| OLD | NEW | 
 | (Empty) | 
|     1 // Copyright (c) 2012, the Dart project authors.  Please see the AUTHORS file |  | 
|     2 // for details. All rights reserved. Use of this source code is governed by a |  | 
|     3 // BSD-style license that can be found in the LICENSE file. |  | 
|     4  |  | 
|     5 part of fixnum; |  | 
|     6  |  | 
|     7 /** |  | 
|     8  * An immutable 64-bit signed integer, in the range [-2^63, 2^63 - 1]. |  | 
|     9  * Arithmetic operations may overflow in order to maintain this range. |  | 
|    10  */ |  | 
|    11 class Int64 implements IntX { |  | 
|    12  |  | 
|    13   // A 64-bit integer is represented internally as three non-negative |  | 
|    14   // integers, storing the 22 low, 22 middle, and 20 high bits of the |  | 
|    15   // 64-bit value.  _l (low) and _m (middle) are in the range |  | 
|    16   // [0, 2^22 - 1] and _h (high) is in the range [0, 2^20 - 1]. |  | 
|    17   // |  | 
|    18   // The values being assigned to _l, _m and _h in initialization are masked to |  | 
|    19   // force them into the above ranges.  Sometimes we know that the value is a |  | 
|    20   // small non-negative integer but the dart2js compiler can't infer that, so a |  | 
|    21   // few of the masking operations are not needed for correctness but are |  | 
|    22   // helpful for dart2js code quality. |  | 
|    23  |  | 
|    24   final int _l, _m, _h; |  | 
|    25  |  | 
|    26   // Note: several functions require _BITS == 22 -- do not change this value. |  | 
|    27   static const int _BITS = 22; |  | 
|    28   static const int _BITS01 = 44; // 2 * _BITS |  | 
|    29   static const int _BITS2 = 20; // 64 - _BITS01 |  | 
|    30   static const int _MASK = 4194303; // (1 << _BITS) - 1 |  | 
|    31   static const int _MASK2 = 1048575; // (1 << _BITS2) - 1 |  | 
|    32   static const int _SIGN_BIT = 19; // _BITS2 - 1 |  | 
|    33   static const int _SIGN_BIT_MASK = 1 << _SIGN_BIT; |  | 
|    34  |  | 
|    35   /** |  | 
|    36    * The maximum positive value attainable by an [Int64], namely |  | 
|    37    * 9,223,372,036,854,775,807. |  | 
|    38    */ |  | 
|    39   static const Int64 MAX_VALUE = const Int64._bits(_MASK, _MASK, _MASK2 >> 1); |  | 
|    40  |  | 
|    41   /** |  | 
|    42    * The minimum positive value attainable by an [Int64], namely |  | 
|    43    * -9,223,372,036,854,775,808. |  | 
|    44    */ |  | 
|    45   static const Int64 MIN_VALUE = const Int64._bits(0, 0, _SIGN_BIT_MASK); |  | 
|    46  |  | 
|    47   /** |  | 
|    48    * An [Int64] constant equal to 0. |  | 
|    49    */ |  | 
|    50   static const Int64 ZERO = const Int64._bits(0, 0, 0); |  | 
|    51  |  | 
|    52   /** |  | 
|    53    * An [Int64] constant equal to 1. |  | 
|    54    */ |  | 
|    55   static const Int64 ONE = const Int64._bits(1, 0, 0); |  | 
|    56  |  | 
|    57   /** |  | 
|    58    * An [Int64] constant equal to 2. |  | 
|    59    */ |  | 
|    60   static const Int64 TWO = const Int64._bits(2, 0, 0); |  | 
|    61  |  | 
|    62   /** |  | 
|    63    * Constructs an [Int64] with a given bitwise representation.  No validation |  | 
|    64    * is performed. |  | 
|    65    */ |  | 
|    66   const Int64._bits(int this._l, int this._m, int this._h); |  | 
|    67  |  | 
|    68   /** |  | 
|    69    * Parses a [String] in a given [radix] between 2 and 36 and returns an |  | 
|    70    * [Int64]. |  | 
|    71    */ |  | 
|    72   static Int64 parseRadix(String s, int radix) { |  | 
|    73     return _parseRadix(s, Int32._validateRadix(radix)); |  | 
|    74   } |  | 
|    75  |  | 
|    76   static Int64 _parseRadix(String s, int radix) { |  | 
|    77     int i = 0; |  | 
|    78     bool negative = false; |  | 
|    79     if (s[0] == '-') { |  | 
|    80       negative = true; |  | 
|    81       i++; |  | 
|    82     } |  | 
|    83     int d0 = 0, d1 = 0, d2 = 0;  //  low, middle, high components. |  | 
|    84     for (; i < s.length; i++) { |  | 
|    85       int c = s.codeUnitAt(i); |  | 
|    86       int digit = Int32._decodeDigit(c); |  | 
|    87       if (digit < 0 || digit >= radix) { |  | 
|    88         throw new FormatException("Non-radix char code: $c"); |  | 
|    89       } |  | 
|    90  |  | 
|    91       // [radix] and [digit] are at most 6 bits, component is 22, so we can |  | 
|    92       // multiply and add within 30 bit temporary values. |  | 
|    93       d0 = d0 * radix + digit; |  | 
|    94       int carry = d0 >> _BITS; |  | 
|    95       d0 = _MASK & d0; |  | 
|    96  |  | 
|    97       d1 = d1 * radix + carry; |  | 
|    98       carry = d1 >> _BITS; |  | 
|    99       d1 = _MASK & d1; |  | 
|   100  |  | 
|   101       d2 = d2 * radix + carry; |  | 
|   102       d2 = _MASK2 & d2; |  | 
|   103     } |  | 
|   104  |  | 
|   105     if (negative) return _negate(d0, d1, d2); |  | 
|   106  |  | 
|   107     return Int64._masked(d0, d1, d2); |  | 
|   108   } |  | 
|   109  |  | 
|   110   /** |  | 
|   111    * Parses a decimal [String] and returns an [Int64]. |  | 
|   112    */ |  | 
|   113   static Int64 parseInt(String s) => _parseRadix(s, 10); |  | 
|   114  |  | 
|   115   /** |  | 
|   116    * Parses a hexadecimal [String] and returns an [Int64]. |  | 
|   117    */ |  | 
|   118   static Int64 parseHex(String s) => _parseRadix(s, 16); |  | 
