| Index: src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| diff --git a/src/opts/SkBitmapFilter_opts_SSE2.cpp b/src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| index f992bcb636c36a13e7440ad409acc9e5058f4f25..961439fabf431255e3663feceea3b843f186b1e9 100644
|
| --- a/src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| +++ b/src/opts/SkBitmapFilter_opts_SSE2.cpp
|
| @@ -11,6 +11,7 @@
|
| #include "SkColorPriv.h"
|
| #include "SkUnPreMultiply.h"
|
| #include "SkShader.h"
|
| +#include "SkConvolver.h"
|
|
|
| #include "SkBitmapFilter_opts_SSE2.h"
|
|
|
| @@ -180,3 +181,561 @@ void highQualityFilter_ScaleOnly_SSE2(const SkBitmapProcState &s, int x, int y,
|
|
|
| }
|
| }
|
| +
|
| +static void divideByWeights_SSE2(SkScalar *sums, SkScalar *weights, SkBitmap *dst) {
|
| + for (int y = 0 ; y < dst->height() ; y++) {
|
| + for (int x = 0 ; x < dst->width() ; x++) {
|
| + SkScalar *sump = sums + 4*(y*dst->width() + x);
|
| + SkScalar weight = weights[y*dst->width() + x];
|
| +
|
| + SkScalar fr = SkScalarDiv(sump[0], weight);
|
| + SkScalar fg = SkScalarDiv(sump[1], weight);
|
| + SkScalar fb = SkScalarDiv(sump[2], weight);
|
| + SkScalar fa = SkScalarDiv(sump[3], weight);
|
| + int a = SkClampMax(SkScalarRoundToInt(fa), 255);
|
| + int r = SkClampMax(SkScalarRoundToInt(fr), a);
|
| + int g = SkClampMax(SkScalarRoundToInt(fg), a);
|
| + int b = SkClampMax(SkScalarRoundToInt(fb), a);
|
| +
|
| + *dst->getAddr32(x,y) = SkPackARGB32(a, r, g, b);
|
| + }
|
| + }
|
| +}
|
| +
|
| +static void upScaleHorizTranspose_SSE2(const SkBitmap *src, SkBitmap *dst, float scale, SkBitmapFilter *filter) {
|
| + for (int y = 0 ; y < dst->height() ; y++) {
|
| + for (int x = 0 ; x < dst->width() ; x++) {
|
| + float sx = (y + 0.5f) / scale - 0.5f;
|
| + int x0 = SkClampMax(sk_float_ceil2int(sx-filter->width()), src->width()-1);
|
| + int x1 = SkClampMax(sk_float_floor2int(sx+filter->width()), src->width()-1);
|
| +
|
| + SkScalar totalWeight = 0;
|
| + SkScalar fr = 0, fg = 0, fb = 0, fa = 0;
|
| +
|
| + for (int srcX = x0 ; srcX <= x1 ; srcX++) {
|
| + SkScalar weight = filter->lookupScalar(sx - srcX);
|
| + SkPMColor c = *src->getAddr32(srcX, x);
|
| + fr += SkScalarMul(weight,SkGetPackedR32(c));
|
| + fg += SkScalarMul(weight,SkGetPackedG32(c));
|
| + fb += SkScalarMul(weight,SkGetPackedB32(c));
|
| + fa += SkScalarMul(weight,SkGetPackedA32(c));
|
| + totalWeight += weight;
|
| + }
|
| + fr = SkScalarDiv(fr,totalWeight);
|
| + fg = SkScalarDiv(fg,totalWeight);
|
| + fb = SkScalarDiv(fb,totalWeight);
|
| + fa = SkScalarDiv(fa,totalWeight);
|
| +
|
| + int a = SkClampMax(SkScalarRoundToInt(fa), 255);
|
| + int r = SkClampMax(SkScalarRoundToInt(fr), a);
|
| + int g = SkClampMax(SkScalarRoundToInt(fg), a);
|
| + int b = SkClampMax(SkScalarRoundToInt(fb), a);
|
| +
|
| + *dst->getAddr32(x,y) = SkPackARGB32(a, r, g, b);
|
| + }
|
| + }
|
| +}
|
| +
|
| +static void downScaleHorizTranspose_SSE2(const SkBitmap *src, SkBitmap *dst, float scale, SkBitmapFilter *filter) {
|
| + SkScalar *sums = SkNEW_ARRAY(SkScalar, dst->width() * src->height() * 4);
|
| + SkScalar *weights = SkNEW_ARRAY(SkScalar, dst->width() * src->height());
|
| +
|
| + SkAutoTDeleteArray<SkScalar> ada1(sums);
|
| + SkAutoTDeleteArray<SkScalar> ada2(weights);
|
| +
|
| + memset(sums, 0, dst->width() * dst->height() * sizeof(SkScalar) * 4);
|
| + memset(weights, 0, dst->width() * dst->height() * sizeof(SkScalar));
|
| +
|
