Index: src/opts/SkBitmapFilter_opts_SSE2.cpp |
diff --git a/src/opts/SkBitmapFilter_opts_SSE2.cpp b/src/opts/SkBitmapFilter_opts_SSE2.cpp |
index f992bcb636c36a13e7440ad409acc9e5058f4f25..95492c596dda5f73f7afa53c37601be74aa98df0 100644 |
--- a/src/opts/SkBitmapFilter_opts_SSE2.cpp |
+++ b/src/opts/SkBitmapFilter_opts_SSE2.cpp |
@@ -11,6 +11,7 @@ |
#include "SkColorPriv.h" |
#include "SkUnPreMultiply.h" |
#include "SkShader.h" |
+#include "SkConvolver.h" |
#include "SkBitmapFilter_opts_SSE2.h" |
@@ -180,3 +181,456 @@ void highQualityFilter_ScaleOnly_SSE2(const SkBitmapProcState &s, int x, int y, |
} |
} |
+ |
+// Convolves horizontally along a single row. The row data is given in |
+// |src_data| and continues for the num_values() of the filter. |
+void convolveHorizontally_SSE2(const unsigned char* src_data, |
+ const SkConvolutionFilter1D& filter, |
+ unsigned char* out_row, |
+ bool /*has_alpha*/) { |
+ int num_values = filter.numValues(); |
+ |
+ int filter_offset, filter_length; |
+ __m128i zero = _mm_setzero_si128(); |
+ __m128i mask[4]; |
+ // |mask| will be used to decimate all extra filter coefficients that are |
+ // loaded by SIMD when |filter_length| is not divisible by 4. |
+ // mask[0] is not used in following algorithm. |
+ mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
+ mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
+ mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
+ |
+ // Output one pixel each iteration, calculating all channels (RGBA) together. |
+ for (int out_x = 0; out_x < num_values; out_x++) { |
+ const SkConvolutionFilter1D::ConvolutionFixed* filter_values = |
+ filter.FilterForValue(out_x, &filter_offset, &filter_length); |
+ |
+ __m128i accum = _mm_setzero_si128(); |
+ |
+ // Compute the first pixel in this row that the filter affects. It will |
+ // touch |filter_length| pixels (4 bytes each) after this. |
+ const __m128i* row_to_filter = |
+ reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
+ |
+ // We will load and accumulate with four coefficients per iteration. |
+ for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
+ |
+ // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
+ __m128i coeff, coeff16; |
+ // [16] xx xx xx xx c3 c2 c1 c0 |
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
+ // [16] xx xx xx xx c1 c1 c0 c0 |
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
+ // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
+ |
+ // Load four pixels => unpack the first two pixels to 16 bits => |
+ // multiply with coefficients => accumulate the convolution result. |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ __m128i src8 = _mm_loadu_si128(row_to_filter); |
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ |
+ // Duplicate 3rd and 4th coefficients for all channels => |
+ // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
+ // => accumulate the convolution results. |
+ // [16] xx xx xx xx c3 c3 c2 c2 |
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
+ // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
+ // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
+ src16 = _mm_unpackhi_epi8(src8, zero); |
+ mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ |
+ // Advance the pixel and coefficients pointers. |
+ row_to_filter += 1; |
+ filter_values += 4; |
+ } |
+ |
+ // When |filter_length| is not divisible by 4, we need to decimate some of |
+ // the filter coefficient that was loaded incorrectly to zero; Other than |
+ // that the algorithm is same with above, exceot that the 4th pixel will be |
+ // always absent. |
+ int r = filter_length&3; |
+ if (r) { |
+ // Note: filter_values must be padded to align_up(filter_offset, 8). |
+ __m128i coeff, coeff16; |
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
+ // Mask out extra filter taps. |
+ coeff = _mm_and_si128(coeff, mask[r]); |
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
+ |
+ // Note: line buffer must be padded to align_up(filter_offset, 16). |
+ // We resolve this by use C-version for the last horizontal line. |
+ __m128i src8 = _mm_loadu_si128(row_to_filter); |
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ |
+ src16 = _mm_unpackhi_epi8(src8, zero); |
