| Index: jidctflt.c
|
| diff --git a/jidctflt.c b/jidctflt.c
|
| index 0188ce3dfcd2ce2ebaa57c17da22101de01b6f2a..68c521ed7eebe5aa3b65b6216705b12942be341d 100644
|
| --- a/jidctflt.c
|
| +++ b/jidctflt.c
|
| @@ -1,9 +1,13 @@
|
| /*
|
| * jidctflt.c
|
| *
|
| + * This file was part of the Independent JPEG Group's software:
|
| * Copyright (C) 1994-1998, Thomas G. Lane.
|
| - * This file is part of the Independent JPEG Group's software.
|
| - * For conditions of distribution and use, see the accompanying README file.
|
| + * Modified 2010 by Guido Vollbeding.
|
| + * libjpeg-turbo Modifications:
|
| + * Copyright (C) 2014, D. R. Commander.
|
| + * For conditions of distribution and use, see the accompanying README.ijg
|
| + * file.
|
| *
|
| * This file contains a floating-point implementation of the
|
| * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
| @@ -22,8 +26,8 @@
|
| * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
| * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
| * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
| - * JPEG textbook (see REFERENCES section in file README). The following code
|
| - * is based directly on figure 4-8 in P&M.
|
| + * JPEG textbook (see REFERENCES section in file README.ijg). The following
|
| + * code is based directly on figure 4-8 in P&M.
|
| * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
| * possible to arrange the computation so that many of the multiplies are
|
| * simple scalings of the final outputs. These multiplies can then be
|
| @@ -39,7 +43,7 @@
|
| #define JPEG_INTERNALS
|
| #include "jinclude.h"
|
| #include "jpeglib.h"
|
| -#include "jdct.h" /* Private declarations for DCT subsystem */
|
| +#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
|
| #ifdef DCT_FLOAT_SUPPORTED
|
|
|
| @@ -65,21 +69,21 @@
|
| */
|
|
|
| GLOBAL(void)
|
| -jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
| - JCOEFPTR coef_block,
|
| - JSAMPARRAY output_buf, JDIMENSION output_col)
|
| +jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
| + JCOEFPTR coef_block,
|
| + JSAMPARRAY output_buf, JDIMENSION output_col)
|
| {
|
| FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
| FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
| FAST_FLOAT z5, z10, z11, z12, z13;
|
| JCOEFPTR inptr;
|
| - FLOAT_MULT_TYPE * quantptr;
|
| - FAST_FLOAT * wsptr;
|
| + FLOAT_MULT_TYPE *quantptr;
|
| + FAST_FLOAT *wsptr;
|
| JSAMPROW outptr;
|
| - JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
| + JSAMPLE *range_limit = cinfo->sample_range_limit;
|
| int ctr;
|
| FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
|
| - SHIFT_TEMPS
|
| + #define _0_125 ((FLOAT_MULT_TYPE)0.125)
|
|
|
| /* Pass 1: process columns from input, store into work array. */
|
|
|
| @@ -95,14 +99,15 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
| * With typical images and quantization tables, half or more of the
|
| * column DCT calculations can be simplified this way.
|
| */
|
| -
|
| +
|
| if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
| - inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
| - inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
| - inptr[DCTSIZE*7] == 0) {
|
| + inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
| + inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
| + inptr[DCTSIZE*7] == 0) {
|
| /* AC terms all zero */
|
| - FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
| -
|
| + FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
|
| + quantptr[DCTSIZE*0] * _0_125);
|
| +
|
| wsptr[DCTSIZE*0] = dcval;
|
| wsptr[DCTSIZE*1] = dcval;
|
| wsptr[DCTSIZE*2] = dcval;
|
| @@ -111,53 +116,53 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
| wsptr[DCTSIZE*5] = dcval;
|
| wsptr[DCTSIZE*6] = dcval;
|
| wsptr[DCTSIZE*7] = dcval;
|
| -
|
| - inptr++; /* advance pointers to next column */
|
| +
|
| + inptr++; /* advance pointers to next column */
|
| quantptr++;
|
| wsptr++;
|
| continue;
|
| }
|
| -
|
| +
|
| /* Even part */
|
|
|
| - tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
| - tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
| - tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
| - tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
| + tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
|
| + tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
|
| + tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
|
| + tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
|
|
|
| - tmp10 = tmp0 + tmp2; /* phase 3 */
|
| + tmp10 = tmp0 + tmp2; /* phase 3 */
|
| tmp11 = tmp0 - tmp2;
|
|
|
| - tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
| + tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
| tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
|
|
|
| - tmp0 = tmp10 + tmp13; /* phase 2 */
|
| + tmp0 = tmp10 + tmp13; /* phase 2 */