| + for (int y = 0 ; y < src->height() ; y++) {
|
| + for (int x = 0 ; x < src->width() ; x++) {
|
| + // splat each source pixel into the destination image
|
| + float dx = (x + 0.5f) * scale - 0.5f;
|
| + int x0 = SkClampMax(sk_float_ceil2int(dx-filter->width()), dst->height()-1);
|
| + int x1 = SkClampMax(sk_float_floor2int(dx+filter->width()), dst->height()-1);
|
| +
|
| + SkPMColor c = *src->getAddr32(x,y);
|
| +
|
| + for (int dst_x = x0 ; dst_x <= x1 ; dst_x++) {
|
| + SkScalar weight = filter->lookup(dx - dst_x);
|
| + SkScalar *sump = sums + 4*(dst_x*dst->width() + y);
|
| +
|
| + sump[0] += weight*SkGetPackedR32(c);
|
| + sump[1] += weight*SkGetPackedG32(c);
|
| + sump[2] += weight*SkGetPackedB32(c);
|
| + sump[3] += weight*SkGetPackedA32(c);
|
| + weights[dst_x*dst->width() + y] += weight;
|
| + }
|
| + }
|
| + }
|
| +
|
| + divideByWeights_SSE2(sums, weights, dst);
|
| +}
|
| +
|
| +void highQualityScale_SSE2( const SkBitmap *src, SkBitmap *dst ) {
|
| + SkBitmap horizTemp;
|
| +
|
| + horizTemp.setConfig(SkBitmap::kARGB_8888_Config, src->height(), dst->width());
|
| + horizTemp.allocPixels();
|
| +
|
| + SkBitmapFilter *filter = SkBitmapFilter::allocate();
|
| +
|
| + float horizScale = float(dst->width()) / src->width();
|
| +
|
| + if (horizScale >= 1) {
|
| + upScaleHorizTranspose_SSE2(src, &horizTemp, horizScale, filter);
|
| + } else if (horizScale < 1) {
|
| + downScaleHorizTranspose_SSE2(src, &horizTemp, horizScale, filter);
|
| + }
|
| +
|
| + float vertScale = float(dst->height()) / src->height();
|
| +
|
| + if (vertScale >= 1) {
|
| + upScaleHorizTranspose_SSE2(&horizTemp, dst, vertScale, filter);
|
| + } else if (vertScale < 1) {
|
| + downScaleHorizTranspose_SSE2(&horizTemp, dst, vertScale, filter);
|
| + }
|
| +
|
| + SkDELETE(filter);
|
| +}
|
| +
|
| +// Convolves horizontally along a single row. The row data is given in
|
| +// |src_data| and continues for the num_values() of the filter.
|
| +void convolveHorizontally_SSE2(const unsigned char* src_data,
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* out_row,
|
| + bool /*has_alpha*/) {
|
| + int num_values = filter.numValues();
|
| +
|
| + int filter_offset, filter_length;
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i mask[4];
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int out_x = 0; out_x < num_values; out_x++) {
|
| + const SkConvolutionFilter1D::Fixed* filter_values =
|
| + filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| +
|
| + __m128i accum = _mm_setzero_si128();
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filter_length| pixels (4 bytes each) after this.
|
| + const __m128i* row_to_filter =
|
| + reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
|
| +
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
|
| +
|
| + // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
|
| + __m128i coeff, coeff16;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Load four pixels => unpack the first two pixels to 16 bits =>
|
| + // multiply with coefficients => accumulate the convolution result.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0*c0 b0*c0 g0*c0 r0*c0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a1*c1 b1*c1 g1*c1 r1*c1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Duplicate 3rd and 4th coefficients for all channels =>
|
| + // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
|
| + // => accumulate the convolution results.