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
+ mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum = _mm_add_epi32(accum, t); |
+ } |
+ |
+ // Shift right for fixed point implementation. |
+ accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits); |
+ |
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
+ accum = _mm_packs_epi32(accum, zero); |
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
+ accum = _mm_packus_epi16(accum, zero); |
+ |
+ // Store the pixel value of 32 bits. |
+ *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
+ out_row += 4; |
+ } |
+} |
+ |
+// Convolves horizontally along four rows. The row data is given in |
+// |src_data| and continues for the num_values() of the filter. |
+// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
+// refer to that function for detailed comments. |
+void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], |
+ const SkConvolutionFilter1D& filter, |
+ unsigned char* out_row[4]) { |
+ int num_values = filter.numValues(); |
+ |
+ int filter_offset, filter_length; |
+ __m128i zero = _mm_setzero_si128(); |
+ __m128i mask[4]; |
+ // |mask| will be used to decimate all extra filter coefficients that are |
+ // loaded by SIMD when |filter_length| is not divisible by 4. |
+ // mask[0] is not used in following algorithm. |
+ mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
+ mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
+ mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
+ |
+ // Output one pixel each iteration, calculating all channels (RGBA) together. |
+ for (int out_x = 0; out_x < num_values; out_x++) { |
+ const SkConvolutionFilter1D::ConvolutionFixed* filter_values = |
+ filter.FilterForValue(out_x, &filter_offset, &filter_length); |
+ |
+ // four pixels in a column per iteration. |
+ __m128i accum0 = _mm_setzero_si128(); |
+ __m128i accum1 = _mm_setzero_si128(); |
+ __m128i accum2 = _mm_setzero_si128(); |
+ __m128i accum3 = _mm_setzero_si128(); |
+ int start = (filter_offset<<2); |
+ // We will load and accumulate with four coefficients per iteration. |
+ for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
+ __m128i coeff, coeff16lo, coeff16hi; |
+ // [16] xx xx xx xx c3 c2 c1 c0 |
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
+ // [16] xx xx xx xx c1 c1 c0 c0 |
+ coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
+ // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
+ coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
+ // [16] xx xx xx xx c3 c3 c2 c2 |
+ coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
+ // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
+ coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
+ |
+ __m128i src8, src16, mul_hi, mul_lo, t; |
+ |
+#define ITERATION(src, accum) \ |
+ src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
+ src16 = _mm_unpacklo_epi8(src8, zero); \ |
+ mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
+ mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
+ accum = _mm_add_epi32(accum, t); \ |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
+ accum = _mm_add_epi32(accum, t); \ |
+ src16 = _mm_unpackhi_epi8(src8, zero); \ |
+ mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
+ mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
+ accum = _mm_add_epi32(accum, t); \ |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
+ accum = _mm_add_epi32(accum, t) |
+ |
+ ITERATION(src_data[0] + start, accum0); |
+ ITERATION(src_data[1] + start, accum1); |
+ ITERATION(src_data[2] + start, accum2); |
+ ITERATION(src_data[3] + start, accum3); |
+ |
+ start += 16; |
+ filter_values += 4; |
+ } |
+ |
+ int r = filter_length & 3; |
+ if (r) { |
+ // Note: filter_values must be padded to align_up(filter_offset, 8); |
+ __m128i coeff; |
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
+ // Mask out extra filter taps. |
+ coeff = _mm_and_si128(coeff, mask[r]); |
+ |
+ __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
+ /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
+ coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
+ __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
+ coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
+ |
+ __m128i src8, src16, mul_hi, mul_lo, t; |
