OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2013 Google Inc. | 2 * Copyright 2013 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkBitmapProcState.h" | 8 #include "SkBitmapProcState.h" |
9 #include "SkBitmap.h" | 9 #include "SkBitmap.h" |
10 #include "SkColor.h" | 10 #include "SkColor.h" |
11 #include "SkColorPriv.h" | 11 #include "SkColorPriv.h" |
12 #include "SkUnPreMultiply.h" | 12 #include "SkUnPreMultiply.h" |
13 #include "SkShader.h" | 13 #include "SkShader.h" |
| 14 #include "SkConvolver.h" |
14 | 15 |
15 #include "SkBitmapFilter_opts_SSE2.h" | 16 #include "SkBitmapFilter_opts_SSE2.h" |
16 | 17 |
17 #include <emmintrin.h> | 18 #include <emmintrin.h> |
18 | 19 |
19 #if 0 | 20 #if 0 |
20 static inline void print128i(__m128i value) { | 21 static inline void print128i(__m128i value) { |
21 int *v = (int*) &value; | 22 int *v = (int*) &value; |
22 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); | 23 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); |
23 } | 24 } |
(...skipping 149 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
173 | 174 |
174 *colors++ = SkPackARGB32(a, r, g, b); | 175 *colors++ = SkPackARGB32(a, r, g, b); |
175 | 176 |
176 x++; | 177 x++; |
177 | 178 |
178 s.fInvProc(s.fInvMatrix, SkIntToScalar(x), | 179 s.fInvProc(s.fInvMatrix, SkIntToScalar(x), |
179 SkIntToScalar(y), &srcPt); | 180 SkIntToScalar(y), &srcPt); |
180 | 181 |
181 } | 182 } |
182 } | 183 } |
| 184 |
| 185 static void divideByWeights_SSE2(SkScalar *sums, SkScalar *weights, SkBitmap *ds
t) { |
| 186 for (int y = 0 ; y < dst->height() ; y++) { |
| 187 for (int x = 0 ; x < dst->width() ; x++) { |
| 188 SkScalar *sump = sums + 4*(y*dst->width() + x); |
| 189 SkScalar weight = weights[y*dst->width() + x]; |
| 190 |
| 191 SkScalar fr = SkScalarDiv(sump[0], weight); |
| 192 SkScalar fg = SkScalarDiv(sump[1], weight); |
| 193 SkScalar fb = SkScalarDiv(sump[2], weight); |
| 194 SkScalar fa = SkScalarDiv(sump[3], weight); |
| 195 int a = SkClampMax(SkScalarRoundToInt(fa), 255); |
| 196 int r = SkClampMax(SkScalarRoundToInt(fr), a); |
| 197 int g = SkClampMax(SkScalarRoundToInt(fg), a); |
| 198 int b = SkClampMax(SkScalarRoundToInt(fb), a); |
| 199 |
| 200 *dst->getAddr32(x,y) = SkPackARGB32(a, r, g, b); |
| 201 } |
| 202 } |
| 203 } |
| 204 |
| 205 static void upScaleHorizTranspose_SSE2(const SkBitmap *src, SkBitmap *dst, float
scale, SkBitmapFilter *filter) { |
| 206 for (int y = 0 ; y < dst->height() ; y++) { |
| 207 for (int x = 0 ; x < dst->width() ; x++) { |
| 208 float sx = (y + 0.5f) / scale - 0.5f; |
| 209 int x0 = SkClampMax(sk_float_ceil2int(sx-filter->width()), src->widt
h()-1); |
| 210 int x1 = SkClampMax(sk_float_floor2int(sx+filter->width()), src->wid
th()-1); |
| 211 |
| 212 SkScalar totalWeight = 0; |
| 213 SkScalar fr = 0, fg = 0, fb = 0, fa = 0; |
| 214 |
| 215 for (int srcX = x0 ; srcX <= x1 ; srcX++) { |
| 216 SkScalar weight = filter->lookupScalar(sx - srcX); |
| 217 SkPMColor c = *src->getAddr32(srcX, x); |
| 218 fr += SkScalarMul(weight,SkGetPackedR32(c)); |
| 219 fg += SkScalarMul(weight,SkGetPackedG32(c)); |
| 220 fb += SkScalarMul(weight,SkGetPackedB32(c)); |
| 221 fa += SkScalarMul(weight,SkGetPackedA32(c)); |
| 222 totalWeight += weight; |
| 223 } |
| 224 fr = SkScalarDiv(fr,totalWeight); |
| 225 fg = SkScalarDiv(fg,totalWeight); |
| 226 fb = SkScalarDiv(fb,totalWeight); |
| 227 fa = SkScalarDiv(fa,totalWeight); |
| 228 |
| 229 int a = SkClampMax(SkScalarRoundToInt(fa), 255); |
| 230 int r = SkClampMax(SkScalarRoundToInt(fr), a); |
| 231 int g = SkClampMax(SkScalarRoundToInt(fg), a); |
| 232 int b = SkClampMax(SkScalarRoundToInt(fb), a); |
| 233 |
| 234 *dst->getAddr32(x,y) = SkPackARGB32(a, r, g, b); |
| 235 } |
| 236 } |
| 237 } |
| 238 |
| 239 static void downScaleHorizTranspose_SSE2(const SkBitmap *src, SkBitmap *dst, flo
at scale, SkBitmapFilter *filter) { |
| 240 SkScalar *sums = SkNEW_ARRAY(SkScalar, dst->width() * src->height() * 4); |
| 241 SkScalar *weights = SkNEW_ARRAY(SkScalar, dst->width() * src->height()); |
| 242 |
| 243 SkAutoTDeleteArray<SkScalar> ada1(sums); |
| 244 SkAutoTDeleteArray<SkScalar> ada2(weights); |
| 245 |
| 246 memset(sums, 0, dst->width() * dst->height() * sizeof(SkScalar) * 4); |
| 247 memset(weights, 0, dst->width() * dst->height() * sizeof(SkScalar)); |
| 248 |
| 249 for (int y = 0 ; y < src->height() ; y++) { |