|   119  |  | 
|   120   // |  | 
|   121   // Public constructors |  | 
|   122   // |  | 
|   123  |  | 
|   124   /** |  | 
|   125    * Constructs an [Int64] with a given [int] value; zero by default. |  | 
|   126    */ |  | 
|   127   factory Int64([int value=0]) { |  | 
|   128     int v0 = 0, v1 = 0, v2 = 0; |  | 
|   129     bool negative = false; |  | 
|   130     if (value < 0) { |  | 
|   131       negative = true; |  | 
|   132       value = -value - 1; |  | 
|   133     } |  | 
|   134     // Avoid using bitwise operations that in JavaScript coerce their input to |  | 
|   135     // 32 bits. |  | 
|   136     v2 = value ~/ 17592186044416; // 2^44 |  | 
|   137     value -= v2 * 17592186044416; |  | 
|   138     v1 = value ~/ 4194304; // 2^22 |  | 
|   139     value -= v1 * 4194304; |  | 
|   140     v0 = value; |  | 
|   141  |  | 
|   142     if (negative) { |  | 
|   143       v0 = ~v0; |  | 
|   144       v1 = ~v1; |  | 
|   145       v2 = ~v2; |  | 
|   146     } |  | 
|   147     return Int64._masked(v0, v1, v2); |  | 
|   148   } |  | 
|   149  |  | 
|   150   factory Int64.fromBytes(List<int> bytes) { |  | 
|   151     int top = bytes[7] & 0xff; |  | 
|   152     top <<= 8; |  | 
|   153     top |= bytes[6] & 0xff; |  | 
|   154     top <<= 8; |  | 
|   155     top |= bytes[5] & 0xff; |  | 
|   156     top <<= 8; |  | 
|   157     top |= bytes[4] & 0xff; |  | 
|   158  |  | 
|   159     int bottom = bytes[3] & 0xff; |  | 
|   160     bottom <<= 8; |  | 
|   161     bottom |= bytes[2] & 0xff; |  | 
|   162     bottom <<= 8; |  | 
|   163     bottom |= bytes[1] & 0xff; |  | 
|   164     bottom <<= 8; |  | 
|   165     bottom |= bytes[0] & 0xff; |  | 
|   166  |  | 
|   167     return new Int64.fromInts(top, bottom); |  | 
|   168   } |  | 
|   169  |  | 
|   170   factory Int64.fromBytesBigEndian(List<int> bytes) { |  | 
|   171     int top = bytes[0] & 0xff; |  | 
|   172     top <<= 8; |  | 
|   173     top |= bytes[1] & 0xff; |  | 
|   174     top <<= 8; |  | 
|   175     top |= bytes[2] & 0xff; |  | 
|   176     top <<= 8; |  | 
|   177     top |= bytes[3] & 0xff; |  | 
|   178  |  | 
|   179     int bottom = bytes[4] & 0xff; |  | 
|   180     bottom <<= 8; |  | 
|   181     bottom |= bytes[5] & 0xff; |  | 
|   182     bottom <<= 8; |  | 
|   183     bottom |= bytes[6] & 0xff; |  | 
|   184     bottom <<= 8; |  | 
|   185     bottom |= bytes[7] & 0xff; |  | 
|   186  |  | 
|   187     return new Int64.fromInts(top, bottom); |  | 
|   188  } |  | 
|   189  |  | 
|   190   /** |  | 
|   191    * Constructs an [Int64] from a pair of 32-bit integers having the value |  | 
|   192    * [:((top & 0xffffffff) << 32) | (bottom & 0xffffffff):]. |  | 
|   193    */ |  | 
|   194   factory Int64.fromInts(int top, int bottom) { |  | 
|   195     top &= 0xffffffff; |  | 
|   196     bottom &= 0xffffffff; |  | 
|   197     int d0 = _MASK & bottom; |  | 
|   198     int d1 = ((0xfff & top) << 10) | (0x3ff & (bottom >> _BITS)); |  | 
|   199     int d2 = _MASK2 & (top >> 12); |  | 
|   200     return  Int64._masked(d0, d1, d2); |  | 
|   201   } |  | 
|   202  |  | 
|   203   // Returns the [Int64] representation of the specified value. Throws |  | 
|   204   // [ArgumentError] for non-integer arguments. |  | 
|   205   static Int64 _promote(value) { |  | 
|   206     if (value is Int64) { |  | 
|   207       return value; |  | 
|   208     } else if (value is int) { |  | 
|   209       return new Int64(value); |  | 
|   210     } else if (value is Int32) { |  | 
|   211       return value.toInt64(); |  | 
|   212     } |  | 
|   213     throw new ArgumentError.value(value); |  | 
|   214   } |  | 
|   215  |  | 
|   216   Int64 operator +(other) { |  | 
|   217     Int64 o = _promote(other); |  | 
|   218     int sum0 = _l + o._l; |  | 
|   219     int sum1 = _m + o._m + (sum0 >> _BITS); |  | 
|   220     int sum2 = _h + o._h + (sum1 >> _BITS); |  | 
|   221     return Int64._masked(sum0, sum1, sum2); |  | 
|   222   } |  | 
|   223  |  | 
|   224   Int64 operator -(other) { |  | 
|   225     Int64 o = _promote(other); |  | 
|   226     return _sub(_l, _m, _h, o._l, o._m, o._h); |  | 
|   227   } |  | 
|   228  |  | 
|   229   Int64 operator -() => _negate(_l, _m, _h); |  | 
|   230  |  | 
|   231   Int64 operator *(other) { |  | 
|   232     Int64 o = _promote(other); |  | 
|   233  |  | 
|   234     // Grab 13-bit chunks. |  | 
|   235     int a0 = _l & 0x1fff; |  | 
|   236     int a1 = (_l >> 13) | ((_m & 0xf) << 9); |  | 
|   237     int a2 = (_m >> 4) & 0x1fff; |  | 
|   238     int a3 = (_m >> 17) | ((_h & 0xff) << 5); |  | 
|   239     int a4 = (_h & 0xfff00) >> 8; |  | 
|   240  |  | 
|   241     int b0 = o._l & 0x1fff; |  | 
|   242     int b1 = (o._l >> 13) | ((o._m & 0xf) << 9); |  | 
|   243     int b2 = (o._m >> 4) & 0x1fff; |  | 
|   244     int b3 = (o._m >> 17) | ((o._h & 0xff) << 5); |  | 
|   245     int b4 = (o._h & 0xfff00) >> 8; |  | 
|   246  |  | 
|   247     // Compute partial products. |  | 
|   248     // Optimization: if b is small, avoid multiplying by parts that are 0. |  | 
|   249     int p0 = a0 * b0; // << 0 |  | 
|   250     int p1 = a1 * b0; // << 13 |  | 
|   251     int p2 = a2 * b0; // << 26 |  | 
|   252     int p3 = a3 * b0; // << 39 |  | 
|   253     int p4 = a4 * b0; // << 52 |  | 
