| Index: simd/jchuff-sse2-64.asm
 | 
| diff --git a/simd/jchuff-sse2-64.asm b/simd/jchuff-sse2-64.asm
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..84eaeebf097964b2675110c8bc944a1df416f596
 | 
| --- /dev/null
 | 
| +++ b/simd/jchuff-sse2-64.asm
 | 
| @@ -0,0 +1,361 @@
 | 
| +;
 | 
| +; jchuff-sse2-64.asm - Huffman entropy encoding (64-bit SSE2)
 | 
| +;
 | 
| +; Copyright 2009-2011, 2014-2016 D. R. Commander.
 | 
| +; Copyright 2015 Matthieu Darbois
 | 
| +;
 | 
| +; Based on
 | 
| +; x86 SIMD extension for IJG JPEG library
 | 
| +; Copyright (C) 1999-2006, MIYASAKA Masaru.
 | 
| +; For conditions of distribution and use, see copyright notice in jsimdext.inc
 | 
| +;
 | 
| +; This file should be assembled with NASM (Netwide Assembler),
 | 
| +; can *not* be assembled with Microsoft's MASM or any compatible
 | 
| +; assembler (including Borland's Turbo Assembler).
 | 
| +; NASM is available from http://nasm.sourceforge.net/ or
 | 
| +; http://sourceforge.net/project/showfiles.php?group_id=6208
 | 
| +;
 | 
| +; This file contains an SSE2 implementation for Huffman coding of one block.
 | 
| +; The following code is based directly on jchuff.c; see jchuff.c for more
 | 
| +; details.
 | 
| +;
 | 
| +; [TAB8]
 | 
| +
 | 
| +%include "jsimdext.inc"
 | 
| +
 | 
| +; --------------------------------------------------------------------------
 | 
| +        SECTION SEG_CONST
 | 
| +
 | 
| +        alignz  16
 | 
| +        global  EXTN(jconst_huff_encode_one_block)
 | 
| +
 | 
| +EXTN(jconst_huff_encode_one_block):
 | 
| +
 | 
| +%include "jpeg_nbits_table.inc"
 | 
| +
 | 
| +        alignz  16
 | 
| +
 | 
| +; --------------------------------------------------------------------------
 | 
| +        SECTION SEG_TEXT
 | 
| +        BITS    64
 | 
| +
 | 
| +; These macros perform the same task as the emit_bits() function in the
 | 
| +; original libjpeg code.  In addition to reducing overhead by explicitly
 | 
| +; inlining the code, additional performance is achieved by taking into
 | 
| +; account the size of the bit buffer and waiting until it is almost full
 | 
| +; before emptying it.  This mostly benefits 64-bit platforms, since 6
 | 
| +; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
 | 
| +
 | 
| +%macro EMIT_BYTE 0
 | 
| +        sub put_bits, 8  ; put_bits -= 8;
 | 
| +        mov rdx, put_buffer
 | 
| +        mov ecx, put_bits
 | 
| +        shr rdx, cl  ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
 | 
| +        mov byte [buffer], dl  ; *buffer++ = c;
 | 
| +        add buffer, 1
 | 
| +        cmp dl, 0xFF  ; need to stuff a zero byte?