| 250 for (int x = 0 ; x < src->width() ; x++) { |
| 251 // splat each source pixel into the destination image |
| 252 float dx = (x + 0.5f) * scale - 0.5f; |
| 253 int x0 = SkClampMax(sk_float_ceil2int(dx-filter->width()), dst->heig
ht()-1); |
| 254 int x1 = SkClampMax(sk_float_floor2int(dx+filter->width()), dst->hei
ght()-1); |
| 255 |
| 256 SkPMColor c = *src->getAddr32(x,y); |
| 257 |
| 258 for (int dst_x = x0 ; dst_x <= x1 ; dst_x++) { |
| 259 SkScalar weight = filter->lookup(dx - dst_x); |
| 260 SkScalar *sump = sums + 4*(dst_x*dst->width() + y); |
| 261 |
| 262 sump[0] += weight*SkGetPackedR32(c); |
| 263 sump[1] += weight*SkGetPackedG32(c); |
| 264 sump[2] += weight*SkGetPackedB32(c); |
| 265 sump[3] += weight*SkGetPackedA32(c); |
| 266 weights[dst_x*dst->width() + y] += weight; |
| 267 } |
| 268 } |
| 269 } |
| 270 |
| 271 divideByWeights_SSE2(sums, weights, dst); |
| 272 } |
| 273 |
| 274 void highQualityScale_SSE2( const SkBitmap *src, SkBitmap *dst ) { |
| 275 SkBitmap horizTemp; |
| 276 |
| 277 horizTemp.setConfig(SkBitmap::kARGB_8888_Config, src->height(), dst->width()
); |
| 278 horizTemp.allocPixels(); |
| 279 |
| 280 SkBitmapFilter *filter = SkBitmapFilter::allocate(); |
| 281 |
| 282 float horizScale = float(dst->width()) / src->width(); |
| 283 |
| 284 if (horizScale >= 1) { |
| 285 upScaleHorizTranspose_SSE2(src, &horizTemp, horizScale, filter); |
| 286 } else if (horizScale < 1) { |
| 287 downScaleHorizTranspose_SSE2(src, &horizTemp, horizScale, filter); |
| 288 } |
| 289 |
| 290 float vertScale = float(dst->height()) / src->height(); |
| 291 |
| 292 if (vertScale >= 1) { |
| 293 upScaleHorizTranspose_SSE2(&horizTemp, dst, vertScale, filter); |
| 294 } else if (vertScale < 1) { |
| 295 downScaleHorizTranspose_SSE2(&horizTemp, dst, vertScale, filter); |
| 296 } |
| 297 |
| 298 SkDELETE(filter); |
| 299 } |
| 300 |
| 301 // Convolves horizontally along a single row. The row data is given in |
| 302 // |src_data| and continues for the num_values() of the filter. |
| 303 void convolveHorizontally_SSE2(const unsigned char* src_data, |
| 304 const SkConvolutionFilter1D& filter, |
| 305 unsigned char* out_row, |
| 306 bool /*has_alpha*/) { |
| 307 int num_values = filter.numValues(); |
| 308 |
| 309 int filter_offset, filter_length; |
| 310 __m128i zero = _mm_setzero_si128(); |
| 311 __m128i mask[4]; |
| 312 // |mask| will be used to decimate all extra filter coefficients that are |
| 313 // loaded by SIMD when |filter_length| is not divisible by 4. |
| 314 // mask[0] is not used in following algorithm. |
| 315 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| 316 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| 317 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| 318 |
| 319 // Output one pixel each iteration, calculating all channels (RGBA) together. |
| 320 for (int out_x = 0; out_x < num_values; out_x++) { |
| 321 const SkConvolutionFilter1D::Fixed* filter_values = |
| 322 filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| 323 |
| 324 __m128i accum = _mm_setzero_si128(); |
| 325 |
| 326 // Compute the first pixel in this row that the filter affects. It will |
| 327 // touch |filter_length| pixels (4 bytes each) after this. |
| 328 const __m128i* row_to_filter = |
| 329 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
| 330 |
| 331 // We will load and accumulate with four coefficients per iteration. |
| 332 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
| 333 |
| 334 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
| 335 __m128i coeff, coeff16; |
| 336 // [16] xx xx xx xx c3 c2 c1 c0 |
| 337 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 338 // [16] xx xx xx xx c1 c1 c0 c0 |
| 339 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 340 // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| 341 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 342 |
| 343 // Load four pixels => unpack the first two pixels to 16 bits => |
| 344 // multiply with coefficients => accumulate the convolution result. |
| 345 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 346 __m128i src8 = _mm_loadu_si128(row_to_filter); |
| 347 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 348 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 349 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 350 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 351 // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