+ |
+ ITERATION(src_data[0] + start, accum0); |
+ ITERATION(src_data[1] + start, accum1); |
+ ITERATION(src_data[2] + start, accum2); |
+ ITERATION(src_data[3] + start, accum3); |
+ } |
+ |
+ accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); |
+ accum0 = _mm_packs_epi32(accum0, zero); |
+ accum0 = _mm_packus_epi16(accum0, zero); |
+ accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); |
+ accum1 = _mm_packs_epi32(accum1, zero); |
+ accum1 = _mm_packus_epi16(accum1, zero); |
+ accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); |
+ accum2 = _mm_packs_epi32(accum2, zero); |
+ accum2 = _mm_packus_epi16(accum2, zero); |
+ accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); |
+ accum3 = _mm_packs_epi32(accum3, zero); |
+ accum3 = _mm_packus_epi16(accum3, zero); |
+ |
+ *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
+ *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
+ *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
+ *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
+ |
+ out_row[0] += 4; |
+ out_row[1] += 4; |
+ out_row[2] += 4; |
+ out_row[3] += 4; |
+ } |
+} |
+ |
+// Does vertical convolution to produce one output row. The filter values and |
+// length are given in the first two parameters. These are applied to each |
+// of the rows pointed to in the |source_data_rows| array, with each row |
+// being |pixel_width| wide. |
+// |
+// The output must have room for |pixel_width * 4| bytes. |
+template<bool has_alpha> |
+void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values, |
+ int filter_length, |
+ unsigned char* const* source_data_rows, |
+ int pixel_width, |
+ unsigned char* out_row) { |
+ int width = pixel_width & ~3; |
+ |
+ __m128i zero = _mm_setzero_si128(); |
+ __m128i accum0, accum1, accum2, accum3, coeff16; |
+ const __m128i* src; |
+ // Output four pixels per iteration (16 bytes). |
+ for (int out_x = 0; out_x < width; out_x += 4) { |
+ |
+ // Accumulated result for each pixel. 32 bits per RGBA channel. |
+ accum0 = _mm_setzero_si128(); |
+ accum1 = _mm_setzero_si128(); |
+ accum2 = _mm_setzero_si128(); |
+ accum3 = _mm_setzero_si128(); |
+ |
+ // Convolve with one filter coefficient per iteration. |
+ for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
+ |
+ // Duplicate the filter coefficient 8 times. |
+ // [16] cj cj cj cj cj cj cj cj |
+ coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
+ |
+ // Load four pixels (16 bytes) together. |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ src = reinterpret_cast<const __m128i*>( |
+ &source_data_rows[filter_y][out_x << 2]); |
+ __m128i src8 = _mm_loadu_si128(src); |
+ |
+ // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
+ // multiply with current coefficient => accumulate the result. |
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ // [32] a0 b0 g0 r0 |
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum0 = _mm_add_epi32(accum0, t); |
+ // [32] a1 b1 g1 r1 |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
+ accum1 = _mm_add_epi32(accum1, t); |
+ |
+ // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
+ // multiply with current coefficient => accumulate the result. |
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
+ src16 = _mm_unpackhi_epi8(src8, zero); |
+ mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ // [32] a2 b2 g2 r2 |
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum2 = _mm_add_epi32(accum2, t); |
+ // [32] a3 b3 g3 r3 |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
+ accum3 = _mm_add_epi32(accum3, t); |
+ } |
+ |
+ // Shift right for fixed point implementation. |
+ accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); |
+ accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); |
+ accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); |
+ accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); |
+ |
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
+ accum0 = _mm_packs_epi32(accum0, accum1); |
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
+ accum2 = _mm_packs_epi32(accum2, accum3); |
+ |
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ accum0 = _mm_packus_epi16(accum0, accum2); |
+ |
+ if (has_alpha) { |