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + // [16] a3 g3 b3 r3 a2 g2 b2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2*c2 b2*c2 g2*c2 r2*c2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + // [32] a3*c3 b3*c3 g3*c3 r3*c3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + // Advance the pixel and coefficients pointers.
|
| + row_to_filter += 1;
|
| + filter_values += 4;
|
| + }
|
| +
|
| + // When |filter_length| is not divisible by 4, we need to decimate some of
|
| + // the filter coefficient that was loaded incorrectly to zero; Other than
|
| + // that the algorithm is same with above, exceot that the 4th pixel will be
|
| + // always absent.
|
| + int r = filter_length&3;
|
| + if (r) {
|
| + // Note: filter_values must be padded to align_up(filter_offset, 8).
|
| + __m128i coeff, coeff16;
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // Mask out extra filter taps.
|
| + coeff = _mm_and_si128(coeff, mask[r]);
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| +
|
| + // Note: line buffer must be padded to align_up(filter_offset, 16).
|
| + // We resolve this by use C-version for the last horizontal line.
|
| + __m128i src8 = _mm_loadu_si128(row_to_filter);
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| +
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum = _mm_add_epi32(accum, t);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + accum = _mm_packs_epi32(accum, zero);
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + accum = _mm_packus_epi16(accum, zero);
|
| +
|
| + // Store the pixel value of 32 bits.
|
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
|
| + out_row += 4;
|
| + }
|
| +}
|
| +
|
| +// Convolves horizontally along four rows. The row data is given in
|
| +// |src_data| and continues for the num_values() of the filter.
|
| +// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
|
| +// refer to that function for detailed comments.
|
| +void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* out_row[4]) {
|
| + int num_values = filter.numValues();
|
| +
|
| + int filter_offset, filter_length;
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i mask[4];
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
|
| + mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
|
| + mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int out_x = 0; out_x < num_values; out_x++) {
|
| + const SkConvolutionFilter1D::Fixed* filter_values =
|
| + filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| +
|
| + // four pixels in a column per iteration.
|
| + __m128i accum0 = _mm_setzero_si128();
|
| + __m128i accum1 = _mm_setzero_si128();
|
| + __m128i accum2 = _mm_setzero_si128();
|
| + __m128i accum3 = _mm_setzero_si128();
|
| + int start = (filter_offset<<2);
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
|
| + __m128i coeff, coeff16lo, coeff16hi;
|
| + // [16] xx xx xx xx c3 c2 c1 c0
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // [16] xx xx xx xx c1 c1 c0 c0
|
| + coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + // [16] c1 c1 c1 c1 c0 c0 c0 c0
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + // [16] xx xx xx xx c3 c3 c2 c2
|
| + coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + // [16] c3 c3 c3 c3 c2 c2 c2 c2
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| +#define ITERATION(src, accum) \
|
| + src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
|
| + src16 = _mm_unpacklo_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + src16 = _mm_unpackhi_epi8(src8, zero); \
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t); \
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
|
| + accum = _mm_add_epi32(accum, t)
|
| +
|
| + ITERATION(src_data[0] + start, accum0);
|
| + ITERATION(src_data[1] + start, accum1);
|
| + ITERATION(src_data[2] + start, accum2);
|
| + ITERATION(src_data[3] + start, accum3);
|
| +
|
| + start += 16;
|
| + filter_values += 4;
|
| + }
|
| +
|
| + int r = filter_length & 3;
|
| + if (r) {
|
| + // Note: filter_values must be padded to align_up(filter_offset, 8);
|
| + __m128i coeff;
|
| + coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
|
| + // Mask out extra filter taps.
|
| + coeff = _mm_and_si128(coeff, mask[r]);
|
| +
|
| + __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
|
| + /* c1 c1 c1 c1 c0 c0 c0 c0 */
|
| + coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
|
| + __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
|
| + coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
|
| +
|
| + __m128i src8, src16, mul_hi, mul_lo, t;
|
| +
|
| + ITERATION(src_data[0] + start, accum0);
|
| + ITERATION(src_data[1] + start, accum1);
|
| + ITERATION(src_data[2] + start, accum2);
|
| + ITERATION(src_data[3] + start, accum3);
|
| + }
|
| +
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum0 = _mm_packs_epi32(accum0, zero);
|
| + accum0 = _mm_packus_epi16(accum0, zero);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_packs_epi32(accum1, zero);
|
| + accum1 = _mm_packus_epi16(accum1, zero);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + accum2 = _mm_packus_epi16(accum2, zero);
|
| + accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_packs_epi32(accum3, zero);
|
| + accum3 = _mm_packus_epi16(accum3, zero);
|
| +
|
| + *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
|
| + *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
|
| + *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
|
| + *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
|
| +
|
| + out_row[0] += 4;
|
| + out_row[1] += 4;
|
| + out_row[2] += 4;
|
| + out_row[3] += 4;
|
| + }
|
| +}
|
| +
|
| +// Does vertical convolution to produce one output row. The filter values and
|
| +// length are given in the first two parameters. These are applied to each
|
| +// of the rows pointed to in the |source_data_rows| array, with each row
|
| +// being |pixel_width| wide.
|
| +//
|
| +// The output must have room for |pixel_width * 4| bytes.