| 352 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 353 accum = _mm_add_epi32(accum, t); |
| 354 // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
| 355 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 356 accum = _mm_add_epi32(accum, t); |
| 357 |
| 358 // Duplicate 3rd and 4th coefficients for all channels => |
| 359 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
| 360 // => accumulate the convolution results. |
| 361 // [16] xx xx xx xx c3 c3 c2 c2 |
| 362 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 363 // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| 364 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 365 // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
| 366 src16 = _mm_unpackhi_epi8(src8, zero); |
| 367 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 368 mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 369 // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
| 370 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 371 accum = _mm_add_epi32(accum, t); |
| 372 // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
| 373 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 374 accum = _mm_add_epi32(accum, t); |
| 375 |
| 376 // Advance the pixel and coefficients pointers. |
| 377 row_to_filter += 1; |
| 378 filter_values += 4; |
| 379 } |
| 380 |
| 381 // When |filter_length| is not divisible by 4, we need to decimate some of |
| 382 // the filter coefficient that was loaded incorrectly to zero; Other than |
| 383 // that the algorithm is same with above, exceot that the 4th pixel will be |
| 384 // always absent. |
| 385 int r = filter_length&3; |
| 386 if (r) { |
| 387 // Note: filter_values must be padded to align_up(filter_offset, 8). |
| 388 __m128i coeff, coeff16; |
| 389 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 390 // Mask out extra filter taps. |
| 391 coeff = _mm_and_si128(coeff, mask[r]); |
| 392 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 393 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 394 |
| 395 // Note: line buffer must be padded to align_up(filter_offset, 16). |
| 396 // We resolve this by use C-version for the last horizontal line. |
| 397 __m128i src8 = _mm_loadu_si128(row_to_filter); |
| 398 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 399 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 400 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 401 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 402 accum = _mm_add_epi32(accum, t); |
| 403 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 404 accum = _mm_add_epi32(accum, t); |
| 405 |
| 406 src16 = _mm_unpackhi_epi8(src8, zero); |
| 407 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 408 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 409 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 410 mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 411 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 412 accum = _mm_add_epi32(accum, t); |
| 413 } |
| 414 |
| 415 // Shift right for fixed point implementation. |
| 416 accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits); |
| 417 |
| 418 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| 419 accum = _mm_packs_epi32(accum, zero); |
| 420 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| 421 accum = _mm_packus_epi16(accum, zero); |
| 422 |
| 423 // Store the pixel value of 32 bits. |
| 424 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
| 425 out_row += 4; |
| 426 } |
| 427 } |
| 428 |
| 429 // Convolves horizontally along four rows. The row data is given in |
| 430 // |src_data| and continues for the num_values() of the filter. |
| 431 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
| 432 // refer to that function for detailed comments. |
| 433 void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], |
| 434 const SkConvolutionFilter1D& filter, |
| 435 unsigned char* out_row[4]) { |
| 436 int num_values = filter.numValues(); |
| 437 |
| 438 int filter_offset, filter_length; |
| 439 __m128i zero = _mm_setzero_si128(); |
| 440 __m128i mask[4]; |
| 441 // |mask| will be used to decimate all extra filter coefficients that are |