 | 
| +        jne %%.EMIT_BYTE_END
 | 
| +        mov byte [buffer], 0  ; *buffer++ = 0;
 | 
| +        add buffer, 1
 | 
| +%%.EMIT_BYTE_END:
 | 
| +%endmacro
 | 
| +
 | 
| +%macro PUT_BITS 1
 | 
| +        add put_bits, ecx  ; put_bits += size;
 | 
| +        shl put_buffer, cl  ; put_buffer = (put_buffer << size);
 | 
| +        or  put_buffer, %1
 | 
| +%endmacro
 | 
| +
 | 
| +%macro CHECKBUF31 0
 | 
| +        cmp put_bits, 32  ; if (put_bits > 31) {
 | 
| +        jl %%.CHECKBUF31_END
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +%%.CHECKBUF31_END:
 | 
| +%endmacro
 | 
| +
 | 
| +%macro CHECKBUF47 0
 | 
| +        cmp put_bits, 48  ; if (put_bits > 47) {
 | 
| +        jl %%.CHECKBUF47_END
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +        EMIT_BYTE
 | 
| +%%.CHECKBUF47_END:
 | 
| +%endmacro
 | 
| +
 | 
| +%macro EMIT_BITS 2
 | 
| +        CHECKBUF47
 | 
| +        mov ecx, %2
 | 
| +        PUT_BITS %1
 | 
| +%endmacro
 | 
| +
 | 
| +%macro kloop_prepare 37  ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
 | 
| +    pxor xmm8, xmm8  ; __m128i neg = _mm_setzero_si128();
 | 
| +    pxor xmm9, xmm9  ; __m128i neg = _mm_setzero_si128();
 | 
| +    pxor xmm10, xmm10  ; __m128i neg = _mm_setzero_si128();
 | 
| +    pxor xmm11, xmm11  ; __m128i neg = _mm_setzero_si128();
 | 
| +    pinsrw %34, word [r12 + %2  * SIZEOF_WORD], 0  ; xmm_shadow[0] = block[jno0];
 | 
| +    pinsrw %35, word [r12 + %10 * SIZEOF_WORD], 0  ; xmm_shadow[8] = block[jno8];
 | 
| +    pinsrw %36, word [r12 + %18 * SIZEOF_WORD], 0  ; xmm_shadow[16] = block[jno16];
 | 
| +    pinsrw %37, word [r12 + %26 * SIZEOF_WORD], 0  ; xmm_shadow[24] = block[jno24];
 | 
| +    pinsrw %34, word [r12 + %3  * SIZEOF_WORD], 1  ; xmm_shadow[1] = block[jno1];
 | 
| +    pinsrw %35, word [r12 + %11 * SIZEOF_WORD], 1  ; xmm_shadow[9] = block[jno9];
 | 
| +    pinsrw %36, word [r12 + %19 * SIZEOF_WORD], 1  ; xmm_shadow[17] = block[jno17];
 | 
| +    pinsrw %37, word [r12 + %27 * SIZEOF_WORD], 1  ; xmm_shadow[25] = block[jno25];
 | 
| +    pinsrw %34, word [r12 + %4  * SIZEOF_WORD], 2  ; xmm_shadow[2] = block[jno2];
 | 
| +    pinsrw %35, word [r12 + %12 * SIZEOF_WORD], 2  ; xmm_shadow[10] = block[jno10];
 | 
| +    pinsrw %36, word [r12 + %20 * SIZEOF_WORD], 2  ; xmm_shadow[18] = block[jno18];
 | 
| +    pinsrw %37, word [r12 + %28 * SIZEOF_WORD], 2  ; xmm_shadow[26] = block[jno26];
 | 
| +    pinsrw %34, word [r12 + %5  * SIZEOF_WORD], 3  ; xmm_shadow[3] = block[jno3];
 | 
| +    pinsrw %35, word [r12 + %13 * SIZEOF_WORD], 3  ; xmm_shadow[11] = block[jno11];
 | 
| +    pinsrw %36, word [r12 + %21 * SIZEOF_WORD], 3  ; xmm_shadow[19] = block[jno19];
 | 
| +    pinsrw %37, word [r12 + %29 * SIZEOF_WORD], 3  ; xmm_shadow[27] = block[jno27];
 | 
| +    pinsrw %34, word [r12 + %6  * SIZEOF_WORD], 4  ; xmm_shadow[4] = block[jno4];
 | 
| +    pinsrw %35, word [r12 + %14 * SIZEOF_WORD], 4  ; xmm_shadow[12] = block[jno12];
 | 
| +    pinsrw %36, word [r12 + %22 * SIZEOF_WORD], 4  ; xmm_shadow[20] = block[jno20];
 | 
| +    pinsrw %37, word [r12 + %30 * SIZEOF_WORD], 4  ; xmm_shadow[28] = block[jno28];
 | 
