Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(73)

Side by Side Diff: src/opts/SkBitmapFilter_opts_SSE2.cpp

Issue 19335002: Production quality fast image up/downsampler (Closed) Base URL: https://skia.googlecode.com/svn/trunk
Patch Set: camel case and if-statement braces Created 7 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/opts/SkBitmapFilter_opts_SSE2.h ('k') | src/opts/SkBitmapProcState_opts_none.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2013 Google Inc. 2 * Copyright 2013 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkBitmapProcState.h" 8 #include "SkBitmapProcState.h"
9 #include "SkBitmap.h" 9 #include "SkBitmap.h"
10 #include "SkColor.h" 10 #include "SkColor.h"
11 #include "SkColorPriv.h" 11 #include "SkColorPriv.h"
12 #include "SkUnPreMultiply.h" 12 #include "SkUnPreMultiply.h"
13 #include "SkShader.h" 13 #include "SkShader.h"
14 #include "SkConvolver.h"
14 15
15 #include "SkBitmapFilter_opts_SSE2.h" 16 #include "SkBitmapFilter_opts_SSE2.h"
16 17
17 #include <emmintrin.h> 18 #include <emmintrin.h>
18 19
19 #if 0 20 #if 0
20 static inline void print128i(__m128i value) { 21 static inline void print128i(__m128i value) {
21 int *v = (int*) &value; 22 int *v = (int*) &value;
22 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); 23 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]);
23 } 24 }
(...skipping 149 matching lines...) Expand 10 before | Expand all | Expand 10 after
173 174
174 *colors++ = SkPackARGB32(a, r, g, b); 175 *colors++ = SkPackARGB32(a, r, g, b);
175 176
176 x++; 177 x++;
177 178
178 s.fInvProc(s.fInvMatrix, SkIntToScalar(x), 179 s.fInvProc(s.fInvMatrix, SkIntToScalar(x),
179 SkIntToScalar(y), &srcPt); 180 SkIntToScalar(y), &srcPt);
180 181
181 } 182 }
182 } 183 }
184
185 // Convolves horizontally along a single row. The row data is given in
186 // |src_data| and continues for the num_values() of the filter.
187 void convolveHorizontally_SSE2(const unsigned char* src_data,
188 const SkConvolutionFilter1D& filter,
189 unsigned char* out_row,
190 bool /*has_alpha*/) {
191 int num_values = filter.numValues();
192
193 int filter_offset, filter_length;
194 __m128i zero = _mm_setzero_si128();
195 __m128i mask[4];
196 // |mask| will be used to decimate all extra filter coefficients that are
197 // loaded by SIMD when |filter_length| is not divisible by 4.
198 // mask[0] is not used in following algorithm.
199 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
200 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
201 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
202
203 // Output one pixel each iteration, calculating all channels (RGBA) together.
204 for (int out_x = 0; out_x < num_values; out_x++) {
205 const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
206 filter.FilterForValue(out_x, &filter_offset, &filter_length);
207
208 __m128i accum = _mm_setzero_si128();
209
210 // Compute the first pixel in this row that the filter affects. It will
211 // touch |filter_length| pixels (4 bytes each) after this.
212 const __m128i* row_to_filter =
213 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
214
215 // We will load and accumulate with four coefficients per iteration.
216 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
217
218 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
219 __m128i coeff, coeff16;
220 // [16] xx xx xx xx c3 c2 c1 c0
221 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
222 // [16] xx xx xx xx c1 c1 c0 c0
223 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
224 // [16] c1 c1 c1 c1 c0 c0 c0 c0
225 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
226
227 // Load four pixels => unpack the first two pixels to 16 bits =>
228 // multiply with coefficients => accumulate the convolution result.
229 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
230 __m128i src8 = _mm_loadu_si128(row_to_filter);
231 // [16] a1 b1 g1 r1 a0 b0 g0 r0
232 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
233 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
234 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
235 // [32] a0*c0 b0*c0 g0*c0 r0*c0
236 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
237 accum = _mm_add_epi32(accum, t);
238 // [32] a1*c1 b1*c1 g1*c1 r1*c1
239 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
240 accum = _mm_add_epi32(accum, t);
241
242 // Duplicate 3rd and 4th coefficients for all channels =>
243 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
244 // => accumulate the convolution results.