| 442 // loaded by SIMD when |filter_length| is not divisible by 4. |
| 443 // mask[0] is not used in following algorithm. |
| 444 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| 445 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| 446 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| 447 |
| 448 // Output one pixel each iteration, calculating all channels (RGBA) together. |
| 449 for (int out_x = 0; out_x < num_values; out_x++) { |
| 450 const SkConvolutionFilter1D::Fixed* filter_values = |
| 451 filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| 452 |
| 453 // four pixels in a column per iteration. |
| 454 __m128i accum0 = _mm_setzero_si128(); |
| 455 __m128i accum1 = _mm_setzero_si128(); |
| 456 __m128i accum2 = _mm_setzero_si128(); |
| 457 __m128i accum3 = _mm_setzero_si128(); |
| 458 int start = (filter_offset<<2); |
| 459 // We will load and accumulate with four coefficients per iteration. |
| 460 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
| 461 __m128i coeff, coeff16lo, coeff16hi; |
| 462 // [16] xx xx xx xx c3 c2 c1 c0 |
| 463 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 464 // [16] xx xx xx xx c1 c1 c0 c0 |
| 465 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 466 // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| 467 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| 468 // [16] xx xx xx xx c3 c3 c2 c2 |
| 469 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 470 // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| 471 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| 472 |
| 473 __m128i src8, src16, mul_hi, mul_lo, t; |
| 474 |
| 475 #define ITERATION(src, accum) \ |
| 476 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
| 477 src16 = _mm_unpacklo_epi8(src8, zero); \ |
| 478 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
| 479 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
| 480 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| 481 accum = _mm_add_epi32(accum, t); \ |
| 482 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| 483 accum = _mm_add_epi32(accum, t); \ |
| 484 src16 = _mm_unpackhi_epi8(src8, zero); \ |
| 485 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
| 486 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
| 487 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| 488 accum = _mm_add_epi32(accum, t); \ |
| 489 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| 490 accum = _mm_add_epi32(accum, t) |
| 491 |
| 492 ITERATION(src_data[0] + start, accum0); |
| 493 ITERATION(src_data[1] + start, accum1); |
| 494 ITERATION(src_data[2] + start, accum2); |
| 495 ITERATION(src_data[3] + start, accum3); |
| 496 |
| 497 start += 16; |
| 498 filter_values += 4; |
| 499 } |
| 500 |
| 501 int r = filter_length & 3; |
| 502 if (r) { |
| 503 // Note: filter_values must be padded to align_up(filter_offset, 8); |
| 504 __m128i coeff; |
| 505 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 506 // Mask out extra filter taps. |
| 507 coeff = _mm_and_si128(coeff, mask[r]); |
| 508 |
| 509 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 510 /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
| 511 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| 512 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 513 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| 514 |
| 515 __m128i src8, src16, mul_hi, mul_lo, t; |
| 516 |
| 517 ITERATION(src_data[0] + start, accum0); |
| 518 ITERATION(src_data[1] + start, accum1); |
| 519 ITERATION(src_data[2] + start, accum2); |
| 520 ITERATION(src_data[3] + start, accum3); |
| 521 } |
| 522 |
| 523 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); |
| 524 accum0 = _mm_packs_epi32(accum0, zero); |
| 525 accum0 = _mm_packus_epi16(accum0, zero); |
| 526 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); |
| 527 accum1 = _mm_packs_epi32(accum1, zero); |
| 528 accum1 = _mm_packus_epi16(accum1, zero); |
| 529 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); |
| 530 accum2 = _mm_packs_epi32(accum2, zero); |
| 531 accum2 = _mm_packus_epi16(accum2, zero); |
| 532 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); |
| 533 accum3 = _mm_packs_epi32(accum3, zero); |
| 534 accum3 = _mm_packus_epi16(accum3, zero); |
| 535 |
| 536 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
| 537 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
