| Index: pkg/fixnum/lib/src/int64.dart
|
| diff --git a/pkg/fixnum/lib/src/int64.dart b/pkg/fixnum/lib/src/int64.dart
|
| deleted file mode 100644
|
| index 7770eb17354c938163ca8cbac7a865be3cf01e60..0000000000000000000000000000000000000000
|
| --- a/pkg/fixnum/lib/src/int64.dart
|
| +++ /dev/null
|
| @@ -1,1002 +0,0 @@
|
| -// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -part of fixnum;
|
| -
|
| -/**
|
| - * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1].
|
| - * Arithmetic operations may overflow in order to maintain this range.
|
| - */
|
| -class Int64 implements IntX {
|
| -
|
| - // A 64-bit integer is represented internally as three non-negative
|
| - // integers, storing the 22 low, 22 middle, and 20 high bits of the
|
| - // 64-bit value. _l (low) and _m (middle) are in the range
|
| - // [0, 2^22 - 1] and _h (high) is in the range [0, 2^20 - 1].
|
| - //
|
| - // The values being assigned to _l, _m and _h in initialization are masked to
|
| - // force them into the above ranges. Sometimes we know that the value is a
|
| - // small non-negative integer but the dart2js compiler can't infer that, so a
|
| - // few of the masking operations are not needed for correctness but are
|
| - // helpful for dart2js code quality.
|
| -
|
| - final int _l, _m, _h;
|
| -
|
| - // Note: several functions require _BITS == 22 -- do not change this value.
|
| - static const int _BITS = 22;
|
| - static const int _BITS01 = 44; // 2 * _BITS
|
| - static const int _BITS2 = 20; // 64 - _BITS01
|
| - static const int _MASK = 4194303; // (1 << _BITS) - 1
|
| - static const int _MASK2 = 1048575; // (1 << _BITS2) - 1
|
| - static const int _SIGN_BIT = 19; // _BITS2 - 1
|
| - static const int _SIGN_BIT_MASK = 1 << _SIGN_BIT;
|
| -
|
| - /**
|
| - * The maximum positive value attainable by an [Int64], namely
|
| - * 9,223,372,036,854,775,807.
|
| - */
|
| - static const Int64 MAX_VALUE = const Int64._bits(_MASK, _MASK, _MASK2 >> 1);
|
| -
|
| - /**
|
| - * The minimum positive value attainable by an [Int64], namely
|
| - * -9,223,372,036,854,775,808.
|
| - */
|
| - static const Int64 MIN_VALUE = const Int64._bits(0, 0, _SIGN_BIT_MASK);
|
| -
|
| - /**
|
| - * An [Int64] constant equal to 0.
|
| - */
|
| - static const Int64 ZERO = const Int64._bits(0, 0, 0);
|
| -
|
| - /**
|
| - * An [Int64] constant equal to 1.
|
| - */
|
| - static const Int64 ONE = const Int64._bits(1, 0, 0);
|
| -
|
| - /**
|
| - * An [Int64] constant equal to 2.
|
| - */
|
| - static const Int64 TWO = const Int64._bits(2, 0, 0);
|
| -
|
| - /**
|
| - * Constructs an [Int64] with a given bitwise representation. No validation
|
| - * is performed.
|
| - */
|
| - const Int64._bits(int this._l, int this._m, int this._h);
|
| -
|
| - /**
|
| - * Parses a [String] in a given [radix] between 2 and 36 and returns an
|
| - * [Int64].
|
| - */
|
| - static Int64 parseRadix(String s, int radix) {
|
| - return _parseRadix(s, Int32._validateRadix(radix));
|
| - }
|
| -
|
| - static Int64 _parseRadix(String s, int radix) {
|
| - int i = 0;
|
| - bool negative = false;
|
| - if (s[0] == '-') {
|
| - negative = true;
|
| - i++;
|
| - }
|
| - int d0 = 0, d1 = 0, d2 = 0; // low, middle, high components.
|
| - for (; i < s.length; i++) {
|
| - int c = s.codeUnitAt(i);
|
| - int digit = Int32._decodeDigit(c);
|
| - if (digit < 0 || digit >= radix) {
|
| - throw new FormatException("Non-radix char code: $c");
|
| - }
|
| -
|
| - // [radix] and [digit] are at most 6 bits, component is 22, so we can
|
| - // multiply and add within 30 bit temporary values.
|
| - d0 = d0 * radix + digit;
|
| - int carry = d0 >> _BITS;
|
| - d0 = _MASK & d0;
|
| -
|
| - d1 = d1 * radix + carry;
|
| - carry = d1 >> _BITS;
|
| - d1 = _MASK & d1;
|
| -
|
| - d2 = d2 * radix + carry;
|
| - d2 = _MASK2 & d2;
|
| - }
|
| -
|
| - if (negative) return _negate(d0, d1, d2);
|
| -
|
| - return Int64._masked(d0, d1, d2);
|
| - }
|
| -
|
| - /**
|
| - * Parses a decimal [String] and returns an [Int64].
|
| - */
|
| - static Int64 parseInt(String s) => _parseRadix(s, 10);
|
| -
|
| - /**
|
| - * Parses a hexadecimal [String] and returns an [Int64].