245 // [16] xx xx xx xx c3 c3 c2 c2
246 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
247 // [16] c3 c3 c3 c3 c2 c2 c2 c2
248 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
249 // [16] a3 g3 b3 r3 a2 g2 b2 r2
250 src16 = _mm_unpackhi_epi8(src8, zero);
251 mul_hi = _mm_mulhi_epi16(src16, coeff16);
252 mul_lo = _mm_mullo_epi16(src16, coeff16);
253 // [32] a2*c2 b2*c2 g2*c2 r2*c2
254 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
255 accum = _mm_add_epi32(accum, t);
256 // [32] a3*c3 b3*c3 g3*c3 r3*c3
257 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
258 accum = _mm_add_epi32(accum, t);
259
260 // Advance the pixel and coefficients pointers.
261 row_to_filter += 1;
262 filter_values += 4;
263 }
264
265 // When |filter_length| is not divisible by 4, we need to decimate some of
266 // the filter coefficient that was loaded incorrectly to zero; Other than
267 // that the algorithm is same with above, exceot that the 4th pixel will be
268 // always absent.
269 int r = filter_length&3;
270 if (r) {
271 // Note: filter_values must be padded to align_up(filter_offset, 8).
272 __m128i coeff, coeff16;
273 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
274 // Mask out extra filter taps.
275 coeff = _mm_and_si128(coeff, mask[r]);
276 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
277 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
278
279 // Note: line buffer must be padded to align_up(filter_offset, 16).
280 // We resolve this by use C-version for the last horizontal line.
281 __m128i src8 = _mm_loadu_si128(row_to_filter);
282 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
283 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
284 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
285 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
286 accum = _mm_add_epi32(accum, t);
287 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
288 accum = _mm_add_epi32(accum, t);
289
290 src16 = _mm_unpackhi_epi8(src8, zero);
291 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
292 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
293 mul_hi = _mm_mulhi_epi16(src16, coeff16);
294 mul_lo = _mm_mullo_epi16(src16, coeff16);
295 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
296 accum = _mm_add_epi32(accum, t);
297 }
298
299 // Shift right for fixed point implementation.
300 accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits);
301
302 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
303 accum = _mm_packs_epi32(accum, zero);
304 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
305 accum = _mm_packus_epi16(accum, zero);
306
307 // Store the pixel value of 32 bits.
308 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
309 out_row += 4;
310 }
311 }
312
313 // Convolves horizontally along four rows. The row data is given in
314 // |src_data| and continues for the num_values() of the filter.
315 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
316 // refer to that function for detailed comments.
317 void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
318 const SkConvolutionFilter1D& filter,
319 unsigned char* out_row[4]) {
320 int num_values = filter.numValues();
321
322 int filter_offset, filter_length;
323 __m128i zero = _mm_setzero_si128();
324 __m128i mask[4];
325 // |mask| will be used to decimate all extra filter coefficients that are
326 // loaded by SIMD when |filter_length| is not divisible by 4.
327 // mask[0] is not used in following algorithm.
328 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
329 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
330 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
331
332 // Output one pixel each iteration, calculating all channels (RGBA) together.
333 for (int out_x = 0; out_x < num_values; out_x++) {
334 const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
335 filter.FilterForValue(out_x, &filter_offset, &filter_length);
336
337 // four pixels in a column per iteration.
338 __m128i accum0 = _mm_setzero_si128();
339 __m128i accum1 = _mm_setzero_si128();
340 __m128i accum2 = _mm_setzero_si128();
341 __m128i accum3 = _mm_setzero_si128();
342 int start = (filter_offset<<2);
343 // We will load and accumulate with four coefficients per iteration.
344 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
345 __m128i coeff, coeff16lo, coeff16hi;
346 // [16] xx xx xx xx c3 c2 c1 c0
347 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
348 // [16] xx xx xx xx c1 c1 c0 c0
349 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
350 // [16] c1 c1 c1 c1 c0 c0 c0 c0
351 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
352 // [16] xx xx xx xx c3 c3 c2 c2
353 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
354 // [16] c3 c3 c3 c3 c2 c2 c2 c2
355 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
356
357 __m128i src8, src16, mul_hi, mul_lo, t;
358
359 #define ITERATION(src, accum) \
360 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
361 src16 = _mm_unpacklo_epi8(src8, zero); \
362 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
363 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
364 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
365 accum = _mm_add_epi32(accum, t); \
366 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
367 accum = _mm_add_epi32(accum, t); \
368 src16 = _mm_unpackhi_epi8(src8, zero); \
369 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
370 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
371 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
372 accum = _mm_add_epi32(accum, t); \
373 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
374 accum = _mm_add_epi32(accum, t)
375
376 ITERATION(src_data[0] + start, accum0);
377 ITERATION(src_data[1] + start, accum1);
378 ITERATION(src_data[2] + start, accum2);
379 ITERATION(src_data[3] + start, accum3);
380
381 start += 16;
382 filter_values += 4;
383 }
384
385 int r = filter_length & 3;
386 if (r) {
387 // Note: filter_values must be padded to align_up(filter_offset, 8);
388 __m128i coeff;
389 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
390 // Mask out extra filter taps.