|   254  |  | 
|   255     if (b1 != 0) { |  | 
|   256       p1 += a0 * b1; |  | 
|   257       p2 += a1 * b1; |  | 
|   258       p3 += a2 * b1; |  | 
|   259       p4 += a3 * b1; |  | 
|   260     } |  | 
|   261     if (b2 != 0) { |  | 
|   262       p2 += a0 * b2; |  | 
|   263       p3 += a1 * b2; |  | 
|   264       p4 += a2 * b2; |  | 
|   265     } |  | 
|   266     if (b3 != 0) { |  | 
|   267       p3 += a0 * b3; |  | 
|   268       p4 += a1 * b3; |  | 
|   269     } |  | 
|   270     if (b4 != 0) { |  | 
|   271       p4 += a0 * b4; |  | 
|   272     } |  | 
|   273  |  | 
|   274     // Accumulate into 22-bit chunks: |  | 
|   275     // .........................................c10|...................c00| |  | 
|   276     // |....................|..................xxxx|xxxxxxxxxxxxxxxxxxxxxx| p0 |  | 
|   277     // |....................|......................|......................| |  | 
|   278     // |....................|...................c11|......c01.............| |  | 
|   279     // |....................|....xxxxxxxxxxxxxxxxxx|xxxxxxxxx.............| p1 |  | 
|   280     // |....................|......................|......................| |  | 
|   281     // |.................c22|...............c12....|......................| |  | 
|   282     // |..........xxxxxxxxxx|xxxxxxxxxxxxxxxxxx....|......................| p2 |  | 
|   283     // |....................|......................|......................| |  | 
|   284     // |.................c23|..c13.................|......................| |  | 
|   285     // |xxxxxxxxxxxxxxxxxxxx|xxxxx.................|......................| p3 |  | 
|   286     // |....................|......................|......................| |  | 
|   287     // |.........c24........|......................|......................| |  | 
|   288     // |xxxxxxxxxxxx........|......................|......................| p4 |  | 
|   289  |  | 
|   290     int c00 = p0 & 0x3fffff; |  | 
|   291     int c01 = (p1 & 0x1ff) << 13; |  | 
|   292     int c0 = c00 + c01; |  | 
|   293  |  | 
|   294     int c10 = p0 >> 22; |  | 
|   295     int c11 = p1 >> 9; |  | 
|   296     int c12 = (p2 & 0x3ffff) << 4; |  | 
|   297     int c13 = (p3 & 0x1f) << 17; |  | 
|   298     int c1 = c10 + c11 + c12 + c13; |  | 
|   299  |  | 
|   300     int c22 = p2 >> 18; |  | 
|   301     int c23 = p3 >> 5; |  | 
|   302     int c24 = (p4 & 0xfff) << 8; |  | 
|   303     int c2 = c22 + c23 + c24; |  | 
|   304  |  | 
|   305     // Propagate high bits from c0 -> c1, c1 -> c2. |  | 
|   306     c1 += c0 >> _BITS; |  | 
|   307     c2 += c1 >> _BITS; |  | 
|   308  |  | 
|   309     return Int64._masked(c0, c1, c2); |  | 
|   310   } |  | 
|   311  |  | 
|   312   Int64 operator %(other) => _divide(this, other, _RETURN_MOD); |  | 
|   313  |  | 
|   314   Int64 operator ~/(other) => _divide(this, other, _RETURN_DIV); |  | 
|   315  |  | 
|   316   Int64 remainder(other) => _divide(this, other, _RETURN_REM); |  | 
|   317  |  | 
|   318   Int64 operator &(other) { |  | 
|   319     Int64 o = _promote(other); |  | 
|   320     int a0 = _l & o._l; |  | 
|   321     int a1 = _m & o._m; |  | 
|   322     int a2 = _h & o._h; |  | 
|   323     return Int64._masked(a0, a1, a2); |  | 
|   324   } |  | 
|   325  |  | 
|   326   Int64 operator |(other) { |  | 
|   327     Int64 o = _promote(other); |  | 
|   328     int a0 = _l | o._l; |  | 
|   329     int a1 = _m | o._m; |  | 
|   330     int a2 = _h | o._h; |  | 
|   331     return Int64._masked(a0, a1, a2); |  | 
|   332   } |  | 
|   333  |  | 
|   334   Int64 operator ^(other) { |  | 
|   335     Int64 o = _promote(other); |  | 
|   336     int a0 = _l ^ o._l; |  | 
|   337     int a1 = _m ^ o._m; |  | 
|   338     int a2 = _h ^ o._h; |  | 
|   339     return Int64._masked(a0, a1, a2); |  | 
|   340   } |  | 
|   341  |  | 
|   342   Int64 operator ~() { |  | 
|   343     return Int64._masked(~_l, ~_m, ~_h); |  | 
|   344   } |  | 
|   345  |  | 
|   346   Int64 operator <<(int n) { |  | 
|   347     if (n < 0) { |  | 
|   348       throw new ArgumentError.value(n); |  | 
|   349     } |  | 
|   350     n &= 63; |  | 
|   351  |  | 
|   352     int res0, res1, res2; |  | 
|   353     if (n < _BITS) { |  | 
|   354       res0 = _l << n; |  | 
|   355       res1 = (_m << n) | (_l >> (_BITS - n)); |  | 
|   356       res2 = (_h << n) | (_m >> (_BITS - n)); |  | 
|   357     } else if (n < _BITS01) { |  | 
|   358       res0 = 0; |  | 
|   359       res1 = _l << (n - _BITS); |  | 
|   360       res2 = (_m << (n - _BITS)) | (_l >> (_BITS01 - n)); |  | 
|   361     } else { |  | 
|   362       res0 = 0; |  | 
|   363       res1 = 0; |  | 
|   364       res2 = _l << (n - _BITS01); |  | 
|   365     } |  | 
|   366  |  | 
|   367     return Int64._masked(res0, res1, res2); |  | 
|   368   } |  | 
|   369  |  | 
|   370   Int64 operator >>(int n) { |  | 
|   371     if (n < 0) { |  | 
|   372       throw new ArgumentError.value(n); |  | 
|   373     } |  | 
|   374     n &= 63; |  | 
|   375  |  | 
|   376     int res0, res1, res2; |  | 
|   377  |  | 
|   378     // Sign extend h(a). |  | 
|   379     int a2 = _h; |  | 
|   380     bool negative = (a2 & _SIGN_BIT_MASK) != 0; |  | 
|   381     if (negative && _MASK > _MASK2) { |  | 