|
| tmp3 = tmp10 - tmp13;
|
| tmp1 = tmp11 + tmp12;
|
| tmp2 = tmp11 - tmp12;
|
| -
|
| +
|
| /* Odd part */
|
|
|
| - tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
| - tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
| - tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
| - tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
| + tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
|
| + tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
|
| + tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
|
| + tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
|
|
|
| - z13 = tmp6 + tmp5; /* phase 6 */
|
| + z13 = tmp6 + tmp5; /* phase 6 */
|
| z10 = tmp6 - tmp5;
|
| z11 = tmp4 + tmp7;
|
| z12 = tmp4 - tmp7;
|
|
|
| - tmp7 = z11 + z13; /* phase 5 */
|
| + tmp7 = z11 + z13; /* phase 5 */
|
| tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
|
|
|
| z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
| - tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
| - tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
| + tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
| + tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
|
|
| - tmp6 = tmp12 - tmp7; /* phase 2 */
|
| + tmp6 = tmp12 - tmp7; /* phase 2 */
|
| tmp5 = tmp11 - tmp6;
|
| - tmp4 = tmp10 + tmp5;
|
| + tmp4 = tmp10 - tmp5;
|
|
|
| wsptr[DCTSIZE*0] = tmp0 + tmp7;
|
| wsptr[DCTSIZE*7] = tmp0 - tmp7;
|
| @@ -165,16 +170,15 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
| wsptr[DCTSIZE*6] = tmp1 - tmp6;
|
| wsptr[DCTSIZE*2] = tmp2 + tmp5;
|
| wsptr[DCTSIZE*5] = tmp2 - tmp5;
|
| - wsptr[DCTSIZE*4] = tmp3 + tmp4;
|
| - wsptr[DCTSIZE*3] = tmp3 - tmp4;
|
| + wsptr[DCTSIZE*3] = tmp3 + tmp4;
|
| + wsptr[DCTSIZE*4] = tmp3 - tmp4;
|
|
|
| - inptr++; /* advance pointers to next column */
|
| + inptr++; /* advance pointers to next column */
|
| quantptr++;
|
| wsptr++;
|
| }
|
| -
|
| +
|
| /* Pass 2: process rows from work array, store into output array. */
|
| - /* Note that we must descale the results by a factor of 8 == 2**3. */
|
|
|
| wsptr = workspace;
|
| for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
| @@ -184,11 +188,13 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
| * the simplification applies less often (typically 5% to 10% of the time).
|
| * And testing floats for zero is relatively expensive, so we don't bother.
|
| */
|
| -
|
| +
|
| /* Even part */
|
|
|
| - tmp10 = wsptr[0] + wsptr[4];
|
| - tmp11 = wsptr[0] - wsptr[4];
|
| + /* Apply signed->unsigned and prepare float->int conversion */
|
| + z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
|
| + tmp10 = z5 + wsptr[4];
|
| + tmp11 = z5 - wsptr[4];
|
|
|
| tmp13 = wsptr[2] + wsptr[6];
|
| tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
|
| @@ -209,33 +215,25 @@ jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
| tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
|
|
|
| z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
|
| - tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
|
| - tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
|
| + tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
|
| + tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
|
|
|
| tmp6 = tmp12 - tmp7;
|
| tmp5 = tmp11 - tmp6;
|
| - tmp4 = tmp10 + tmp5;
|
| -
|
| - /* Final output stage: scale down by a factor of 8 and range-limit */
|
| -
|
| - outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
|
| - & RANGE_MASK];
|
| - outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
|
| - & RANGE_MASK];
|
| - outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
|
| - & RANGE_MASK];
|
| - outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
|
| - & RANGE_MASK];
|
| - outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
|
| - & RANGE_MASK];
|
| - outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
|
| - & RANGE_MASK];
|
| - outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
|
| - & RANGE_MASK];
|
| - outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
| - & RANGE_MASK];
|
| -
|
| - wsptr += DCTSIZE; /* advance pointer to next row */
|
| + tmp4 = tmp10 - tmp5;
|
| +
|
| + /* Final output stage: float->int conversion and range-limit */
|
| +
|
| + outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
|
| + outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
|
| + outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
|
| + outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
|
| + outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
|
| + outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
|
| + outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
|
| + outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
|
| +
|
| + wsptr += DCTSIZE; /* advance pointer to next row */
|
| }
|
| }
|
|
|
|
|