391 coeff = _mm_and_si128(coeff, mask[r]);
392
393 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
394 /* c1 c1 c1 c1 c0 c0 c0 c0 */
395 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
396 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
397 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
398
399 __m128i src8, src16, mul_hi, mul_lo, t;
400
401 ITERATION(src_data[0] + start, accum0);
402 ITERATION(src_data[1] + start, accum1);
403 ITERATION(src_data[2] + start, accum2);
404 ITERATION(src_data[3] + start, accum3);
405 }
406
407 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
408 accum0 = _mm_packs_epi32(accum0, zero);
409 accum0 = _mm_packus_epi16(accum0, zero);
410 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
411 accum1 = _mm_packs_epi32(accum1, zero);
412 accum1 = _mm_packus_epi16(accum1, zero);
413 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
414 accum2 = _mm_packs_epi32(accum2, zero);
415 accum2 = _mm_packus_epi16(accum2, zero);
416 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
417 accum3 = _mm_packs_epi32(accum3, zero);
418 accum3 = _mm_packus_epi16(accum3, zero);
419
420 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
421 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
422 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
423 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
424
425 out_row[0] += 4;
426 out_row[1] += 4;
427 out_row[2] += 4;
428 out_row[3] += 4;
429 }
430 }
431
432 // Does vertical convolution to produce one output row. The filter values and
433 // length are given in the first two parameters. These are applied to each
434 // of the rows pointed to in the |source_data_rows| array, with each row
435 // being |pixel_width| wide.
436 //
437 // The output must have room for |pixel_width * 4| bytes.
438 template<bool has_alpha>
439 void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filt er_values,
440 int filter_length,
441 unsigned char* const* source_data_rows,
442 int pixel_width,
443 unsigned char* out_row) {
444 int width = pixel_width & ~3;
445
446 __m128i zero = _mm_setzero_si128();
447 __m128i accum0, accum1, accum2, accum3, coeff16;
448 const __m128i* src;
449 // Output four pixels per iteration (16 bytes).
450 for (int out_x = 0; out_x < width; out_x += 4) {
451
452 // Accumulated result for each pixel. 32 bits per RGBA channel.
453 accum0 = _mm_setzero_si128();
454 accum1 = _mm_setzero_si128();
455 accum2 = _mm_setzero_si128();
456 accum3 = _mm_setzero_si128();
457
458 // Convolve with one filter coefficient per iteration.
459 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
460
461 // Duplicate the filter coefficient 8 times.
462 // [16] cj cj cj cj cj cj cj cj
463 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
464
465 // Load four pixels (16 bytes) together.
466 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
467 src = reinterpret_cast<const __m128i*>(
468 &source_data_rows[filter_y][out_x << 2]);
469 __m128i src8 = _mm_loadu_si128(src);
470
471 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
472 // multiply with current coefficient => accumulate the result.
473 // [16] a1 b1 g1 r1 a0 b0 g0 r0
474 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
475 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
476 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
477 // [32] a0 b0 g0 r0
478 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
479 accum0 = _mm_add_epi32(accum0, t);
480 // [32] a1 b1 g1 r1
481 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
482 accum1 = _mm_add_epi32(accum1, t);
483
484 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
485 // multiply with current coefficient => accumulate the result.
486 // [16] a3 b3 g3 r3 a2 b2 g2 r2
487 src16 = _mm_unpackhi_epi8(src8, zero);
488 mul_hi = _mm_mulhi_epi16(src16, coeff16);
489 mul_lo = _mm_mullo_epi16(src16, coeff16);
490 // [32] a2 b2 g2 r2
491 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
492 accum2 = _mm_add_epi32(accum2, t);
493 // [32] a3 b3 g3 r3
494 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
495 accum3 = _mm_add_epi32(accum3, t);
496 }
497
498 // Shift right for fixed point implementation.
499 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
500 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
501 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
502 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
503
504 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
505 // [16] a1 b1 g1 r1 a0 b0 g0 r0
506 accum0 = _mm_packs_epi32(accum0, accum1);
507 // [16] a3 b3 g3 r3 a2 b2 g2 r2
508 accum2 = _mm_packs_epi32(accum2, accum3);
509
510 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
511 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
512 accum0 = _mm_packus_epi16(accum0, accum2);
513
514 if (has_alpha) {
515 // Compute the max(ri, gi, bi) for each pixel.