+ // Compute the max(ri, gi, bi) for each pixel. |
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
+ __m128i a = _mm_srli_epi32(accum0, 8); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
+ a = _mm_srli_epi32(accum0, 16); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ b = _mm_max_epu8(a, b); // Max of r and g and b. |
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
+ b = _mm_slli_epi32(b, 24); |
+ |
+ // Make sure the value of alpha channel is always larger than maximum |
+ // value of color channels. |
+ accum0 = _mm_max_epu8(b, accum0); |
+ } else { |
+ // Set value of alpha channels to 0xFF. |
+ __m128i mask = _mm_set1_epi32(0xff000000); |
+ accum0 = _mm_or_si128(accum0, mask); |
+ } |
+ |
+ // Store the convolution result (16 bytes) and advance the pixel pointers. |
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
+ out_row += 16; |
+ } |
+ |
+ // When the width of the output is not divisible by 4, We need to save one |
+ // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
+ if (pixel_width & 3) { |
+ accum0 = _mm_setzero_si128(); |
+ accum1 = _mm_setzero_si128(); |
+ accum2 = _mm_setzero_si128(); |
+ for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
+ coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ src = reinterpret_cast<const __m128i*>( |
+ &source_data_rows[filter_y][width<<2]); |
+ __m128i src8 = _mm_loadu_si128(src); |
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ // [32] a0 b0 g0 r0 |
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum0 = _mm_add_epi32(accum0, t); |
+ // [32] a1 b1 g1 r1 |
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
+ accum1 = _mm_add_epi32(accum1, t); |
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
+ src16 = _mm_unpackhi_epi8(src8, zero); |
+ mul_hi = _mm_mulhi_epi16(src16, coeff16); |
+ mul_lo = _mm_mullo_epi16(src16, coeff16); |
+ // [32] a2 b2 g2 r2 |
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
+ accum2 = _mm_add_epi32(accum2, t); |
+ } |
+ |
+ accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); |
+ accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); |
+ accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); |
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
+ accum0 = _mm_packs_epi32(accum0, accum1); |
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
+ accum2 = _mm_packs_epi32(accum2, zero); |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ accum0 = _mm_packus_epi16(accum0, accum2); |
+ if (has_alpha) { |
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
+ __m128i a = _mm_srli_epi32(accum0, 8); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
+ a = _mm_srli_epi32(accum0, 16); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ b = _mm_max_epu8(a, b); // Max of r and g and b. |
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
+ b = _mm_slli_epi32(b, 24); |
+ accum0 = _mm_max_epu8(b, accum0); |
+ } else { |
+ __m128i mask = _mm_set1_epi32(0xff000000); |
+ accum0 = _mm_or_si128(accum0, mask); |
+ } |
+ |
+ for (int out_x = width; out_x < pixel_width; out_x++) { |
+ *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
+ accum0 = _mm_srli_si128(accum0, 4); |
+ out_row += 4; |
+ } |
+ } |
+} |
+ |
+void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values, |
+ int filter_length, |
+ unsigned char* const* source_data_rows, |
+ int pixel_width, |
+ unsigned char* out_row, |
+ bool has_alpha) { |
+ if (has_alpha) { |
+ convolveVertically_SSE2<true>(filter_values, |
+ filter_length, |
+ source_data_rows, |
+ pixel_width, |
+ out_row); |
+ } else { |
+ convolveVertically_SSE2<false>(filter_values, |
+ filter_length, |
+ source_data_rows, |
+ pixel_width, |
+ out_row); |
+ } |
+} |
+ |
+void applySIMDPadding_SSE2(SkConvolutionFilter1D *filter) { |
+ // Padding |paddingCount| of more dummy coefficients after the coefficients |
+ // of last filter to prevent SIMD instructions which load 8 or 16 bytes |
+ // together to access invalid memory areas. We are not trying to align the |
+ // coefficients right now due to the opaqueness of <vector> implementation. |
+ // This has to be done after all |AddFilter| calls. |
+ for (int i = 0; i < 8; ++i) { |
+ filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); |
+ } |
+} |