|   382       // Add extra one bits on the left so the sign gets shifted into the wider |  | 
|   383       // lower words. |  | 
|   384       a2 += (_MASK - _MASK2); |  | 
|   385     } |  | 
|   386  |  | 
|   387     if (n < _BITS) { |  | 
|   388       res2 = _shiftRight(a2, n); |  | 
|   389       if (negative) { |  | 
|   390         res2 |= _MASK2 & ~(_MASK2 >> n); |  | 
|   391       } |  | 
|   392       res1 = _shiftRight(_m, n) | (a2 << (_BITS - n)); |  | 
|   393       res0 = _shiftRight(_l, n) | (_m << (_BITS - n)); |  | 
|   394     } else if (n < _BITS01) { |  | 
|   395       res2 = negative ? _MASK2 : 0; |  | 
|   396       res1 = _shiftRight(a2, n - _BITS); |  | 
|   397       if (negative) { |  | 
|   398         res1 |= _MASK & ~(_MASK >> (n - _BITS)); |  | 
|   399       } |  | 
|   400       res0 = _shiftRight(_m, n - _BITS) | (a2 << (_BITS01 - n)); |  | 
|   401     } else { |  | 
|   402       res2 = negative ? _MASK2 : 0; |  | 
|   403       res1 = negative ? _MASK : 0; |  | 
|   404       res0 = _shiftRight(a2, n - _BITS01); |  | 
|   405       if (negative) { |  | 
|   406         res0 |= _MASK & ~(_MASK >> (n - _BITS01)); |  | 
|   407       } |  | 
|   408     } |  | 
|   409  |  | 
|   410     return Int64._masked(res0, res1, res2); |  | 
|   411   } |  | 
|   412  |  | 
|   413   Int64 shiftRightUnsigned(int n) { |  | 
|   414     if (n < 0) { |  | 
|   415       throw new ArgumentError.value(n); |  | 
|   416     } |  | 
|   417     n &= 63; |  | 
|   418  |  | 
|   419     int res0, res1, res2; |  | 
|   420     int a2 = _MASK2 & _h; // Ensure a2 is positive. |  | 
|   421     if (n < _BITS) { |  | 
|   422       res2 = a2 >> n; |  | 
|   423       res1 = (_m >> n) | (a2 << (_BITS - n)); |  | 
|   424       res0 = (_l >> n) | (_m << (_BITS - n)); |  | 
|   425     } else if (n < _BITS01) { |  | 
|   426       res2 = 0; |  | 
|   427       res1 = a2 >> (n - _BITS); |  | 
|   428       res0 = (_m >> (n - _BITS)) | (_h << (_BITS01 - n)); |  | 
|   429     } else { |  | 
|   430       res2 = 0; |  | 
|   431       res1 = 0; |  | 
|   432       res0 = a2 >> (n - _BITS01); |  | 
|   433     } |  | 
|   434  |  | 
|   435     return Int64._masked(res0, res1, res2); |  | 
|   436   } |  | 
|   437  |  | 
|   438   /** |  | 
|   439    * Returns [:true:] if this [Int64] has the same numeric value as the |  | 
|   440    * given object.  The argument may be an [int] or an [IntX]. |  | 
|   441    */ |  | 
|   442   bool operator ==(other) { |  | 
|   443     Int64 o; |  | 
|   444     if (other is Int64) { |  | 
|   445       o = other; |  | 
|   446     } else if (other is int) { |  | 
|   447       if (_h == 0 && _m == 0) return _l == other; |  | 
|   448       // Since we know one of [_h] or [_m] is non-zero, if [other] fits in the |  | 
|   449       // low word then it can't be numerically equal. |  | 
|   450       if ((_MASK & other) == other) return false; |  | 
|   451       o = new Int64(other); |  | 
|   452     } else if (other is Int32) { |  | 
|   453       o = other.toInt64(); |  | 
|   454     } |  | 
|   455     if (o != null) { |  | 
|   456       return _l == o._l && _m == o._m && _h == o._h; |  | 
|   457     } |  | 
|   458     return false; |  | 
|   459   } |  | 
|   460  |  | 
|   461   int compareTo(IntX other) =>_compareTo(other); |  | 
|   462  |  | 
|   463   int _compareTo(other) { |  | 
|   464     Int64 o = _promote(other); |  | 
|   465     int signa = _h >> (_BITS2 - 1); |  | 
|   466     int signb = o._h >> (_BITS2 - 1); |  | 
|   467     if (signa != signb) { |  | 
|   468       return signa == 0 ? 1 : -1; |  | 
|   469     } |  | 
|   470     if (_h > o._h) { |  | 
|   471       return 1; |  | 
|   472     } else if (_h < o._h) { |  | 
|   473       return -1; |  | 
|   474     } |  | 
|   475     if (_m > o._m) { |  | 
|   476       return 1; |  | 
|   477     } else if (_m < o._m) { |  | 
|   478       return -1; |  | 
|   479     } |  | 
|   480     if (_l > o._l) { |  | 
|   481       return 1; |  | 
|   482     } else if (_l < o._l) { |  | 
|   483       return -1; |  | 
|   484     } |  | 
|   485     return 0; |  | 
|   486   } |  | 
|   487  |  | 
|   488   bool operator <(other) => _compareTo(other) < 0; |  | 
|   489   bool operator <=(other) => _compareTo(other) <= 0; |  | 
|   490   bool operator >(other) => this._compareTo(other) > 0; |  | 
|   491   bool operator >=(other) => _compareTo(other) >= 0; |  | 
|   492  |  | 
|   493   bool get isEven => (_l & 0x1) == 0; |  | 
|   494   bool get isMaxValue => (_h == _MASK2 >> 1) && _m == _MASK && _l == _MASK; |  | 
|   495   bool get isMinValue => _h == _SIGN_BIT_MASK && _m == 0 && _l == 0; |  | 
|   496   bool get isNegative => (_h & _SIGN_BIT_MASK) != 0; |  | 
|   497   bool get isOdd => (_l & 0x1) == 1; |  | 
|   498   bool get isZero => _h == 0 && _m == 0 && _l == 0; |  | 
|   499  |  | 
|   500   int get bitLength { |  | 
|   501     if (isZero) return 0; |  | 
|   502     int a0 = _l, a1 = _m, a2 = _h; |  | 
|   503     if (isNegative) { |  | 
|   504       a0 = _MASK & ~a0; |  | 
|   505       a1 = _MASK & ~a1; |  | 
|   506       a2 = _MASK2 & ~a2; |  | 
|   507     } |  | 
|   508     if (a2 != 0) return _BITS01 + a2.bitLength; |  | 
|   509     if (a1 != 0) return _BITS + a1.bitLength; |  | 
|   510     return a0.bitLength; |  | 
|   511   } |  | 
|   512  |  | 