|
| +template<bool has_alpha>
|
| +void convolveVertically_SSE2(const SkConvolutionFilter1D::Fixed* filter_values,
|
| + int filter_length,
|
| + unsigned char* const* source_data_rows,
|
| + int pixel_width,
|
| + unsigned char* out_row) {
|
| + int width = pixel_width & ~3;
|
| +
|
| + __m128i zero = _mm_setzero_si128();
|
| + __m128i accum0, accum1, accum2, accum3, coeff16;
|
| + const __m128i* src;
|
| + // Output four pixels per iteration (16 bytes).
|
| + for (int out_x = 0; out_x < width; out_x += 4) {
|
| +
|
| + // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| + accum0 = _mm_setzero_si128();
|
| + accum1 = _mm_setzero_si128();
|
| + accum2 = _mm_setzero_si128();
|
| + accum3 = _mm_setzero_si128();
|
| +
|
| + // Convolve with one filter coefficient per iteration.
|
| + for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
| +
|
| + // Duplicate the filter coefficient 8 times.
|
| + // [16] cj cj cj cj cj cj cj cj
|
| + coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| +
|
| + // Load four pixels (16 bytes) together.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + src = reinterpret_cast<const __m128i*>(
|
| + &source_data_rows[filter_y][out_x << 2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| +
|
| + // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| +
|
| + // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
|
| + // multiply with current coefficient => accumulate the result.
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + // [32] a3 b3 g3 r3
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum3 = _mm_add_epi32(accum3, t);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, accum3);
|
| +
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| +
|
| + if (has_alpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
| +
|
| + // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| + _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
|
| + out_row += 16;
|
| + }
|
| +
|
| + // When the width of the output is not divisible by 4, We need to save one
|
| + // pixel (4 bytes) each time. And also the fourth pixel is always absent.
|
| + if (pixel_width & 3) {
|
| + accum0 = _mm_setzero_si128();
|
| + accum1 = _mm_setzero_si128();
|
| + accum2 = _mm_setzero_si128();
|
| + for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
|
| + coeff16 = _mm_set1_epi16(filter_values[filter_y]);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + src = reinterpret_cast<const __m128i*>(
|
| + &source_data_rows[filter_y][width<<2]);
|
| + __m128i src8 = _mm_loadu_si128(src);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + __m128i src16 = _mm_unpacklo_epi8(src8, zero);
|
| + __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a0 b0 g0 r0
|
| + __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum0 = _mm_add_epi32(accum0, t);
|
| + // [32] a1 b1 g1 r1
|
| + t = _mm_unpackhi_epi16(mul_lo, mul_hi);
|
| + accum1 = _mm_add_epi32(accum1, t);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + src16 = _mm_unpackhi_epi8(src8, zero);
|
| + mul_hi = _mm_mulhi_epi16(src16, coeff16);
|
| + mul_lo = _mm_mullo_epi16(src16, coeff16);
|
| + // [32] a2 b2 g2 r2
|
| + t = _mm_unpacklo_epi16(mul_lo, mul_hi);
|
| + accum2 = _mm_add_epi32(accum2, t);
|
| + }
|
| +
|
| + accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packs_epi32(accum0, accum1);
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + accum2 = _mm_packs_epi32(accum2, zero);
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + accum0 = _mm_packus_epi16(accum0, accum2);
|
| + if (has_alpha) {
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + __m128i a = _mm_srli_epi32(accum0, 8);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = _mm_srli_epi32(accum0, 16);
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = _mm_max_epu8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = _mm_slli_epi32(b, 24);
|
| + accum0 = _mm_max_epu8(b, accum0);
|
| + } else {
|
| + __m128i mask = _mm_set1_epi32(0xff000000);
|
| + accum0 = _mm_or_si128(accum0, mask);
|
| + }
|
| +
|
| + for (int out_x = width; out_x < pixel_width; out_x++) {
|
| + *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
|
| + accum0 = _mm_srli_si128(accum0, 4);
|
| + out_row += 4;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void convolveVertically_SSE2(const SkConvolutionFilter1D::Fixed* filter_values,
|
| + int filter_length,
|
| + unsigned char* const* source_data_rows,
|
| + int pixel_width,
|
| + unsigned char* out_row,
|
| + bool has_alpha) {
|
| + if (has_alpha) {
|
| + convolveVertically_SSE2<true>(filter_values,
|
| + filter_length,
|
| + source_data_rows,
|
| + pixel_width,
|
| + out_row);
|
| + } else {
|
| + convolveVertically_SSE2<false>(filter_values,
|
| + filter_length,
|
| + source_data_rows,
|
| + pixel_width,
|
| + out_row);
|
| + }
|
| +}
|
|
|