| +    pinsrw %34, word [r12 + %7  * SIZEOF_WORD], 5  ; xmm_shadow[5] = block[jno5];
 | 
| +    pinsrw %35, word [r12 + %15 * SIZEOF_WORD], 5  ; xmm_shadow[13] = block[jno13];
 | 
| +    pinsrw %36, word [r12 + %23 * SIZEOF_WORD], 5  ; xmm_shadow[21] = block[jno21];
 | 
| +    pinsrw %37, word [r12 + %31 * SIZEOF_WORD], 5  ; xmm_shadow[29] = block[jno29];
 | 
| +    pinsrw %34, word [r12 + %8  * SIZEOF_WORD], 6  ; xmm_shadow[6] = block[jno6];
 | 
| +    pinsrw %35, word [r12 + %16 * SIZEOF_WORD], 6  ; xmm_shadow[14] = block[jno14];
 | 
| +    pinsrw %36, word [r12 + %24 * SIZEOF_WORD], 6  ; xmm_shadow[22] = block[jno22];
 | 
| +    pinsrw %37, word [r12 + %32 * SIZEOF_WORD], 6  ; xmm_shadow[30] = block[jno30];
 | 
| +    pinsrw %34, word [r12 + %9  * SIZEOF_WORD], 7  ; xmm_shadow[7] = block[jno7];
 | 
| +    pinsrw %35, word [r12 + %17 * SIZEOF_WORD], 7  ; xmm_shadow[15] = block[jno15];
 | 
| +    pinsrw %36, word [r12 + %25 * SIZEOF_WORD], 7  ; xmm_shadow[23] = block[jno23];
 | 
| +%if %1 != 32
 | 
| +    pinsrw %37, word [r12 + %33 * SIZEOF_WORD], 7  ; xmm_shadow[31] = block[jno31];
 | 
| +%else
 | 
| +    pinsrw %37, ebx, 7  ; xmm_shadow[31] = block[jno31];
 | 
| +%endif
 | 
| +    pcmpgtw xmm8, %34  ; neg = _mm_cmpgt_epi16(neg, x1);
 | 
| +    pcmpgtw xmm9, %35  ; neg = _mm_cmpgt_epi16(neg, x1);
 | 
| +    pcmpgtw xmm10, %36  ; neg = _mm_cmpgt_epi16(neg, x1);
 | 
| +    pcmpgtw xmm11, %37  ; neg = _mm_cmpgt_epi16(neg, x1);
 | 
| +    paddw %34, xmm8   ; x1 = _mm_add_epi16(x1, neg);
 | 
| +    paddw %35, xmm9   ; x1 = _mm_add_epi16(x1, neg);
 | 
| +    paddw %36, xmm10  ; x1 = _mm_add_epi16(x1, neg);
 | 
| +    paddw %37, xmm11  ; x1 = _mm_add_epi16(x1, neg);
 | 
| +    pxor %34, xmm8    ; x1 = _mm_xor_si128(x1, neg);
 | 
| +    pxor %35, xmm9    ; x1 = _mm_xor_si128(x1, neg);
 | 
| +    pxor %36, xmm10   ; x1 = _mm_xor_si128(x1, neg);
 | 
| +    pxor %37, xmm11   ; x1 = _mm_xor_si128(x1, neg);
 | 
| +    pxor xmm8, %34    ; neg = _mm_xor_si128(neg, x1);
 | 
| +    pxor xmm9, %35    ; neg = _mm_xor_si128(neg, x1);
 | 
| +    pxor xmm10, %36   ; neg = _mm_xor_si128(neg, x1);
 | 
| +    pxor xmm11, %37   ; neg = _mm_xor_si128(neg, x1);
 | 
| +    movdqa XMMWORD [t1 + %1 * SIZEOF_WORD], %34  ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
 | 
| +    movdqa XMMWORD [t1 + (%1 + 8) * SIZEOF_WORD], %35  ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
 | 
| +    movdqa XMMWORD [t1 + (%1 + 16) * SIZEOF_WORD], %36  ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
 | 
| +    movdqa XMMWORD [t1 + (%1 + 24) * SIZEOF_WORD], %37  ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
 | 
| +    movdqa XMMWORD [t2 + %1 * SIZEOF_WORD], xmm8  ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
 | 
| +    movdqa XMMWORD [t2 + (%1 + 8) * SIZEOF_WORD], xmm9  ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
 | 
| +    movdqa XMMWORD [t2 + (%1 + 16) * SIZEOF_WORD], xmm10  ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
 | 
| +    movdqa XMMWORD [t2 + (%1 + 24) * SIZEOF_WORD], xmm11  ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
 | 
| +%endmacro
 | 
| +
 | 
| +;
 | 
| +; Encode a single block's worth of coefficients.