|   513   /** |  | 
|   514    * Returns a hash code based on all the bits of this [Int64]. |  | 
|   515    */ |  | 
|   516   int get hashCode { |  | 
|   517     // TODO(sra): Should we ensure that hashCode values match corresponding int? |  | 
|   518     // i.e. should `new Int64(x).hashCode == x.hashCode`? |  | 
|   519     int bottom = ((_m & 0x3ff) << _BITS) | _l; |  | 
|   520     int top = (_h << 12) | ((_m >> 10) & 0xfff); |  | 
|   521     return bottom ^ top; |  | 
|   522   } |  | 
|   523  |  | 
|   524   Int64 abs() { |  | 
|   525     return this.isNegative ? -this : this; |  | 
|   526   } |  | 
|   527  |  | 
|   528   Int64 clamp(lowerLimit, upperLimit) { |  | 
|   529     Int64 lower = _promote(lowerLimit); |  | 
|   530     Int64 upper = _promote(upperLimit); |  | 
|   531     if (this < lower) return lower; |  | 
|   532     if (this > upper) return upper; |  | 
|   533     return this; |  | 
|   534   } |  | 
|   535  |  | 
|   536   /** |  | 
|   537    * Returns the number of leading zeros in this [Int64] as an [int] |  | 
|   538    * between 0 and 64. |  | 
|   539    */ |  | 
|   540   int numberOfLeadingZeros() { |  | 
|   541     int b2 = Int32._numberOfLeadingZeros(_h); |  | 
|   542     if (b2 == 32) { |  | 
|   543       int b1 = Int32._numberOfLeadingZeros(_m); |  | 
|   544       if (b1 == 32) { |  | 
|   545         return Int32._numberOfLeadingZeros(_l) + 32; |  | 
|   546       } else { |  | 
|   547         return b1 + _BITS2 - (32 - _BITS); |  | 
|   548       } |  | 
|   549     } else { |  | 
|   550       return b2 - (32 - _BITS2); |  | 
|   551     } |  | 
|   552   } |  | 
|   553  |  | 
|   554   /** |  | 
|   555    * Returns the number of trailing zeros in this [Int64] as an [int] |  | 
|   556    * between 0 and 64. |  | 
|   557    */ |  | 
|   558   int numberOfTrailingZeros() { |  | 
|   559     int zeros = Int32._numberOfTrailingZeros(_l); |  | 
|   560     if (zeros < 32) { |  | 
|   561       return zeros; |  | 
|   562     } |  | 
|   563  |  | 
|   564     zeros = Int32._numberOfTrailingZeros(_m); |  | 
|   565     if (zeros < 32) { |  | 
|   566       return _BITS + zeros; |  | 
|   567     } |  | 
|   568  |  | 
|   569     zeros = Int32._numberOfTrailingZeros(_h); |  | 
|   570     if (zeros < 32) { |  | 
|   571       return _BITS01 + zeros; |  | 
|   572     } |  | 
|   573     // All zeros |  | 
|   574     return 64; |  | 
|   575   } |  | 
|   576  |  | 
|   577   Int64 toSigned(int width) { |  | 
|   578     if (width < 1 || width > 64) throw new RangeError.range(width, 1, 64); |  | 
|   579     if (width > _BITS01) { |  | 
|   580       return Int64._masked(_l, _m, _h.toSigned(width - _BITS01)); |  | 
|   581     } else if (width > _BITS) { |  | 
|   582       int m = _m.toSigned(width - _BITS); |  | 
|   583       return m.isNegative |  | 
|   584           ? Int64._masked(_l, m, _MASK2) |  | 
|   585           : Int64._masked(_l, m, 0);  // Masking for type inferrer. |  | 
|   586     } else { |  | 
|   587       int l = _l.toSigned(width); |  | 
|   588       return l.isNegative |  | 
|   589           ? Int64._masked(l, _MASK, _MASK2) |  | 
|   590           : Int64._masked(l, 0, 0);  // Masking for type inferrer. |  | 
|   591     } |  | 
|   592   } |  | 
|   593  |  | 
|   594   Int64 toUnsigned(int width) { |  | 
|   595     if (width < 0 || width > 64) throw new RangeError.range(width, 0, 64); |  | 
|   596     if (width > _BITS01) { |  | 
|   597       int h = _h.toUnsigned(width - _BITS01); |  | 
|   598       return Int64._masked(_l, _m, h); |  | 
|   599     } else if (width > _BITS) { |  | 
|   600       int m = _m.toUnsigned(width - _BITS); |  | 
|   601       return Int64._masked(_l, m, 0); |  | 
|   602     } else { |  | 
|   603       int l = _l.toUnsigned(width); |  | 
|   604       return Int64._masked(l, 0, 0); |  | 
|   605     } |  | 
|   606   } |  | 
|   607  |  | 
|   608   List<int> toBytes() { |  | 
|   609     List<int> result = new List<int>(8); |  | 
|   610     result[0] = _l & 0xff; |  | 
|   611     result[1] = (_l >> 8) & 0xff; |  | 
|   612     result[2] = ((_m << 6) & 0xfc) | ((_l >> 16) & 0x3f); |  | 
|   613     result[3] = (_m >> 2) & 0xff; |  | 
|   614     result[4] = (_m >> 10) & 0xff; |  | 
|   615     result[5] = ((_h << 4) & 0xf0) | ((_m >> 18) & 0xf); |  | 
|   616     result[6] = (_h >> 4) & 0xff; |  | 
|   617     result[7] = (_h >> 12) & 0xff; |  | 
|   618     return result; |  | 
|   619   } |  | 
|   620  |  | 
|   621   double toDouble() => toInt().toDouble(); |  | 
|   622  |  | 
|   623   int toInt() { |  | 
|   624     int l = _l; |  | 
|   625     int m = _m; |  | 
|   626     int h = _h; |  | 
|   627     // In the sum we add least significant to most significant so that in |  | 
|   628     // JavaScript double arithmetic rounding occurs on only the last addition. |  | 
|   629     if ((_h & _SIGN_BIT_MASK) != 0) { |  | 
|   630       l = _MASK & ~_l; |  | 
|   631       m = _MASK & ~_m; |  | 
|   632       h = _MASK2 & ~_h; |  | 
|   633       return -((1 + l) + (4194304 * m) + (17592186044416 * h)); |  | 
|   634     } else { |  | 
|   635       return l + (4194304 * m) + (17592186044416 * h); |  | 
|   636     } |  | 
|   637   } |  | 
|   638  |  | 
|   639   /** |  | 
|   640    * Returns an [Int32] containing the low 32 bits of this [Int64]. |  | 
