is now scratch |
+ |
+ get_GOT edx ; get GOT address |
+ movpic POINTER [esp+gotptr], edx ; save GOT address |
+ |
+ mov ecx, POINTER [eax+28] |
+ mov edx, POINTER [eax+16] |
+ mov esi, POINTER [eax+12] |
+ mov POINTER [esp+actbl], ecx |
+ mov POINTER [esp+block], edx |
+ mov POINTER [esp+buffer], esi |
+ |
+ ; Encode the DC coefficient difference per section F.1.2.1 |
+ mov esi, POINTER [esp+block] ; block |
+ movsx ecx, word [esi] ; temp = temp2 = block[0] - last_dc_val; |
+ sub ecx, DWORD [eax+20] |
+ mov esi, ecx |
+ |
+ ; This is a well-known technique for obtaining the absolute value |
+ ; without a branch. It is derived from an assembly language technique |
+ ; presented in "How to Optimize for the Pentium Processors", |
+ ; Copyright (c) 1996, 1997 by Agner Fog. |
+ mov edx, ecx |
+ sar edx, 31 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); |
+ xor ecx, edx ; temp ^= temp3; |
+ sub ecx, edx ; temp -= temp3; |
+ |
+ ; For a negative input, want temp2 = bitwise complement of abs(input) |
+ ; This code assumes we are on a two's complement machine |
+ add esi, edx ; temp2 += temp3; |
+ mov DWORD [esp+temp], esi ; backup temp2 in temp |
+ |
+ ; Find the number of bits needed for the magnitude of the coefficient |
+ movpic ebp, POINTER [esp+gotptr] ; load GOT address (ebp) |
+ movzx edx, byte [GOTOFF(ebp, jpeg_nbits_table + ecx)] ; nbits = JPEG_NBITS(temp); |
+ mov DWORD [esp+temp2], edx ; backup nbits in temp2 |
+ |
+ ; Emit the Huffman-coded symbol for the number of bits |
+ mov ebp, POINTER [eax+24] ; After this point, arguments are not accessible anymore |
+ mov eax, INT [ebp + edx * 4] ; code = dctbl->ehufco[nbits]; |
+ movzx ecx, byte [ebp + edx + 1024] ; size = dctbl->ehufsi[nbits]; |
+ EMIT_BITS eax ; EMIT_BITS(code, size) |
+ |
+ mov ecx, DWORD [esp+temp2] ; restore nbits |
+ |
+ ; Mask off any extra bits in code |
+ mov eax, 1 |
+ shl eax, cl |
+ dec eax |
+ and eax, DWORD [esp+temp] ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
+ |
+ ; Emit that number of bits of the value, if positive, |
+ ; or the complement of its magnitude, if negative. |
+ EMIT_BITS eax ; EMIT_BITS(temp2, nbits) |
+ |
+ ; Prepare data |
+ xor ecx, ecx |
+ mov esi, POINTER [esp+block] |
+ kloop_prepare 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, \ |
+ 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, \ |
+ 27, 20, 13, 6, 7, 14, 21, 28, 35, \ |
+ xmm0, xmm1, xmm2, xmm3 |
+ kloop_prepare 32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \ |
+ 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \ |
+ 53, 60, 61, 54, 47, 55, 62, 63, 63, \ |
+ xmm0, xmm1, xmm2, xmm3 |
+ |
+ pxor xmm7, xmm7 |
+ movdqa xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0)); |
+ movdqa xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8)); |
+ movdqa xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16)); |
+ movdqa xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24)); |
+ pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
+ pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
+ pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
+ pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
+ packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
+ packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
+ pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
+ pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; |
+ shl ecx, 16 |
+ or edx, ecx |
+ not edx ; index = ~index; |
+ |
+ lea esi, [esp+t1] |
+ mov ebp, POINTER [esp+actbl] ; ebp = actbl |
+ |
+.BLOOP: |
+ bsf ecx, edx ; r = __builtin_ctzl(index); |
+ jz .ELOOP |
+ lea esi, [esi+ecx*2] ; k += r; |
+ shr edx, cl ; index >>= r; |
+ mov DWORD [esp+temp3], edx |
+.BRLOOP: |
+ cmp ecx, 16 ; while (r > 15) { |
+ jl .ERLOOP |
+ sub ecx, 16 ; r -= 16; |
+ mov DWORD [esp+temp], ecx |
+ mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
+ movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
+ EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) |
+ mov ecx, DWORD [esp+temp] |
+ jmp .BRLOOP |
+.ERLOOP: |
+ movsx eax, word [esi] ; temp = t1[k]; |
+ movpic edx, POINTER [esp+gotptr] ; load GOT address (edx) |
+ movzx eax, byte [GOTOFF(edx, jpeg_nbits_table + eax)] ; nbits = JPEG_NBITS(temp); |