 | 
| +;
 | 
| +; GLOBAL(JOCTET*)
 | 
| +; jsimd_huff_encode_one_block_sse2 (working_state *state, JOCTET *buffer,
 | 
| +;                                   JCOEFPTR block, int last_dc_val,
 | 
| +;                                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
 | 
| +;
 | 
| +
 | 
| +; r10 = working_state *state
 | 
| +; r11 = JOCTET *buffer
 | 
| +; r12 = JCOEFPTR block
 | 
| +; r13 = int last_dc_val
 | 
| +; r14 = c_derived_tbl *dctbl
 | 
| +; r15 = c_derived_tbl *actbl
 | 
| +
 | 
| +%define t1              rbp-(DCTSIZE2*SIZEOF_WORD)
 | 
| +%define t2              t1-(DCTSIZE2*SIZEOF_WORD)
 | 
| +%define put_buffer      r8
 | 
| +%define put_bits        r9d
 | 
| +%define buffer          rax
 | 
| +
 | 
| +        align   16
 | 
| +        global  EXTN(jsimd_huff_encode_one_block_sse2)
 | 
| +
 | 
| +EXTN(jsimd_huff_encode_one_block_sse2):
 | 
| +        push    rbp
 | 
| +        mov     rax,rsp                         ; rax = original rbp
 | 
| +        sub     rsp, byte 4
 | 
| +        and     rsp, byte (-SIZEOF_XMMWORD)     ; align to 128 bits
 | 
| +        mov     [rsp],rax
 | 
| +        mov     rbp,rsp                         ; rbp = aligned rbp
 | 
| +        lea     rsp, [t2]
 | 
| +        collect_args
 | 
| +%ifdef WIN64
 | 
| +        movaps  XMMWORD [rsp-1*SIZEOF_XMMWORD], xmm8
 | 
| +        movaps  XMMWORD [rsp-2*SIZEOF_XMMWORD], xmm9
 | 
| +        movaps  XMMWORD [rsp-3*SIZEOF_XMMWORD], xmm10
 | 
| +        movaps  XMMWORD [rsp-4*SIZEOF_XMMWORD], xmm11
 | 
| +        sub     rsp, 4*SIZEOF_XMMWORD
 | 
| +%endif
 | 
| +        push rbx
 | 
| +
 | 
| +        mov buffer, r11  ; r11 is now sratch
 | 
| +
 | 
| +        mov put_buffer, MMWORD [r10+16]  ; put_buffer = state->cur.put_buffer;
 | 
| +        mov put_bits,    DWORD [r10+24]  ; put_bits = state->cur.put_bits;
 | 
| +        push r10  ; r10 is now scratch
 | 
| +
 | 
| +        ; Encode the DC coefficient difference per section F.1.2.1
 | 
| +        movsx edi, word [r12]  ; temp = temp2 = block[0] - last_dc_val;
 | 
| +        sub   edi, r13d  ; r13 is not used anymore
 | 
| +        mov   ebx, edi
 | 
| +
 | 
| +        ; This is a well-known technique for obtaining the absolute value
 | 
| +        ; without a branch.  It is derived from an assembly language technique
 | 
| +        ; presented in "How to Optimize for the Pentium Processors",
 | 
| +        ; Copyright (c) 1996, 1997 by Agner Fog.