|
| - */
|
| - static Int64 parseHex(String s) => _parseRadix(s, 16);
|
| -
|
| - //
|
| - // Public constructors
|
| - //
|
| -
|
| - /**
|
| - * Constructs an [Int64] with a given [int] value; zero by default.
|
| - */
|
| - factory Int64([int value=0]) {
|
| - int v0 = 0, v1 = 0, v2 = 0;
|
| - bool negative = false;
|
| - if (value < 0) {
|
| - negative = true;
|
| - value = -value - 1;
|
| - }
|
| - // Avoid using bitwise operations that in JavaScript coerce their input to
|
| - // 32 bits.
|
| - v2 = value ~/ 17592186044416; // 2^44
|
| - value -= v2 * 17592186044416;
|
| - v1 = value ~/ 4194304; // 2^22
|
| - value -= v1 * 4194304;
|
| - v0 = value;
|
| -
|
| - if (negative) {
|
| - v0 = ~v0;
|
| - v1 = ~v1;
|
| - v2 = ~v2;
|
| - }
|
| - return Int64._masked(v0, v1, v2);
|
| - }
|
| -
|
| - factory Int64.fromBytes(List<int> bytes) {
|
| - int top = bytes[7] & 0xff;
|
| - top <<= 8;
|
| - top |= bytes[6] & 0xff;
|
| - top <<= 8;
|
| - top |= bytes[5] & 0xff;
|
| - top <<= 8;
|
| - top |= bytes[4] & 0xff;
|
| -
|
| - int bottom = bytes[3] & 0xff;
|
| - bottom <<= 8;
|
| - bottom |= bytes[2] & 0xff;
|
| - bottom <<= 8;
|
| - bottom |= bytes[1] & 0xff;
|
| - bottom <<= 8;
|
| - bottom |= bytes[0] & 0xff;
|
| -
|
| - return new Int64.fromInts(top, bottom);
|
| - }
|
| -
|
| - factory Int64.fromBytesBigEndian(List<int> bytes) {
|
| - int top = bytes[0] & 0xff;
|
| - top <<= 8;
|
| - top |= bytes[1] & 0xff;
|
| - top <<= 8;
|
| - top |= bytes[2] & 0xff;
|
| - top <<= 8;
|
| - top |= bytes[3] & 0xff;
|
| -
|
| - int bottom = bytes[4] & 0xff;
|
| - bottom <<= 8;
|
| - bottom |= bytes[5] & 0xff;
|
| - bottom <<= 8;
|
| - bottom |= bytes[6] & 0xff;
|
| - bottom <<= 8;
|
| - bottom |= bytes[7] & 0xff;
|
| -
|
| - return new Int64.fromInts(top, bottom);
|
| - }
|
| -
|
| - /**
|
| - * Constructs an [Int64] from a pair of 32-bit integers having the value
|
| - * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):].
|
| - */
|
| - factory Int64.fromInts(int top, int bottom) {
|
| - top &= 0xffffffff;
|
| - bottom &= 0xffffffff;
|
| - int d0 = _MASK & bottom;
|
| - int d1 = ((0xfff & top) << 10) | (0x3ff & (bottom >> _BITS));
|
| - int d2 = _MASK2 & (top >> 12);
|
| - return Int64._masked(d0, d1, d2);
|
| - }
|
| -
|
| - // Returns the [Int64] representation of the specified value. Throws
|
| - // [ArgumentError] for non-integer arguments.
|
| - static Int64 _promote(value) {
|
| - if (value is Int64) {
|
| - return value;
|
| - } else if (value is int) {
|
| - return new Int64(value);
|
| - } else if (value is Int32) {
|
| - return value.toInt64();
|
| - }
|
| - throw new ArgumentError.value(value);
|
| - }
|
| -
|
| - Int64 operator +(other) {
|
| - Int64 o = _promote(other);
|
| - int sum0 = _l + o._l;
|
| - int sum1 = _m + o._m + (sum0 >> _BITS);
|
| - int sum2 = _h + o._h + (sum1 >> _BITS);
|
| - return Int64._masked(sum0, sum1, sum2);
|
| - }
|
| -
|
| - Int64 operator -(other) {
|
| - Int64 o = _promote(other);
|
| - return _sub(_l, _m, _h, o._l, o._m, o._h);
|
| - }
|
| -
|
| - Int64 operator -() => _negate(_l, _m, _h);
|
| -
|
| - Int64 operator *(other) {
|
| - Int64 o = _promote(other);
|
| -
|
| - // Grab 13-bit chunks.
|
| - int a0 = _l & 0x1fff;
|
| - int a1 = (_l >> 13) | ((_m & 0xf) << 9);
|
| - int a2 = (_m >> 4) & 0x1fff;
|
| - int a3 = (_m >> 17) | ((_h & 0xff) << 5);
|
| - int a4 = (_h & 0xfff00) >> 8;
|
| -
|
| - int b0 = o._l & 0x1fff;
|
| - int b1 = (o._l >> 13) | ((o._m & 0xf) << 9);
|
| - int b2 = (o._m >> 4) & 0x1fff;
|
| - int b3 = (o._m >> 17) | ((o._h & 0xff) << 5);
|
| - int b4 = (o._h & 0xfff00) >> 8;
|
| -
|
| - // Compute partial products.
