Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(513)

Unified Diff: jidctfst.c

Issue 1934113002: Update libjpeg_turbo to 1.4.90 from https://github.com/libjpeg-turbo/ (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libjpeg_turbo.git@master
Patch Set: Created 4 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: jidctfst.c
diff --git a/jidctfst.c b/jidctfst.c
index dba4216fb95e7148c24f2d6f6bba8309bb9be24e..10db739b86246ad36481ebfc51b38076deb4e375 100644
--- a/jidctfst.c
+++ b/jidctfst.c
@@ -1,9 +1,12 @@
/*
* jidctfst.c
*
+ * This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
+ * libjpeg-turbo Modifications:
+ * Copyright (C) 2015, D. R. Commander.
+ * For conditions of distribution and use, see the accompanying README.ijg
+ * file.
*
* This file contains a fast, not so accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
@@ -17,8 +20,8 @@
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
+ * JPEG textbook (see REFERENCES section in file README.ijg). The following
+ * code is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
@@ -35,7 +38,7 @@
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
+#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
@@ -78,7 +81,7 @@
#define PASS1_BITS 2
#else
#define CONST_BITS 8
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
+#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
@@ -89,10 +92,10 @@
*/
#if CONST_BITS == 8
-#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
-#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
-#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
-#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
+#define FIX_1_082392200 ((JLONG) 277) /* FIX(1.082392200) */
+#define FIX_1_414213562 ((JLONG) 362) /* FIX(1.414213562) */
+#define FIX_1_847759065 ((JLONG) 473) /* FIX(1.847759065) */
+#define FIX_2_613125930 ((JLONG) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
@@ -112,7 +115,7 @@
#endif
-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+/* Multiply a DCTELEM variable by an JLONG constant, and immediately
* descale to yield a DCTELEM result.
*/
@@ -122,27 +125,27 @@
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
* multiplication will do. For 12-bit data, the multiplier table is
- * declared INT32, so a 32-bit multiply will be used.
+ * declared JLONG, so a 32-bit multiply will be used.
*/
#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
- DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
+ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif
/* Like DESCALE, but applies to a DCTELEM and produces an int.
- * We assume that int right shift is unsigned if INT32 right shift is.
+ * We assume that int right shift is unsigned if JLONG right shift is.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS DCTELEM ishift_temp;
+#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
-#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
+#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
-#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
+#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
@@ -150,7 +153,7 @@
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
+#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
#ifdef USE_ACCURATE_ROUNDING
@@ -165,22 +168,22 @@
*/
GLOBAL(void)
-jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
+jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info *compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
- IFAST_MULT_TYPE * quantptr;
- int * wsptr;
+ IFAST_MULT_TYPE *quantptr;
+ int *wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
- int workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS /* for DESCALE */
- ISHIFT_TEMPS /* for IDESCALE */
+ int workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS /* for DESCALE */
+ ISHIFT_TEMPS /* for IDESCALE */
/* Pass 1: process columns from input, store into work array. */
@@ -196,11 +199,11 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
-
+
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
+ inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+ inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+ inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
@@ -212,13 +215,13 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
+
+ inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
-
+
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
@@ -226,17 +229,17 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
- tmp10 = tmp0 + tmp2; /* phase 3 */
+ tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
- tmp13 = tmp1 + tmp3; /* phases 5-3 */
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
- tmp0 = tmp10 + tmp13; /* phase 2 */
+ tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
-
+
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
@@ -244,19 +247,19 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- z13 = tmp6 + tmp5; /* phase 6 */
+ z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
- tmp7 = z11 + z13; /* phase 5 */
+ tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
- tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
@@ -269,11 +272,11 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
- inptr++; /* advance pointers to next column */
+ inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
-
+
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
@@ -288,14 +291,14 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
-
+
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+ wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
+ & RANGE_MASK];
+
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
@@ -305,11 +308,11 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
outptr[6] = dcval;
outptr[7] = dcval;
- wsptr += DCTSIZE; /* advance pointer to next row */
+ wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
-
+
/* Even part */
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
@@ -317,7 +320,7 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- - tmp13;
+ - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
@@ -331,37 +334,37 @@ jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
- tmp7 = z11 + z13; /* phase 5 */
+ tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
- tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
- & RANGE_MASK];
+ & RANGE_MASK];
- wsptr += DCTSIZE; /* advance pointer to next row */
+ wsptr += DCTSIZE; /* advance pointer to next row */
}
}

Powered by Google App Engine
This is Rietveld 408576698