 | 
| +        mov esi, edi
 | 
| +        sar esi, 31   ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
 | 
| +        xor edi, esi  ; temp ^= temp3;
 | 
| +        sub edi, esi  ; temp -= temp3;
 | 
| +
 | 
| +        ; For a negative input, want temp2 = bitwise complement of abs(input)
 | 
| +        ; This code assumes we are on a two's complement machine
 | 
| +        add ebx, esi  ; temp2 += temp3;
 | 
| +
 | 
| +        ; Find the number of bits needed for the magnitude of the coefficient
 | 
| +        lea   r11, [rel jpeg_nbits_table]
 | 
| +        movzx rdi, byte [r11 + rdi]  ; nbits = JPEG_NBITS(temp);
 | 
| +        ; Emit the Huffman-coded symbol for the number of bits
 | 
| +        mov   r11d,  INT [r14 + rdi * 4]  ; code = dctbl->ehufco[nbits];
 | 
| +        movzx  esi, byte [r14 + rdi + 1024]  ; size = dctbl->ehufsi[nbits];
 | 
| +        EMIT_BITS r11, esi  ; EMIT_BITS(code, size)
 | 
| +
 | 
| +        ; Mask off any extra bits in code
 | 
| +        mov esi, 1
 | 
| +        mov ecx, edi
 | 
| +        shl esi, cl
 | 
| +        dec esi
 | 
| +        and ebx, esi  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
 | 
| +
 | 
| +        ; Emit that number of bits of the value, if positive,
 | 
| +        ; or the complement of its magnitude, if negative.
 | 
| +        EMIT_BITS rbx, edi  ; EMIT_BITS(temp2, nbits)
 | 
| +
 | 
| +        ; Prepare data
 | 
| +        xor ebx, ebx
 | 
| +        kloop_prepare  0,  1,  8,  16, 9,  2,  3,  10, 17, 24, 32, 25, \
 | 
| +                       18, 11, 4,  5,  12, 19, 26, 33, 40, 48, 41, 34, \
 | 
| +                       27, 20, 13, 6,  7,  14, 21, 28, 35, \
 | 
| +                       xmm0, xmm1, xmm2, xmm3
 | 
| +        kloop_prepare  32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
 | 
| +                       30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
 | 
| +                       53, 60, 61, 54, 47, 55, 62, 63, 63, \
 | 
| +                       xmm4, xmm5, xmm6, xmm7
 | 
| +
 | 
| +        pxor xmm8, xmm8
 | 
| +        pcmpeqw xmm0, xmm8  ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
 | 
| +        pcmpeqw xmm1, xmm8  ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
 | 
| +        pcmpeqw xmm2, xmm8  ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
 | 
| +        pcmpeqw xmm3, xmm8  ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
 | 
| +        pcmpeqw xmm4, xmm8  ; tmp4 = _mm_cmpeq_epi16(tmp4, zero);
 | 
| +        pcmpeqw xmm5, xmm8  ; tmp5 = _mm_cmpeq_epi16(tmp5, zero);
 | 
| +        pcmpeqw xmm6, xmm8  ; tmp6 = _mm_cmpeq_epi16(tmp6, zero);
 | 
| +        pcmpeqw xmm7, xmm8  ; tmp7 = _mm_cmpeq_epi16(tmp7, zero);
 | 
| +        packsswb xmm0, xmm1  ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
 | 
| +        packsswb xmm2, xmm3  ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
 | 
| +        packsswb xmm4, xmm5  ; tmp4 = _mm_packs_epi16(tmp4, tmp5);
 | 
| +        packsswb xmm6, xmm7  ; tmp6 = _mm_packs_epi16(tmp6, tmp7);
 | 
| +        pmovmskb r11d, xmm0  ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
 | 
| +        pmovmskb r12d, xmm2  ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
 | 
| +        pmovmskb r13d, xmm4  ; index  = ((uint64_t)_mm_movemask_epi8(tmp4)) << 32;
 | 
| +        pmovmskb r14d, xmm6  ; index  = ((uint64_t)_mm_movemask_epi8(tmp6)) << 48;
 | 