|
| - // Optimization: if b is small, avoid multiplying by parts that are 0.
|
| - int p0 = a0 * b0; // << 0
|
| - int p1 = a1 * b0; // << 13
|
| - int p2 = a2 * b0; // << 26
|
| - int p3 = a3 * b0; // << 39
|
| - int p4 = a4 * b0; // << 52
|
| -
|
| - if (b1 != 0) {
|
| - p1 += a0 * b1;
|
| - p2 += a1 * b1;
|
| - p3 += a2 * b1;
|
| - p4 += a3 * b1;
|
| - }
|
| - if (b2 != 0) {
|
| - p2 += a0 * b2;
|
| - p3 += a1 * b2;
|
| - p4 += a2 * b2;
|
| - }
|
| - if (b3 != 0) {
|
| - p3 += a0 * b3;
|
| - p4 += a1 * b3;
|
| - }
|
| - if (b4 != 0) {
|
| - p4 += a0 * b4;
|
| - }
|
| -
|
| - // Accumulate into 22-bit chunks:
|
| - // .........................................c10|...................c00|
|
| - // |....................|..................xxxx|xxxxxxxxxxxxxxxxxxxxxx| p0
|
| - // |....................|......................|......................|
|
| - // |....................|...................c11|......c01.............|
|
| - // |....................|....xxxxxxxxxxxxxxxxxx|xxxxxxxxx.............| p1
|
| - // |....................|......................|......................|
|
| - // |.................c22|...............c12....|......................|
|
| - // |..........xxxxxxxxxx|xxxxxxxxxxxxxxxxxx....|......................| p2
|
| - // |....................|......................|......................|
|
| - // |.................c23|..c13.................|......................|
|
| - // |xxxxxxxxxxxxxxxxxxxx|xxxxx.................|......................| p3
|
| - // |....................|......................|......................|
|
| - // |.........c24........|......................|......................|
|
| - // |xxxxxxxxxxxx........|......................|......................| p4
|
| -
|
| - int c00 = p0 & 0x3fffff;
|
| - int c01 = (p1 & 0x1ff) << 13;
|
| - int c0 = c00 + c01;
|
| -
|
| - int c10 = p0 >> 22;
|
| - int c11 = p1 >> 9;
|
| - int c12 = (p2 & 0x3ffff) << 4;
|
| - int c13 = (p3 & 0x1f) << 17;
|
| - int c1 = c10 + c11 + c12 + c13;
|
| -
|
| - int c22 = p2 >> 18;
|
| - int c23 = p3 >> 5;
|
| - int c24 = (p4 & 0xfff) << 8;
|
| - int c2 = c22 + c23 + c24;
|
| -
|
| - // Propagate high bits from c0 -> c1, c1 -> c2.
|
| - c1 += c0 >> _BITS;
|
| - c2 += c1 >> _BITS;
|
| -
|
| - return Int64._masked(c0, c1, c2);
|
| - }
|
| -
|
| - Int64 operator %(other) => _divide(this, other, _RETURN_MOD);
|
| -
|
| - Int64 operator ~/(other) => _divide(this, other, _RETURN_DIV);
|
| -
|
| - Int64 remainder(other) => _divide(this, other, _RETURN_REM);
|
| -
|
| - Int64 operator &(other) {
|
| - Int64 o = _promote(other);
|
| - int a0 = _l & o._l;
|
| - int a1 = _m & o._m;
|
| - int a2 = _h & o._h;
|
| - return Int64._masked(a0, a1, a2);
|
| - }
|
| -
|
| - Int64 operator |(other) {
|
| - Int64 o = _promote(other);
|
| - int a0 = _l | o._l;
|
| - int a1 = _m | o._m;
|
| - int a2 = _h | o._h;
|
| - return Int64._masked(a0, a1, a2);
|
| - }
|
| -
|
| - Int64 operator ^(other) {
|
| - Int64 o = _promote(other);
|
| - int a0 = _l ^ o._l;
|
| - int a1 = _m ^ o._m;
|
| - int a2 = _h ^ o._h;
|
| - return Int64._masked(a0, a1, a2);
|
| - }
|
| -
|
| - Int64 operator ~() {
|
| - return Int64._masked(~_l, ~_m, ~_h);
|
| - }
|
| -
|
| - Int64 operator <<(int n) {
|
| - if (n < 0) {
|
| - throw new ArgumentError.value(n);
|
| - }
|
| - n &= 63;
|
| -
|
| - int res0, res1, res2;
|
| - if (n < _BITS) {
|
| - res0 = _l << n;
|
| - res1 = (_m << n) | (_l >> (_BITS - n));
|
| - res2 = (_h << n) | (_m >> (_BITS - n));
|
| - } else if (n < _BITS01) {
|
| - res0 = 0;
|
| - res1 = _l << (n - _BITS);
|
| - res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n));
|
| - } else {
|
| - res0 = 0;
|
| - res1 = 0;
|
| - res2 = _l << (n - _BITS01);
|
| - }
|
| -
|
| - return Int64._masked(res0, res1, res2);
|
| - }
|
| -
|
| - Int64 operator >>(int n) {
|
| - if (n < 0) {
|
| - throw new ArgumentError.value(n);
|
| - }
|
| - n &= 63;
|
| -
|
| - int res0, res1, res2;
|
| -
|
| - // Sign extend h(a).