516 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
517 __m128i a = _mm_srli_epi32(accum0, 8);
518 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
519 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
520 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
521 a = _mm_srli_epi32(accum0, 16);
522 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
523 b = _mm_max_epu8(a, b); // Max of r and g and b.
524 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
525 b = _mm_slli_epi32(b, 24);
526
527 // Make sure the value of alpha channel is always larger than maximum
528 // value of color channels.
529 accum0 = _mm_max_epu8(b, accum0);
530 } else {
531 // Set value of alpha channels to 0xFF.
532 __m128i mask = _mm_set1_epi32(0xff000000);
533 accum0 = _mm_or_si128(accum0, mask);
534 }
535
536 // Store the convolution result (16 bytes) and advance the pixel pointers.
537 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
538 out_row += 16;
539 }
540
541 // When the width of the output is not divisible by 4, We need to save one
542 // pixel (4 bytes) each time. And also the fourth pixel is always absent.
543 if (pixel_width & 3) {
544 accum0 = _mm_setzero_si128();
545 accum1 = _mm_setzero_si128();
546 accum2 = _mm_setzero_si128();
547 for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
548 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
549 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
550 src = reinterpret_cast<const __m128i*>(
551 &source_data_rows[filter_y][width<<2]);
552 __m128i src8 = _mm_loadu_si128(src);
553 // [16] a1 b1 g1 r1 a0 b0 g0 r0
554 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
555 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
556 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
557 // [32] a0 b0 g0 r0
558 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
559 accum0 = _mm_add_epi32(accum0, t);
560 // [32] a1 b1 g1 r1
561 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
562 accum1 = _mm_add_epi32(accum1, t);
563 // [16] a3 b3 g3 r3 a2 b2 g2 r2
564 src16 = _mm_unpackhi_epi8(src8, zero);
565 mul_hi = _mm_mulhi_epi16(src16, coeff16);
566 mul_lo = _mm_mullo_epi16(src16, coeff16);
567 // [32] a2 b2 g2 r2
568 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
569 accum2 = _mm_add_epi32(accum2, t);
570 }
571
572 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
573 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
574 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
575 // [16] a1 b1 g1 r1 a0 b0 g0 r0
576 accum0 = _mm_packs_epi32(accum0, accum1);
577 // [16] a3 b3 g3 r3 a2 b2 g2 r2
578 accum2 = _mm_packs_epi32(accum2, zero);
579 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
580 accum0 = _mm_packus_epi16(accum0, accum2);
581 if (has_alpha) {
582 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
583 __m128i a = _mm_srli_epi32(accum0, 8);
584 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
585 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
586 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
587 a = _mm_srli_epi32(accum0, 16);
588 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
589 b = _mm_max_epu8(a, b); // Max of r and g and b.
590 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
591 b = _mm_slli_epi32(b, 24);
592 accum0 = _mm_max_epu8(b, accum0);
593 } else {
594 __m128i mask = _mm_set1_epi32(0xff000000);
595 accum0 = _mm_or_si128(accum0, mask);
596 }
597
598 for (int out_x = width; out_x < pixel_width; out_x++) {
599 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
600 accum0 = _mm_srli_si128(accum0, 4);
601 out_row += 4;
602 }
603 }
604 }
605
606 void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filt er_values,
607 int filter_length,
608 unsigned char* const* source_data_rows,
609 int pixel_width,
610 unsigned char* out_row,
611 bool has_alpha) {
612 if (has_alpha) {
613 convolveVertically_SSE2<true>(filter_values,
614 filter_length,
615 source_data_rows,
616 pixel_width,
617 out_row);
618 } else {
619 convolveVertically_SSE2<false>(filter_values,
620 filter_length,
621 source_data_rows,
622 pixel_width,
623 out_row);
624 }
625 }
626
627 void applySIMDPadding_SSE2(SkConvolutionFilter1D *filter) {
628 // Padding |paddingCount| of more dummy coefficients after the coefficients
629 // of last filter to prevent SIMD instructions which load 8 or 16 bytes
630 // together to access invalid memory areas. We are not trying to align the
631 // coefficients right now due to the opaqueness of <vector> implementation.
632 // This has to be done after all |AddFilter| calls.
633 for (int i = 0; i < 8; ++i) {
634 filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFix ed>(0));
635 }
636 }
OLDNEW
« no previous file with comments | « src/opts/SkBitmapFilter_opts_SSE2.h ('k') | src/opts/SkBitmapProcState_opts_none.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698