+ mov DWORD [esp+temp2], eax |
+ ; Emit Huffman symbol for run length / number of bits |
+ shl ecx, 4 ; temp3 = (r << 4) + nbits; |
+ add ecx, eax |
+ mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; |
+ movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; |
+ EMIT_BITS eax |
+ |
+ movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; |
+ ; Mask off any extra bits in code |
+ mov ecx, DWORD [esp+temp2] |
+ mov eax, 1 |
+ shl eax, cl |
+ dec eax |
+ and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
+ EMIT_BITS eax ; PUT_BITS(temp2, nbits) |
+ mov edx, DWORD [esp+temp3] |
+ add esi, 2 ; ++k; |
+ shr edx, 1 ; index >>= 1; |
+ |
+ jmp .BLOOP |
+.ELOOP: |
+ movdqa xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD] ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0)); |
+ movdqa xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD] ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8)); |
+ movdqa xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD] ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16)); |
+ movdqa xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD] ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24)); |
+ pcmpeqw xmm0, xmm7 ; tmp0 = _mm_cmpeq_epi16(tmp0, zero); |
+ pcmpeqw xmm1, xmm7 ; tmp1 = _mm_cmpeq_epi16(tmp1, zero); |
+ pcmpeqw xmm2, xmm7 ; tmp2 = _mm_cmpeq_epi16(tmp2, zero); |
+ pcmpeqw xmm3, xmm7 ; tmp3 = _mm_cmpeq_epi16(tmp3, zero); |
+ packsswb xmm0, xmm1 ; tmp0 = _mm_packs_epi16(tmp0, tmp1); |
+ packsswb xmm2, xmm3 ; tmp2 = _mm_packs_epi16(tmp2, tmp3); |
+ pmovmskb edx, xmm0 ; index = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0; |
+ pmovmskb ecx, xmm2 ; index = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16; |
+ shl ecx, 16 |
+ or edx, ecx |
+ not edx ; index = ~index; |
+ |
+ lea eax, [esp + t1 + (DCTSIZE2/2) * 2] |
+ sub eax, esi |
+ shr eax, 1 |
+ bsf ecx, edx ; r = __builtin_ctzl(index); |
+ jz .ELOOP2 |
+ shr edx, cl ; index >>= r; |
+ add ecx, eax |
+ lea esi, [esi+ecx*2] ; k += r; |
+ mov DWORD [esp+temp3], edx |
+ jmp .BRLOOP2 |
+.BLOOP2: |
+ bsf ecx, edx ; r = __builtin_ctzl(index); |
+ jz .ELOOP2 |
+ lea esi, [esi+ecx*2] ; k += r; |
+ shr edx, cl ; index >>= r; |
+ mov DWORD [esp+temp3], edx |
+.BRLOOP2: |
+ cmp ecx, 16 ; while (r > 15) { |
+ jl .ERLOOP2 |
+ sub ecx, 16 ; r -= 16; |
+ mov DWORD [esp+temp], ecx |
+ mov eax, INT [ebp + 240 * 4] ; code_0xf0 = actbl->ehufco[0xf0]; |
+ movzx ecx, byte [ebp + 1024 + 240] ; size_0xf0 = actbl->ehufsi[0xf0]; |
+ EMIT_BITS eax ; EMIT_BITS(code_0xf0, size_0xf0) |
+ mov ecx, DWORD [esp+temp] |
+ jmp .BRLOOP2 |
+.ERLOOP2: |
+ movsx eax, word [esi] ; temp = t1[k]; |
+ bsr eax, eax ; nbits = 32 - __builtin_clz(temp); |
+ inc eax |
+ mov DWORD [esp+temp2], eax |
+ ; Emit Huffman symbol for run length / number of bits |
+ shl ecx, 4 ; temp3 = (r << 4) + nbits; |
+ add ecx, eax |
+ mov eax, INT [ebp + ecx * 4] ; code = actbl->ehufco[temp3]; |
+ movzx ecx, byte [ebp + ecx + 1024] ; size = actbl->ehufsi[temp3]; |
+ EMIT_BITS eax |
+ |
+ movsx edx, word [esi+DCTSIZE2*2] ; temp2 = t2[k]; |
+ ; Mask off any extra bits in code |
+ mov ecx, DWORD [esp+temp2] |
+ mov eax, 1 |
+ shl eax, cl |
+ dec eax |
+ and eax, edx ; temp2 &= (((JLONG) 1)<<nbits) - 1; |
+ EMIT_BITS eax ; PUT_BITS(temp2, nbits) |
+ mov edx, DWORD [esp+temp3] |
+ add esi, 2 ; ++k; |
+ shr edx, 1 ; index >>= 1; |
+ |
+ jmp .BLOOP2 |
+.ELOOP2: |
+ ; If the last coef(s) were zero, emit an end-of-block code |
+ lea edx, [esp + t1 + (DCTSIZE2-1) * 2] ; r = DCTSIZE2-1-k; |
+ cmp edx, esi ; if (r > 0) { |
+ je .EFN |
+ mov eax, INT [ebp] ; code = actbl->ehufco[0]; |
+ movzx ecx, byte [ebp + 1024] ; size = actbl->ehufsi[0]; |
+ EMIT_BITS eax |
+.EFN: |
+ mov eax, [esp+buffer] |
+ pop esi |
+ ; Save put_buffer & put_bits |
+ mov DWORD [esi+8], put_buffer ; state->cur.put_buffer = put_buffer; |
+ mov DWORD [esi+12], put_bits ; state->cur.put_bits = put_bits; |
+ |
+ pop ebp |
+ pop edi |
+ pop esi |
+; pop edx ; need not be preserved |
+ pop ecx |
+ pop ebx |
+ mov esp,ebp ; esp <- aligned ebp |
+ pop esp ; esp <- original ebp |
+ pop ebp |
+ ret |
+ |
+; For some reason, the OS X linker does not honor the request to align the |
+; segment unless we do this. |
+ align 16 |