|
| - int a2 = _h;
|
| - bool negative = (a2 & _SIGN_BIT_MASK) != 0;
|
| - if (negative && _MASK > _MASK2) {
|
| - // Add extra one bits on the left so the sign gets shifted into the wider
|
| - // lower words.
|
| - a2 += (_MASK - _MASK2);
|
| - }
|
| -
|
| - if (n < _BITS) {
|
| - res2 = _shiftRight(a2, n);
|
| - if (negative) {
|
| - res2 |= _MASK2 & ~(_MASK2 >> n);
|
| - }
|
| - res1 = _shiftRight(_m, n) | (a2 << (_BITS - n));
|
| - res0 = _shiftRight(_l, n) | (_m << (_BITS - n));
|
| - } else if (n < _BITS01) {
|
| - res2 = negative ? _MASK2 : 0;
|
| - res1 = _shiftRight(a2, n - _BITS);
|
| - if (negative) {
|
| - res1 |= _MASK & ~(_MASK >> (n - _BITS));
|
| - }
|
| - res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n));
|
| - } else {
|
| - res2 = negative ? _MASK2 : 0;
|
| - res1 = negative ? _MASK : 0;
|
| - res0 = _shiftRight(a2, n - _BITS01);
|
| - if (negative) {
|
| - res0 |= _MASK & ~(_MASK >> (n - _BITS01));
|
| - }
|
| - }
|
| -
|
| - return Int64._masked(res0, res1, res2);
|
| - }
|
| -
|
| - Int64 shiftRightUnsigned(int n) {
|
| - if (n < 0) {
|
| - throw new ArgumentError.value(n);
|
| - }
|
| - n &= 63;
|
| -
|
| - int res0, res1, res2;
|
| - int a2 = _MASK2 & _h; // Ensure a2 is positive.
|
| - if (n < _BITS) {
|
| - res2 = a2 >> n;
|
| - res1 = (_m >> n) | (a2 << (_BITS - n));
|
| - res0 = (_l >> n) | (_m << (_BITS - n));
|
| - } else if (n < _BITS01) {
|
| - res2 = 0;
|
| - res1 = a2 >> (n - _BITS);
|
| - res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n));
|
| - } else {
|
| - res2 = 0;
|
| - res1 = 0;
|
| - res0 = a2 >> (n - _BITS01);
|
| - }
|
| -
|
| - return Int64._masked(res0, res1, res2);
|
| - }
|
| -
|
| - /**
|
| - * Returns [:true:] if this [Int64] has the same numeric value as the
|
| - * given object. The argument may be an [int] or an [IntX].
|
| - */
|
| - bool operator ==(other) {
|
| - Int64 o;
|
| - if (other is Int64) {
|
| - o = other;
|
| - } else if (other is int) {
|
| - if (_h == 0 && _m == 0) return _l == other;
|
| - // Since we know one of [_h] or [_m] is non-zero, if [other] fits in the
|
| - // low word then it can't be numerically equal.
|
| - if ((_MASK & other) == other) return false;
|
| - o = new Int64(other);
|
| - } else if (other is Int32) {
|
| - o = other.toInt64();
|
| - }
|
| - if (o != null) {
|
| - return _l == o._l && _m == o._m && _h == o._h;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| - int compareTo(IntX other) =>_compareTo(other);
|
| -
|
| - int _compareTo(other) {
|
| - Int64 o = _promote(other);
|
| - int signa = _h >> (_BITS2 - 1);
|
| - int signb = o._h >> (_BITS2 - 1);
|
| - if (signa != signb) {
|
| - return signa == 0 ? 1 : -1;
|
| - }
|
| - if (_h > o._h) {
|
| - return 1;
|
| - } else if (_h < o._h) {
|
| - return -1;
|
| - }
|
| - if (_m > o._m) {
|
| - return 1;
|
| - } else if (_m < o._m) {
|
| - return -1;
|
| - }
|
| - if (_l > o._l) {
|
| - return 1;
|
| - } else if (_l < o._l) {
|
| - return -1;
|
| - }
|
| - return 0;
|
| - }
|
| -
|
| - bool operator <(other) => _compareTo(other) < 0;
|
| - bool operator <=(other) => _compareTo(other) <= 0;
|
| - bool operator >(other) => this._compareTo(other) > 0;
|
| - bool operator >=(other) => _compareTo(other) >= 0;
|
| -
|
| - bool get isEven => (_l & 0x1) == 0;
|
| - bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK;
|
| - bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0;
|
| - bool get isNegative => (_h & _SIGN_BIT_MASK) != 0;
|
| - bool get isOdd => (_l & 0x1) == 1;
|
| - bool get isZero => _h == 0 && _m == 0 && _l == 0;
|
| -
|
| - int get bitLength {
|
| - if (isZero) return 0;
|
| - int a0 = _l, a1 = _m, a2 = _h;
|
| - if (isNegative) {
|
| - a0 = _MASK & ~a0;
|
| - a1 = _MASK & ~a1;
|
| - a2 = _MASK2 & ~a2;
|
| - }
|
| - if (a2 != 0) return _BITS01 + a2.bitLength;
|
| - if (a1 != 0) return _BITS + a1.bitLength;
|
| - return a0.bitLength;
|
| - }
|
| -
|
| - /**
|
| - * Returns a hash code based on all the bits of this [Int64].