| 538 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
| 539 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
| 540 |
| 541 out_row[0] += 4; |
| 542 out_row[1] += 4; |
| 543 out_row[2] += 4; |
| 544 out_row[3] += 4; |
| 545 } |
| 546 } |
| 547 |
| 548 // Does vertical convolution to produce one output row. The filter values and |
| 549 // length are given in the first two parameters. These are applied to each |
| 550 // of the rows pointed to in the |source_data_rows| array, with each row |
| 551 // being |pixel_width| wide. |
| 552 // |
| 553 // The output must have room for |pixel_width * 4| bytes. |
| 554 template<bool has_alpha> |
| 555 void convolveVertically_SSE2(const SkConvolutionFilter1D::Fixed* filter_values, |
| 556 int filter_length, |
| 557 unsigned char* const* source_data_rows, |
| 558 int pixel_width, |
| 559 unsigned char* out_row) { |
| 560 int width = pixel_width & ~3; |
| 561 |
| 562 __m128i zero = _mm_setzero_si128(); |
| 563 __m128i accum0, accum1, accum2, accum3, coeff16; |
| 564 const __m128i* src; |
| 565 // Output four pixels per iteration (16 bytes). |
| 566 for (int out_x = 0; out_x < width; out_x += 4) { |
| 567 |
| 568 // Accumulated result for each pixel. 32 bits per RGBA channel. |
| 569 accum0 = _mm_setzero_si128(); |
| 570 accum1 = _mm_setzero_si128(); |
| 571 accum2 = _mm_setzero_si128(); |
| 572 accum3 = _mm_setzero_si128(); |
| 573 |
| 574 // Convolve with one filter coefficient per iteration. |
| 575 for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
| 576 |
| 577 // Duplicate the filter coefficient 8 times. |
| 578 // [16] cj cj cj cj cj cj cj cj |
| 579 coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| 580 |
| 581 // Load four pixels (16 bytes) together. |
| 582 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 583 src = reinterpret_cast<const __m128i*>( |
| 584 &source_data_rows[filter_y][out_x << 2]); |
| 585 __m128i src8 = _mm_loadu_si128(src); |
| 586 |
| 587 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
| 588 // multiply with current coefficient => accumulate the result. |
| 589 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 590 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 591 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 592 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 593 // [32] a0 b0 g0 r0 |
| 594 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 595 accum0 = _mm_add_epi32(accum0, t); |
| 596 // [32] a1 b1 g1 r1 |
| 597 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 598 accum1 = _mm_add_epi32(accum1, t); |
| 599 |
| 600 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
| 601 // multiply with current coefficient => accumulate the result. |
| 602 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 603 src16 = _mm_unpackhi_epi8(src8, zero); |
| 604 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 605 mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 606 // [32] a2 b2 g2 r2 |
| 607 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 608 accum2 = _mm_add_epi32(accum2, t); |
| 609 // [32] a3 b3 g3 r3 |
| 610 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 611 accum3 = _mm_add_epi32(accum3, t); |
| 612 } |
| 613 |
| 614 // Shift right for fixed point implementation. |
| 615 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); |
| 616 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); |
| 617 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); |
| 618 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); |
| 619 |
| 620 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| 621 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 622 accum0 = _mm_packs_epi32(accum0, accum1); |
| 623 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 624 accum2 = _mm_packs_epi32(accum2, accum3); |
| 625 |
| 626 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| 627 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 628 accum0 = _mm_packus_epi16(accum0, accum2); |
| 629 |
| 630 if (has_alpha) { |
| 631 // Compute the max(ri, gi, bi) for each pixel. |
| 632 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| 633 __m128i a = _mm_srli_epi32(accum0, 8); |
| 634 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 635 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| 636 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| 637 a = _mm_srli_epi32(accum0, 16); |