|   641    */ |  | 
|   642   Int32 toInt32() { |  | 
|   643     return new Int32(((_m & 0x3ff) << _BITS) | _l); |  | 
|   644   } |  | 
|   645  |  | 
|   646   /** |  | 
|   647    * Returns [this]. |  | 
|   648    */ |  | 
|   649   Int64 toInt64() => this; |  | 
|   650  |  | 
|   651   /** |  | 
|   652    * Returns the value of this [Int64] as a decimal [String]. |  | 
|   653    */ |  | 
|   654   String toString() => _toRadixString(10); |  | 
|   655  |  | 
|   656   // TODO(rice) - Make this faster by avoiding arithmetic. |  | 
|   657   String toHexString() { |  | 
|   658     if (isZero) return "0"; |  | 
|   659     Int64 x = this; |  | 
|   660     String hexStr = ""; |  | 
|   661     while (!x.isZero) { |  | 
|   662       int digit = x._l & 0xf; |  | 
|   663       hexStr = "${_hexDigit(digit)}$hexStr"; |  | 
|   664       x = x.shiftRightUnsigned(4); |  | 
|   665     } |  | 
|   666     return hexStr; |  | 
|   667   } |  | 
|   668  |  | 
|   669   String toRadixString(int radix) { |  | 
|   670     return _toRadixString(Int32._validateRadix(radix)); |  | 
|   671   } |  | 
|   672  |  | 
|   673   String _toRadixString(int radix) { |  | 
|   674     int d0 = _l; |  | 
|   675     int d1 = _m; |  | 
|   676     int d2 = _h; |  | 
|   677  |  | 
|   678     if (d0 == 0 && d1 == 0 && d2 == 0) return '0'; |  | 
|   679  |  | 
|   680     String sign = ''; |  | 
|   681     if ((d2 & _SIGN_BIT_MASK) != 0) { |  | 
|   682       sign = '-'; |  | 
|   683  |  | 
|   684       // Negate in-place. |  | 
|   685       d0 = 0 - d0; |  | 
|   686       int borrow = (d0 >> _BITS) & 1; |  | 
|   687       d0 &= _MASK; |  | 
|   688       d1 = 0 - d1 - borrow; |  | 
|   689       borrow = (d1 >> _BITS) & 1; |  | 
|   690       d1 &= _MASK; |  | 
|   691       d2 = 0 - d2 - borrow; |  | 
|   692       d2 &= _MASK2; |  | 
|   693       // d2, d1, d0 now are an unsigned 64 bit integer for MIN_VALUE and an |  | 
|   694       // unsigned 63 bit integer for other values. |  | 
|   695     } |  | 
|   696  |  | 
|   697     // Rearrange components into five components where all but the most |  | 
|   698     // significant are 10 bits wide. |  | 
|   699     // |  | 
|   700     //     d4, d3, d4, d1, d0:  24 + 10 + 10 + 10 + 10 bits |  | 
|   701     // |  | 
|   702     // The choice of 10 bits allows a remainder of 20 bits to be scaled by 10 |  | 
|   703     // bits and added during division while keeping all intermediate values |  | 
|   704     // within 30 bits (unsigned small integer range for 32 bit implementations |  | 
|   705     // of Dart VM and V8). |  | 
|   706     // |  | 
|   707     //     6  6         5         4         3         2         1 |  | 
|   708     //     3210987654321098765432109876543210987654321098765432109876543210 |  | 
|   709     //     [--------d2--------][---------d1---------][---------d0---------] |  | 
|   710     //  --> |  | 
|   711     //     [----------d4----------][---d3---][---d2---][---d1---][---d0---] |  | 
|   712  |  | 
|   713  |  | 
|   714     int d4 = (d2 << 4) | (d1 >> 18); |  | 
|   715     int d3 = (d1 >> 8) & 0x3ff; |  | 
|   716     d2 = ((d1 << 2) | (d0 >> 20)) & 0x3ff; |  | 
|   717     d1 = (d0 >> 10) & 0x3ff; |  | 
|   718     d0 = d0 & 0x3ff; |  | 
|   719  |  | 
|   720     int fatRadix = _fatRadixTable[radix]; |  | 
|   721  |  | 
|   722     // Generate chunks of digits.  In radix 10, generate 6 digits per chunk. |  | 
|   723     // |  | 
|   724     // This loop generates at most 3 chunks, so we store the chunks in locals |  | 
|   725     // rather than a list.  We are trying to generate digits 20 bits at a time |  | 
|   726     // until we have only 30 bits left.  20 + 20 + 30 > 64 would imply that we |  | 
|   727     // need only two chunks, but radix values 17-19 and 33-36 generate only 15 |  | 
|   728     // or 16 bits per iteration, so sometimes the third chunk is needed. |  | 
|   729  |  | 
|   730     String chunk1 = "", chunk2 = "", chunk3 = ""; |  | 
|   731  |  | 
|   732     while (!(d4 == 0 && d3 == 0)) { |  | 
|   733       int q = d4 ~/ fatRadix; |  | 
|   734       int r = d4 - q * fatRadix; |  | 
|   735       d4 = q; |  | 
|   736       d3 += r << 10; |  | 
|   737  |  | 
|   738       q = d3 ~/ fatRadix; |  | 
|   739       r = d3 - q * fatRadix; |  | 
|   740       d3 = q; |  | 
|   741       d2 += r << 10; |  | 
|   742  |  | 
|   743       q = d2 ~/ fatRadix; |  | 
|   744       r = d2 - q * fatRadix; |  | 
|   745       d2 = q; |  | 
|   746       d1 += r << 10; |  | 
|   747  |  | 
|   748       q = d1 ~/ fatRadix; |  | 
|   749       r = d1 - q * fatRadix; |  | 
|   750       d1 = q; |  | 
|   751       d0 += r << 10; |  | 
|   752  |  | 
|   753       q = d0 ~/ fatRadix; |  | 
|   754       r = d0 - q * fatRadix; |  | 
|   755       d0 = q; |  | 
|   756  |  | 
|   757       assert(chunk3 == ""); |  | 
|   758       chunk3 = chunk2; |  | 
|   759       chunk2 = chunk1; |  | 
|   760       // Adding [fatRadix] Forces an extra digit which we discard to get a fixed |  | 
|   761       // width.  E.g.  (1000000 + 123) -> "1000123" -> "000123".  An alternative |  | 
|   762       // would be to pad to the left with zeroes. |  | 
|   763       chunk1 = (fatRadix + r).toRadixString(radix).substring(1); |  | 
|   764     } |  | 