|
| - */
|
| - int get hashCode {
|
| - // TODO(sra): Should we ensure that hashCode values match corresponding int?
|
| - // i.e. should `new Int64(x).hashCode == x.hashCode`?
|
| - int bottom = ((_m & 0x3ff) << _BITS) | _l;
|
| - int top = (_h << 12) | ((_m >> 10) & 0xfff);
|
| - return bottom ^ top;
|
| - }
|
| -
|
| - Int64 abs() {
|
| - return this.isNegative ? -this : this;
|
| - }
|
| -
|
| - Int64 clamp(lowerLimit, upperLimit) {
|
| - Int64 lower = _promote(lowerLimit);
|
| - Int64 upper = _promote(upperLimit);
|
| - if (this < lower) return lower;
|
| - if (this > upper) return upper;
|
| - return this;
|
| - }
|
| -
|
| - /**
|
| - * Returns the number of leading zeros in this [Int64] as an [int]
|
| - * between 0 and 64.
|
| - */
|
| - int numberOfLeadingZeros() {
|
| - int b2 = Int32._numberOfLeadingZeros(_h);
|
| - if (b2 == 32) {
|
| - int b1 = Int32._numberOfLeadingZeros(_m);
|
| - if (b1 == 32) {
|
| - return Int32._numberOfLeadingZeros(_l) + 32;
|
| - } else {
|
| - return b1 + _BITS2 - (32 - _BITS);
|
| - }
|
| - } else {
|
| - return b2 - (32 - _BITS2);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Returns the number of trailing zeros in this [Int64] as an [int]
|
| - * between 0 and 64.
|
| - */
|
| - int numberOfTrailingZeros() {
|
| - int zeros = Int32._numberOfTrailingZeros(_l);
|
| - if (zeros < 32) {
|
| - return zeros;
|
| - }
|
| -
|
| - zeros = Int32._numberOfTrailingZeros(_m);
|
| - if (zeros < 32) {
|
| - return _BITS + zeros;
|
| - }
|
| -
|
| - zeros = Int32._numberOfTrailingZeros(_h);
|
| - if (zeros < 32) {
|
| - return _BITS01 + zeros;
|
| - }
|
| - // All zeros
|
| - return 64;
|
| - }
|
| -
|
| - Int64 toSigned(int width) {
|
| - if (width < 1 || width > 64) throw new RangeError.range(width, 1, 64);
|
| - if (width > _BITS01) {
|
| - return Int64._masked(_l, _m, _h.toSigned(width - _BITS01));
|
| - } else if (width > _BITS) {
|
| - int m = _m.toSigned(width - _BITS);
|
| - return m.isNegative
|
| - ? Int64._masked(_l, m, _MASK2)
|
| - : Int64._masked(_l, m, 0); // Masking for type inferrer.
|
| - } else {
|
| - int l = _l.toSigned(width);
|
| - return l.isNegative
|
| - ? Int64._masked(l, _MASK, _MASK2)
|
| - : Int64._masked(l, 0, 0); // Masking for type inferrer.
|
| - }
|
| - }
|
| -
|
| - Int64 toUnsigned(int width) {
|
| - if (width < 0 || width > 64) throw new RangeError.range(width, 0, 64);
|
| - if (width > _BITS01) {
|
| - int h = _h.toUnsigned(width - _BITS01);
|
| - return Int64._masked(_l, _m, h);
|
| - } else if (width > _BITS) {
|
| - int m = _m.toUnsigned(width - _BITS);
|
| - return Int64._masked(_l, m, 0);
|
| - } else {
|
| - int l = _l.toUnsigned(width);
|
| - return Int64._masked(l, 0, 0);
|
| - }
|
| - }
|
| -
|
| - List<int> toBytes() {
|
| - List<int> result = new List<int>(8);
|
| - result[0] = _l & 0xff;
|
| - result[1] = (_l >> 8) & 0xff;
|
| - result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f);
|
| - result[3] = (_m >> 2) & 0xff;
|
| - result[4] = (_m >> 10) & 0xff;
|
| - result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf);
|
| - result[6] = (_h >> 4) & 0xff;
|
| - result[7] = (_h >> 12) & 0xff;
|
| - return result;
|
| - }
|
| -
|
| - double toDouble() => toInt().toDouble();
|
| -
|
| - int toInt() {
|
| - int l = _l;
|
| - int m = _m;
|
| - int h = _h;
|
| - // In the sum we add least significant to most significant so that in
|
| - // JavaScript double arithmetic rounding occurs on only the last addition.
|
| - if ((_h & _SIGN_BIT_MASK) != 0) {
|
| - l = _MASK & ~_l;
|
| - m = _MASK & ~_m;
|
| - h = _MASK2 & ~_h;
|
| - return -((1 + l) + (4194304 * m) + (17592186044416 * h));
|
| - } else {
|
| - return l + (4194304 * m) + (17592186044416 * h);
|
| - }
|
| - }
|
| -
|
| - /**
|
| - * Returns an [Int32] containing the low 32 bits of this [Int64].