| 638 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 639 b = _mm_max_epu8(a, b); // Max of r and g and b. |
| 640 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| 641 b = _mm_slli_epi32(b, 24); |
| 642 |
| 643 // Make sure the value of alpha channel is always larger than maximum |
| 644 // value of color channels. |
| 645 accum0 = _mm_max_epu8(b, accum0); |
| 646 } else { |
| 647 // Set value of alpha channels to 0xFF. |
| 648 __m128i mask = _mm_set1_epi32(0xff000000); |
| 649 accum0 = _mm_or_si128(accum0, mask); |
| 650 } |
| 651 |
| 652 // Store the convolution result (16 bytes) and advance the pixel pointers. |
| 653 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
| 654 out_row += 16; |
| 655 } |
| 656 |
| 657 // When the width of the output is not divisible by 4, We need to save one |
| 658 // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
| 659 if (pixel_width & 3) { |
| 660 accum0 = _mm_setzero_si128(); |
| 661 accum1 = _mm_setzero_si128(); |
| 662 accum2 = _mm_setzero_si128(); |
| 663 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
| 664 coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| 665 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 666 src = reinterpret_cast<const __m128i*>( |
| 667 &source_data_rows[filter_y][width<<2]); |
| 668 __m128i src8 = _mm_loadu_si128(src); |
| 669 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 670 __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 671 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 672 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 673 // [32] a0 b0 g0 r0 |
| 674 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 675 accum0 = _mm_add_epi32(accum0, t); |
| 676 // [32] a1 b1 g1 r1 |
| 677 t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 678 accum1 = _mm_add_epi32(accum1, t); |
| 679 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 680 src16 = _mm_unpackhi_epi8(src8, zero); |
| 681 mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 682 mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 683 // [32] a2 b2 g2 r2 |
| 684 t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 685 accum2 = _mm_add_epi32(accum2, t); |
| 686 } |
| 687 |
| 688 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); |
| 689 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); |
| 690 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); |
| 691 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 692 accum0 = _mm_packs_epi32(accum0, accum1); |
| 693 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 694 accum2 = _mm_packs_epi32(accum2, zero); |
| 695 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 696 accum0 = _mm_packus_epi16(accum0, accum2); |
| 697 if (has_alpha) { |
| 698 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| 699 __m128i a = _mm_srli_epi32(accum0, 8); |
| 700 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 701 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| 702 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| 703 a = _mm_srli_epi32(accum0, 16); |
| 704 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 705 b = _mm_max_epu8(a, b); // Max of r and g and b. |
| 706 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| 707 b = _mm_slli_epi32(b, 24); |
| 708 accum0 = _mm_max_epu8(b, accum0); |
| 709 } else { |
| 710 __m128i mask = _mm_set1_epi32(0xff000000); |
| 711 accum0 = _mm_or_si128(accum0, mask); |
| 712 } |
| 713 |
| 714 for (int out_x = width; out_x < pixel_width; out_x++) { |
| 715 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
| 716 accum0 = _mm_srli_si128(accum0, 4); |
| 717 out_row += 4; |
| 718 } |
| 719 } |
| 720 } |
| 721 |
| 722 void convolveVertically_SSE2(const SkConvolutionFilter1D::Fixed* filter_values, |
| 723 int filter_length, |
| 724 unsigned char* const* source_data_rows, |
| 725 int pixel_width, |
| 726 unsigned char* out_row, |
| 727 bool has_alpha) { |
| 728 if (has_alpha) { |
| 729 convolveVertically_SSE2<true>(filter_values, |
| 730 filter_length, |
| 731 source_data_rows, |
| 732 pixel_width, |
| 733 out_row); |
| 734 } else { |
| 735 convolveVertically_SSE2<false>(filter_values, |
| 736 filter_length, |
| 737 source_data_rows, |
| 738 pixel_width, |
| 739 out_row); |
| 740 } |
| 741 } |
OLD | NEW |