|   765     int residue = (d2 << 20) + (d1 << 10) + d0; |  | 
|   766     String leadingDigits = residue == 0 ? '' : residue.toRadixString(radix); |  | 
|   767     return '$sign$leadingDigits$chunk1$chunk2$chunk3'; |  | 
|   768   } |  | 
|   769  |  | 
|   770   // Table of 'fat' radix values.  Each entry for index `i` is the largest power |  | 
|   771   // of `i` whose remainder fits in 20 bits. |  | 
|   772   static const _fatRadixTable = const <int>[ |  | 
|   773       0, |  | 
|   774       0, |  | 
|   775       2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 |  | 
|   776         * 2, |  | 
|   777       3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3, |  | 
|   778       4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4, |  | 
|   779       5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |  | 
|   780       6 * 6 * 6 * 6 * 6 * 6 * 6, |  | 
|   781       7 * 7 * 7 * 7 * 7 * 7 * 7, |  | 
|   782       8 * 8 * 8 * 8 * 8 * 8, |  | 
|   783       9 * 9 * 9 * 9 * 9 * 9, |  | 
|   784       10 * 10 * 10 * 10 * 10 * 10, |  | 
|   785       11 * 11 * 11 * 11 * 11, |  | 
|   786       12 * 12 * 12 * 12 * 12, |  | 
|   787       13 * 13 * 13 * 13 * 13, |  | 
|   788       14 * 14 * 14 * 14 * 14, |  | 
|   789       15 * 15 * 15 * 15 * 15, |  | 
|   790       16 * 16 * 16 * 16 * 16, |  | 
|   791       17 * 17 * 17 * 17, |  | 
|   792       18 * 18 * 18 * 18, |  | 
|   793       19 * 19 * 19 * 19, |  | 
|   794       20 * 20 * 20 * 20, |  | 
|   795       21 * 21 * 21 * 21, |  | 
|   796       22 * 22 * 22 * 22, |  | 
|   797       23 * 23 * 23 * 23, |  | 
|   798       24 * 24 * 24 * 24, |  | 
|   799       25 * 25 * 25 * 25, |  | 
|   800       26 * 26 * 26 * 26, |  | 
|   801       27 * 27 * 27 * 27, |  | 
|   802       28 * 28 * 28 * 28, |  | 
|   803       29 * 29 * 29 * 29, |  | 
|   804       30 * 30 * 30 * 30, |  | 
|   805       31 * 31 * 31 * 31, |  | 
|   806       32 * 32 * 32 * 32, |  | 
|   807       33 * 33 * 33, |  | 
|   808       34 * 34 * 34, |  | 
|   809       35 * 35 * 35, |  | 
|   810       36 * 36 * 36 |  | 
|   811   ]; |  | 
|   812  |  | 
|   813   String toDebugString() { |  | 
|   814     return "Int64[_l=$_l, _m=$_m, _h=$_h]"; |  | 
|   815   } |  | 
|   816  |  | 
|   817  |  | 
|   818   static Int64 _masked(int a0, int a1, int a2) => |  | 
|   819       new Int64._bits(_MASK & a0, _MASK & a1, _MASK2 & a2); |  | 
|   820  |  | 
|   821   static Int64 _sub(int a0, int a1, int a2, int b0, int b1, int b2) { |  | 
|   822     int diff0 = a0 - b0; |  | 
|   823     int diff1 = a1 - b1 - ((diff0 >> _BITS) & 1); |  | 
|   824     int diff2 = a2 - b2 - ((diff1 >> _BITS) & 1); |  | 
|   825     return _masked(diff0, diff1, diff2); |  | 
|   826   } |  | 
|   827  |  | 
|   828   static Int64 _negate(int b0, int b1, int b2) { |  | 
|   829     return _sub(0, 0, 0, b0, b1, b2); |  | 
|   830   } |  | 
|   831  |  | 
|   832   String _hexDigit(int digit) => "0123456789ABCDEF"[digit]; |  | 
|   833  |  | 
|   834   // Work around dart2js bugs with negative arguments to '>>' operator. |  | 
|   835   static int _shiftRight(int x, int n) { |  | 
|   836     if (x >= 0) { |  | 
|   837       return x >> n; |  | 
|   838     } else { |  | 
|   839       int shifted = x >> n; |  | 
|   840       if (shifted >= 0x80000000) { |  | 
|   841         shifted -= 4294967296; |  | 
|   842       } |  | 
|   843       return shifted; |  | 
|   844     } |  | 
|   845   } |  | 
|   846  |  | 
|   847  |  | 
|   848   // Implementation of '~/', '%' and 'remainder'. |  | 
|   849  |  | 
|   850   static Int64 _divide(Int64 a, other, int what) { |  | 
|   851     Int64 b = _promote(other); |  | 
|   852     if (b.isZero) { |  | 
|   853       throw new IntegerDivisionByZeroException(); |  | 
|   854     } |  | 
|   855     if (a.isZero) return ZERO; |  | 
|   856  |  | 
|   857     bool aNeg = a.isNegative; |  | 
|   858     bool bNeg = b.isNegative; |  | 
|   859     a = a.abs(); |  | 
|   860     b = b.abs(); |  | 
|   861  |  | 
|   862     int a0 = a._l; |  | 
|   863     int a1 = a._m; |  | 
|   864     int a2 = a._h; |  | 
|   865  |  | 
|   866     int b0 = b._l; |  | 
|   867     int b1 = b._m; |  | 
|   868     int b2 = b._h; |  | 
|   869     return _divideHelper(a0, a1, a2, aNeg, b0, b1, b2, bNeg, what); |  | 
|   870   } |  | 
|   871  |  | 
|   872   static const _RETURN_DIV = 1; |  | 
|   873   static const _RETURN_REM = 2; |  | 
|   874   static const _RETURN_MOD = 3; |  | 
|   875  |  | 
|   876   static _divideHelper( |  | 
|   877       // up to 64 bits unsigned in a2/a1/a0 and b2/b1/b0 |  | 
|   878       int a0, int a1, int a2, bool aNeg,  // input A. |  | 
|   879       int b0, int b1, int b2, bool bNeg,  // input B. |  | 
|   880       int what) { |  | 
|   881     int q0 = 0, q1 = 0, q2 = 0;  // result Q. |  | 
|   882     int r0 = 0, r1 = 0, r2 = 0;  // result R. |  | 
|   883  |  | 
|   884     if (b2 == 0 && b1 == 0 && b0 < (1 << (30 - _BITS))) { |  | 
|   885       // Small divisor can be handled by single-digit division within Smi range. |  | 
|   886       // |  | 
|   887       // Handling small divisors here helps the estimate version below by |  | 
|   888       // handling cases where the estimate is off by more than a small amount. |  | 
|   889  |  | 
|   890       q2 = a2 ~/ b0; |  | 