|
| - */
|
| - Int32 toInt32() {
|
| - return new Int32(((_m & 0x3ff) << _BITS) | _l);
|
| - }
|
| -
|
| - /**
|
| - * Returns [this].
|
| - */
|
| - Int64 toInt64() => this;
|
| -
|
| - /**
|
| - * Returns the value of this [Int64] as a decimal [String].
|
| - */
|
| - String toString() => _toRadixString(10);
|
| -
|
| - // TODO(rice) - Make this faster by avoiding arithmetic.
|
| - String toHexString() {
|
| - if (isZero) return "0";
|
| - Int64 x = this;
|
| - String hexStr = "";
|
| - while (!x.isZero) {
|
| - int digit = x._l & 0xf;
|
| - hexStr = "${_hexDigit(digit)}$hexStr";
|
| - x = x.shiftRightUnsigned(4);
|
| - }
|
| - return hexStr;
|
| - }
|
| -
|
| - String toRadixString(int radix) {
|
| - return _toRadixString(Int32._validateRadix(radix));
|
| - }
|
| -
|
| - String _toRadixString(int radix) {
|
| - int d0 = _l;
|
| - int d1 = _m;
|
| - int d2 = _h;
|
| -
|
| - if (d0 == 0 && d1 == 0 && d2 == 0) return '0';
|
| -
|
| - String sign = '';
|
| - if ((d2 & _SIGN_BIT_MASK) != 0) {
|
| - sign = '-';
|
| -
|
| - // Negate in-place.
|
| - d0 = 0 - d0;
|
| - int borrow = (d0 >> _BITS) & 1;
|
| - d0 &= _MASK;
|
| - d1 = 0 - d1 - borrow;
|
| - borrow = (d1 >> _BITS) & 1;
|
| - d1 &= _MASK;
|
| - d2 = 0 - d2 - borrow;
|
| - d2 &= _MASK2;
|
| - // d2, d1, d0 now are an unsigned 64 bit integer for MIN_VALUE and an
|
| - // unsigned 63 bit integer for other values.
|
| - }
|
| -
|
| - // Rearrange components into five components where all but the most
|
| - // significant are 10 bits wide.
|
| - //
|
| - // d4, d3, d4, d1, d0: 24 + 10 + 10 + 10 + 10 bits
|
| - //
|
| - // The choice of 10 bits allows a remainder of 20 bits to be scaled by 10
|
| - // bits and added during division while keeping all intermediate values
|
| - // within 30 bits (unsigned small integer range for 32 bit implementations
|
| - // of Dart VM and V8).
|
| - //
|
| - // 6 6 5 4 3 2 1
|
| - // 3210987654321098765432109876543210987654321098765432109876543210
|
| - // [--------d2--------][---------d1---------][---------d0---------]
|
| - // -->
|
| - // [----------d4----------][---d3---][---d2---][---d1---][---d0---]
|
| -
|
| -
|
| - int d4 = (d2 << 4) | (d1 >> 18);
|
| - int d3 = (d1 >> 8) & 0x3ff;
|
| - d2 = ((d1 << 2) | (d0 >> 20)) & 0x3ff;
|
| - d1 = (d0 >> 10) & 0x3ff;
|
| - d0 = d0 & 0x3ff;
|
| -
|
| - int fatRadix = _fatRadixTable[radix];
|
| -
|
| - // Generate chunks of digits. In radix 10, generate 6 digits per chunk.
|
| - //
|
| - // This loop generates at most 3 chunks, so we store the chunks in locals
|
| - // rather than a list. We are trying to generate digits 20 bits at a time
|
| - // until we have only 30 bits left. 20 + 20 + 30 > 64 would imply that we
|
| - // need only two chunks, but radix values 17-19 and 33-36 generate only 15
|
| - // or 16 bits per iteration, so sometimes the third chunk is needed.
|
| -
|
| - String chunk1 = "", chunk2 = "", chunk3 = "";
|
| -
|
| - while (!(d4 == 0 && d3 == 0)) {
|
| - int q = d4 ~/ fatRadix;
|
| - int r = d4 - q * fatRadix;
|
| - d4 = q;
|
| - d3 += r << 10;
|
| -
|
| - q = d3 ~/ fatRadix;
|
| - r = d3 - q * fatRadix;
|
| - d3 = q;
|
| - d2 += r << 10;
|
| -
|
| - q = d2 ~/ fatRadix;
|
| - r = d2 - q * fatRadix;
|
| - d2 = q;
|
| - d1 += r << 10;
|
| -
|
| - q = d1 ~/ fatRadix;
|
| - r = d1 - q * fatRadix;
|
| - d1 = q;
|
| - d0 += r << 10;
|
| -
|
| - q = d0 ~/ fatRadix;
|
| - r = d0 - q * fatRadix;
|
| - d0 = q;
|
| -
|
| - assert(chunk3 == "");
|
| - chunk3 = chunk2;
|
| - chunk2 = chunk1;
|
| - // Adding [fatRadix] Forces an extra digit which we discard to get a fixed
|
| - // width. E.g. (1000000 + 123) -> "1000123" -> "000123". An alternative
|
| - // would be to pad to the left with zeroes.