| +        shl r12, 16
 | 
| +        shl r14, 16
 | 
| +        or  r11, r12
 | 
| +        or  r13, r14
 | 
| +        shl r13, 32
 | 
| +        or  r11, r13
 | 
| +        not r11  ; index = ~index;
 | 
| +
 | 
| +        ;mov MMWORD [ t1 + DCTSIZE2 * SIZEOF_WORD ], r11
 | 
| +        ;jmp .EFN
 | 
| +
 | 
| +        mov   r13d,  INT [r15 + 240 * 4]  ; code_0xf0 = actbl->ehufco[0xf0];
 | 
| +        movzx r14d, byte [r15 + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
 | 
| +        lea rsi, [t1]
 | 
| +.BLOOP:
 | 
| +        bsf r12, r11  ; r = __builtin_ctzl(index);
 | 
| +        jz .ELOOP
 | 
| +        mov rcx, r12
 | 
| +        lea rsi, [rsi+r12*2]  ; k += r;
 | 
| +        shr r11, cl  ; index >>= r;
 | 
| +        movzx rdi, word [rsi]  ; temp = t1[k];
 | 
| +        lea   rbx, [rel jpeg_nbits_table]
 | 
| +        movzx rdi, byte [rbx + rdi]  ; nbits = JPEG_NBITS(temp);
 | 
| +.BRLOOP:
 | 
| +        cmp r12, 16  ; while (r > 15) {
 | 
| +        jl .ERLOOP
 | 
| +        EMIT_BITS r13, r14d  ; EMIT_BITS(code_0xf0, size_0xf0)
 | 
| +        sub r12, 16  ; r -= 16;
 | 
| +        jmp .BRLOOP
 | 
| +.ERLOOP:
 | 
| +        ; Emit Huffman symbol for run length / number of bits
 | 
| +        CHECKBUF31  ; uses rcx, rdx
 | 
| +
 | 
| +        shl r12, 4  ; temp3 = (r << 4) + nbits;
 | 
| +        add r12, rdi
 | 
| +        mov   ebx,  INT [r15 + r12 * 4]  ; code = actbl->ehufco[temp3];
 | 
| +        movzx ecx, byte [r15 + r12 + 1024]  ; size = actbl->ehufsi[temp3];
 | 
| +        PUT_BITS rbx
 | 
| +
 | 
| +        ;EMIT_CODE(code, size)
 | 
| +
 | 
| +        movsx ebx, word [rsi-DCTSIZE2*2]  ; temp2 = t2[k];
 | 
| +        ; Mask off any extra bits in code
 | 
| +        mov rcx, rdi
 | 
| +        mov rdx, 1
 | 
| +        shl rdx, cl
 | 
| +        dec rdx
 | 
| +        and rbx, rdx  ; temp2 &= (((JLONG) 1)<<nbits) - 1;
 | 
| +        PUT_BITS rbx  ; PUT_BITS(temp2, nbits)
 | 
| +
 | 
| +        shr r11, 1  ; index >>= 1;
 | 
| +        add rsi, 2  ; ++k;
 | 
| +        jmp .BLOOP
 | 
| +.ELOOP:
 | 
| +        ; If the last coef(s) were zero, emit an end-of-block code
 | 
| +        lea rdi, [t1 + (DCTSIZE2-1) * 2]  ; r = DCTSIZE2-1-k;
 | 
| +        cmp rdi, rsi  ; if (r > 0) {
 | 
| +        je .EFN
 | 
| +        mov   ebx,  INT [r15]  ; code = actbl->ehufco[0];
 | 
| +        movzx r12d, byte [r15 + 1024]  ; size = actbl->ehufsi[0];
 | 
| +        EMIT_BITS rbx, r12d
 | 
| +.EFN:
 | 
| +        pop r10
 | 
| +        ; Save put_buffer & put_bits
 | 
| +        mov MMWORD [r10+16], put_buffer  ; state->cur.put_buffer = put_buffer;
 | 
| +        mov DWORD  [r10+24], put_bits  ; state->cur.put_bits = put_bits;
 | 
| +
 | 
| +        pop rbx
 | 
| +%ifdef WIN64
 | 
| +        movaps  xmm11, XMMWORD [rsp+0*SIZEOF_XMMWORD]
 | 
| +        movaps  xmm10, XMMWORD [rsp+1*SIZEOF_XMMWORD]
 | 
| +        movaps  xmm9, XMMWORD [rsp+2*SIZEOF_XMMWORD]
 | 
| +        movaps  xmm8, XMMWORD [rsp+3*SIZEOF_XMMWORD]
 | 
| +        add     rsp, 4*SIZEOF_XMMWORD
 | 
| +%endif
 | 
| +        uncollect_args
 | 
| +        mov     rsp,rbp         ; rsp <- aligned rbp
 | 
| +        pop     rsp             ; rsp <- original rbp
 | 
| +        pop     rbp
 | 
| +        ret
 | 
| +
 | 
| +; For some reason, the OS X linker does not honor the request to align the
 | 
| +; segment unless we do this.
 | 
| +        align   16
 | 
| 
 |