|   891       int carry = a2 - q2 * b0; |  | 
|   892       int d1 = a1 + (carry << _BITS); |  | 
|   893       q1 = d1 ~/ b0; |  | 
|   894       carry = d1 - q1 * b0; |  | 
|   895       int d0 = a0 + (carry << _BITS); |  | 
|   896       q0 = d0 ~/ b0; |  | 
|   897       r0 = d0 - q0 * b0; |  | 
|   898     } else { |  | 
|   899       // Approximate Q = A ~/ B and R = A - Q * B using doubles. |  | 
|   900  |  | 
|   901       // The floating point approximation is very close to the correct value |  | 
|   902       // when floor(A/B) fits in fewer that 53 bits. |  | 
|   903  |  | 
|   904       // We use double arithmetic for intermediate values.  Double arithmetic on |  | 
|   905       // non-negative values is exact under the following conditions: |  | 
|   906       // |  | 
|   907       //   - The values are integer values that fit in 53 bits. |  | 
|   908       //   - Dividing by powers of two (adjusts exponent only). |  | 
|   909       //   - Floor (zeroes bits with fractional weight). |  | 
|   910  |  | 
|   911       const double K2 = 17592186044416.0; // 2^44 |  | 
|   912       const double K1 = 4194304.0; // 2^22 |  | 
|   913  |  | 
|   914       // Approximate double values for [a] and [b]. |  | 
|   915       double ad = a0 + K1 * a1 + K2 * a2; |  | 
|   916       double bd = b0 + K1 * b1 + K2 * b2; |  | 
|   917       // Approximate quotient. |  | 
|   918       double qd = (ad / bd).floorToDouble(); |  | 
|   919  |  | 
|   920       // Extract components of [qd] using double arithmetic. |  | 
|   921       double q2d = (qd / K2).floorToDouble(); |  | 
|   922       qd = qd - K2 * q2d; |  | 
|   923       double q1d = (qd / K1).floorToDouble(); |  | 
|   924       double q0d = qd - K1 * q1d; |  | 
|   925       q2 = q2d.toInt(); |  | 
|   926       q1 = q1d.toInt(); |  | 
|   927       q0 = q0d.toInt(); |  | 
|   928  |  | 
|   929       assert(q0 + K1 * q1 + K2 * q2 == (ad / bd).floorToDouble()); |  | 
|   930       assert(q2 == 0 || b2 == 0);  // Q and B can't both be big since Q*B <= A. |  | 
|   931  |  | 
|   932       // P = Q * B, using doubles to hold intermediates. |  | 
|   933       // We don't need all partial sums since Q*B <= A. |  | 
|   934       double p0d = q0d * b0; |  | 
|   935       double p0carry = (p0d / K1).floorToDouble(); |  | 
|   936       p0d = p0d - p0carry * K1; |  | 
|   937       double p1d = q1d * b0 + q0d * b1 + p0carry; |  | 
|   938       double p1carry = (p1d / K1).floorToDouble(); |  | 
|   939       p1d = p1d - p1carry * K1; |  | 
|   940       double p2d = q2d * b0 + q1d * b1 + q0d * b2 + p1carry; |  | 
|   941       assert(p2d <= _MASK2);  // No partial sum overflow. |  | 
|   942  |  | 
|   943       // R = A - P |  | 
|   944       int diff0 = a0 - p0d.toInt(); |  | 
|   945       int diff1 = a1 - p1d.toInt() - ((diff0 >> _BITS) & 1); |  | 
|   946       int diff2 = a2 - p2d.toInt() - ((diff1 >> _BITS) & 1); |  | 
|   947       r0 = _MASK & diff0; |  | 
|   948       r1 = _MASK & diff1; |  | 
|   949       r2 = _MASK2 & diff2; |  | 
|   950  |  | 
|   951       // while (R < 0 || R >= B) |  | 
|   952       //  adjust R towards [0, B) |  | 
|   953       while ( |  | 
|   954           r2 >= _SIGN_BIT_MASK || |  | 
|   955           r2 > b2 || |  | 
|   956           (r2 == b2 && (r1 > b1 || (r1 == b1 && r0 >= b0)))) { |  | 
|   957         // Direction multiplier for adjustment. |  | 
|   958         int m = (r2 & _SIGN_BIT_MASK) == 0 ? 1 : -1; |  | 
|   959         // R = R - B  or  R = R + B |  | 
|   960         int d0 = r0 - m * b0; |  | 
|   961         int d1 = r1 - m * (b1 + ((d0 >> _BITS) & 1)); |  | 
|   962         int d2 = r2 - m * (b2 + ((d1 >> _BITS) & 1)); |  | 
|   963         r0 = _MASK & d0; |  | 
|   964         r1 = _MASK & d1; |  | 
|   965         r2 = _MASK2 & d2; |  | 
|   966  |  | 
|   967         // Q = Q + 1  or  Q = Q - 1 |  | 
|   968         d0 = q0 + m; |  | 
|   969         d1 = q1 + m * ((d0 >> _BITS) & 1); |  | 
|   970         d2 = q2 + m * ((d1 >> _BITS) & 1); |  | 
|   971         q0 = _MASK & d0; |  | 
|   972         q1 = _MASK & d1; |  | 
|   973         q2 = _MASK2 & d2; |  | 
|   974       } |  | 
|   975     } |  | 
|   976  |  | 
|   977     // 0 <= R < B |  | 
|   978     assert(Int64.ZERO <= new Int64._bits(r0, r1, r2)); |  | 
|   979     assert(r2 < b2 ||  // Handles case where B = -(MIN_VALUE) |  | 
|   980         new Int64._bits(r0, r1, r2) < new Int64._bits(b0, b1, b2)); |  | 
|   981  |  | 
|   982     assert(what == _RETURN_DIV || what == _RETURN_MOD || what == _RETURN_REM); |  | 
|   983     if (what == _RETURN_DIV) { |  | 
|   984       if (aNeg != bNeg) return _negate(q0, q1, q2); |  | 
|   985       return Int64._masked(q0, q1, q2);  // Masking for type inferrer. |  | 
|   986     } |  | 
|   987  |  | 
|   988     if (!aNeg) { |  | 
|   989       return Int64._masked(r0, r1, r2);  // Masking for type inferrer. |  | 
|   990     } |  | 
|   991  |  | 
|   992     if (what == _RETURN_MOD) { |  | 
|   993       if (r0 == 0 && r1 == 0 && r2 == 0) { |  | 
|   994         return ZERO; |  | 
|   995       } else { |  | 
|   996         return _sub(b0, b1, b2, r0, r1, r2); |  | 
|   997       } |  | 
|   998     } else { |  | 
|   999       return _negate(r0, r1, r2); |  | 
|  1000     } |  | 
|  1001   } |  | 
|  1002 } |  | 
| OLD | NEW |