|
| - chunk1 = (fatRadix + r).toRadixString(radix).substring(1);
|
| - }
|
| - int residue = (d2 << 20) + (d1 << 10) + d0;
|
| - String leadingDigits = residue == 0 ? '' : residue.toRadixString(radix);
|
| - return '$sign$leadingDigits$chunk1$chunk2$chunk3';
|
| - }
|
| -
|
| - // Table of 'fat' radix values. Each entry for index `i` is the largest power
|
| - // of `i` whose remainder fits in 20 bits.
|
| - static const _fatRadixTable = const <int>[
|
| - 0,
|
| - 0,
|
| - 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
|
| - * 2,
|
| - 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3,
|
| - 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4,
|
| - 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
| - 6 * 6 * 6 * 6 * 6 * 6 * 6,
|
| - 7 * 7 * 7 * 7 * 7 * 7 * 7,
|
| - 8 * 8 * 8 * 8 * 8 * 8,
|
| - 9 * 9 * 9 * 9 * 9 * 9,
|
| - 10 * 10 * 10 * 10 * 10 * 10,
|
| - 11 * 11 * 11 * 11 * 11,
|
| - 12 * 12 * 12 * 12 * 12,
|
| - 13 * 13 * 13 * 13 * 13,
|
| - 14 * 14 * 14 * 14 * 14,
|
| - 15 * 15 * 15 * 15 * 15,
|
| - 16 * 16 * 16 * 16 * 16,
|
| - 17 * 17 * 17 * 17,
|
| - 18 * 18 * 18 * 18,
|
| - 19 * 19 * 19 * 19,
|
| - 20 * 20 * 20 * 20,
|
| - 21 * 21 * 21 * 21,
|
| - 22 * 22 * 22 * 22,
|
| - 23 * 23 * 23 * 23,
|
| - 24 * 24 * 24 * 24,
|
| - 25 * 25 * 25 * 25,
|
| - 26 * 26 * 26 * 26,
|
| - 27 * 27 * 27 * 27,
|
| - 28 * 28 * 28 * 28,
|
| - 29 * 29 * 29 * 29,
|
| - 30 * 30 * 30 * 30,
|
| - 31 * 31 * 31 * 31,
|
| - 32 * 32 * 32 * 32,
|
| - 33 * 33 * 33,
|
| - 34 * 34 * 34,
|
| - 35 * 35 * 35,
|
| - 36 * 36 * 36
|
| - ];
|
| -
|
| - String toDebugString() {
|
| - return "Int64[_l=$_l, _m=$_m, _h=$_h]";
|
| - }
|
| -
|
| -
|
| - static Int64 _masked(int a0, int a1, int a2) =>
|
| - new Int64._bits(_MASK & a0, _MASK & a1, _MASK2 & a2);
|
| -
|
| - static Int64 _sub(int a0, int a1, int a2, int b0, int b1, int b2) {
|
| - int diff0 = a0 - b0;
|
| - int diff1 = a1 - b1 - ((diff0 >> _BITS) & 1);
|
| - int diff2 = a2 - b2 - ((diff1 >> _BITS) & 1);
|
| - return _masked(diff0, diff1, diff2);
|
| - }
|
| -
|
| - static Int64 _negate(int b0, int b1, int b2) {
|
| - return _sub(0, 0, 0, b0, b1, b2);
|
| - }
|
| -
|
| - String _hexDigit(int digit) => "0123456789ABCDEF"[digit];
|
| -
|
| - // Work around dart2js bugs with negative arguments to '>>' operator.
|
| - static int _shiftRight(int x, int n) {
|
| - if (x >= 0) {
|
| - return x >> n;
|
| - } else {
|
| - int shifted = x >> n;
|
| - if (shifted >= 0x80000000) {
|
| - shifted -= 4294967296;
|
| - }
|
| - return shifted;
|
| - }
|
| - }
|
| -
|
| -
|
| - // Implementation of '~/', '%' and 'remainder'.
|
| -
|
| - static Int64 _divide(Int64 a, other, int what) {
|
| - Int64 b = _promote(other);
|
| - if (b.isZero) {
|
| - throw new IntegerDivisionByZeroException();
|
| - }
|
| - if (a.isZero) return ZERO;
|
| -
|
| - bool aNeg = a.isNegative;
|
| - bool bNeg = b.isNegative;
|
| - a = a.abs();
|
| - b = b.abs();
|
| -
|
| - int a0 = a._l;
|
| - int a1 = a._m;
|
| - int a2 = a._h;
|
| -
|
| - int b0 = b._l;
|
| - int b1 = b._m;
|
| - int b2 = b._h;
|
| - return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what);
|
| - }
|
| -
|
| - static const _RETURN_DIV = 1;
|
| - static const _RETURN_REM = 2;
|
| - static const _RETURN_MOD = 3;
|
| -
|
| - static _divideHelper(
|
| - // up to 64 bits unsigned in a2/a1/a0 and b2/b1/b0
|
| - int a0, int a1, int a2, bool aNeg, // input A.
|
| - int b0, int b1, int b2, bool bNeg, // input B.
|
| - int what) {
|
| - int q0 = 0, q1 = 0, q2 = 0; // result Q.
|
| - int r0 = 0, r1 = 0, r2 = 0; // result R.
|
| -
|
| - if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) {
|
| - // Small divisor can be handled by single-digit division within Smi range.
|
| - //
|
| - // Handling small divisors here helps the estimate version below by
|
| - // handling cases where the estimate is off by more than a small amount.
|
| -
|
| - q2 = a2 ~/ b0;
|
| - int carry = a2 - q2 * b0;
|
| - int d1 = a1 + (carry << _BITS);
|
| - q1 = d1 ~/ b0;
|
| - carry = d1 - q1 * b0;
|
| - int d0 = a0 + (carry << _BITS);
|
| - q0 = d0 ~/ b0;
|
| - r0 = d0 - q0 * b0;
|
| - } else {
|
| - // Approximate Q = A ~/ B and R = A - Q * B using doubles.
|
| -
|
| - // The floating point approximation is very close to the correct value
|
| - // when floor(A/B) fits in fewer that 53 bits.
|
| -
|
| - // We use double arithmetic for intermediate values. Double arithmetic on
|
| - // non-negative values is exact under the following conditions:
|
| - //
|
| - // - The values are integer values that fit in 53 bits.
|
| - // - Dividing by powers of two (adjusts exponent only).
|
| - // - Floor (zeroes bits with fractional weight).
|
| -
|
| - const double K2 = 17592186044416.0; // 2^44
|
| - const double K1 = 4194304.0; // 2^22
|
| -
|
| - // Approximate double values for [a] and [b].
|
| - double ad = a0 + K1 * a1 + K2 * a2;
|
| - double bd = b0 + K1 * b1 + K2 * b2;
|
| - // Approximate quotient.
|
| - double qd = (ad / bd).floorToDouble();
|
| -
|
| - // Extract components of [qd] using double arithmetic.
|
| - double q2d = (qd / K2).floorToDouble();
|
| - qd = qd - K2 * q2d;
|
| - double q1d = (qd / K1).floorToDouble();
|
| - double q0d = qd - K1 * q1d;
|
| - q2 = q2d.toInt();
|
| - q1 = q1d.toInt();
|
| - q0 = q0d.toInt();
|
| -
|
| - assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble());
|
| - assert(q2 == 0 || b2 == 0); // Q and B can't both be big since Q*B <= A.
|
| -
|
| - // P = Q * B, using doubles to hold intermediates.
|
| - // We don't need all partial sums since Q*B <= A.
|
| - double p0d = q0d * b0;
|
| - double p0carry = (p0d / K1).floorToDouble();
|
| - p0d = p0d - p0carry * K1;
|
| - double p1d = q1d * b0 + q0d * b1 + p0carry;
|
| - double p1carry = (p1d / K1).floorToDouble();
|
| - p1d = p1d - p1carry * K1;
|
| - double p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry;
|
| - assert(p2d <= _MASK2); // No partial sum overflow.
|
| -
|
| - // R = A - P
|
| - int diff0 = a0 - p0d.toInt();
|
| - int diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1);
|
| - int diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1);
|
| - r0 = _MASK & diff0;
|
| - r1 = _MASK & diff1;
|
| - r2 = _MASK2 & diff2;
|
| -
|
| - // while (R < 0 || R >= B)
|
| - // adjust R towards [0, B)
|
| - while (
|
| - r2 >= _SIGN_BIT_MASK ||
|
| - r2 > b2 ||
|
| - (r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) {
|
| - // Direction multiplier for adjustment.
|
| - int m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1;
|
| - // R = R - B or R = R + B
|
| - int d0 = r0 - m * b0;
|
| - int d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1));
|
| - int d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1));
|
| - r0 = _MASK & d0;
|
| - r1 = _MASK & d1;
|
| - r2 = _MASK2 & d2;
|
| -
|
| - // Q = Q + 1 or Q = Q - 1
|
| - d0 = q0 + m;
|
| - d1 = q1 + m * ((d0 >> _BITS) & 1);
|
| - d2 = q2 + m * ((d1 >> _BITS) & 1);
|
| - q0 = _MASK & d0;
|
| - q1 = _MASK & d1;
|
| - q2 = _MASK2 & d2;
|
| - }
|
| - }
|
| -
|
| - // 0 <= R < B
|
| - assert(Int64.ZERO <= new Int64._bits(r0, r1, r2));
|
| - assert(r2 < b2 || // Handles case where B = -(MIN_VALUE)
|
| - new Int64._bits(r0, r1, r2) < new Int64._bits(b0, b1, b2));
|
| -
|
| - assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM);
|
| - if (what == _RETURN_DIV) {
|
| - if (aNeg != bNeg) return _negate(q0, q1, q2);
|
| - return Int64._masked(q0, q1, q2); // Masking for type inferrer.
|
| - }
|
| -
|
| - if (!aNeg) {
|
| - return Int64._masked(r0, r1, r2); // Masking for type inferrer.
|
| - }
|
| -
|
| - if (what == _RETURN_MOD) {
|
| - if (r0 == 0 && r1 == 0 && r2 == 0) {
|
| - return ZERO;
|
| - } else {
|
| - return _sub(b0, b1, b2, r0, r1, r2);
|
| - }
|
| - } else {
|
| - return _negate(r0, r1, r2);
|
| - }
|
| - }
|
| -}
|
|
|