| Index: crypto/ghash.cc
|
| diff --git a/crypto/ghash.cc b/crypto/ghash.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..1acd474cbc69a9c066b09f4655ab1d393b14f674
|
| --- /dev/null
|
| +++ b/crypto/ghash.cc
|
| @@ -0,0 +1,259 @@
|
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "crypto/ghash.h"
|
| +
|
| +#include <algorithm>
|
| +
|
| +#include "base/logging.h"
|
| +#include "base/sys_byteorder.h"
|
| +
|
| +namespace crypto {
|
| +
|
| +// GaloisHash is a polynomial authenticator that works in GF(2^128).
|
| +//
|
| +// Elements of the field are represented in `little-endian' order (which
|
| +// matches the description in the paper[1]), thus the most significant bit is
|
| +// the right-most bit. (This is backwards from the way that everybody else does
|
| +// it.)
|
| +//
|
| +// We store field elements in a pair of such `little-endian' uint64s. So the
|
| +// value one is represented by {low = 2**63, high = 0} and doubling a value
|
| +// involves a *right* shift.
|
| +//
|
| +// [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
|
| +
|
| +namespace {
|
| +
|
| +// Get64 reads a 64-bit, big-endian number from |bytes|.
|
| +uint64 Get64(const uint8 bytes[8]) {
|
| + uint64 t;
|
| + memcpy(&t, bytes, sizeof(t));
|
| + return base::NetToHost64(t);
|
| +}
|
| +
|
| +// Put64 writes |x| to |bytes| as a 64-bit, big-endian number.
|
| +void Put64(uint8 bytes[8], uint64 x) {
|
| + x = base::HostToNet64(x);
|
| + memcpy(bytes, &x, sizeof(x));
|
| +}
|
| +
|
| +// Reverse reverses the order of the bits of 4-bit number in |i|.
|
| +int Reverse(int i) {
|
| + i = ((i << 2) & 0xc) | ((i >> 2) & 0x3);
|
| + i = ((i << 1) & 0xa) | ((i >> 1) & 0x5);
|
| + return i;
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +GaloisHash::GaloisHash(const uint8 key[16]) {
|
| + Reset();
|
| +
|
| + // We precompute 16 multiples of |key|. However, when we do lookups into this
|
| + // table we'll be using bits from a field element and therefore the bits will
|
| + // be in the reverse order. So normally one would expect, say, 4*key to be in
|
| + // index 4 of the table but due to this bit ordering it will actually be in
|
| + // index 0010 (base 2) = 2.
|
| + FieldElement x = {Get64(key), Get64(key+8)};
|
| + product_table_[0].low = 0;
|
| + product_table_[0].hi = 0;
|
| + product_table_[Reverse(1)] = x;
|
| +
|
| + for (int i = 0; i < 16; i += 2) {
|
| + product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]);
|
| + product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x);
|
| + }
|
| +}
|
| +
|
| +void GaloisHash::Reset() {
|
| + state_ = kHashingAdditionalData;
|
| + additional_bytes_ = 0;
|
| + ciphertext_bytes_ = 0;
|
| + buf_used_ = 0;
|
| + y_.low = 0;
|
| + y_.hi = 0;
|
| +}
|
| +
|
| +void GaloisHash::UpdateAdditional(const uint8* data, size_t length) {
|
| + DCHECK_EQ(state_, kHashingAdditionalData);
|
| + additional_bytes_ += length;
|
| + Update(data, length);
|
| +}
|
| +
|
| +void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) {
|
| + if (state_ == kHashingAdditionalData) {
|
| + // If there's any remaining additional data it's zero padded to the next
|
| + // full block.
|
| + if (buf_used_ > 0) {
|
| + memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
|
| + UpdateBlocks(buf_, 1);
|
| + buf_used_ = 0;
|
| + }
|
| + state_ = kHashingCiphertext;
|
| + }
|
| +
|
| + DCHECK_EQ(state_, kHashingCiphertext);
|
| + ciphertext_bytes_ += length;
|
| + Update(data, length);
|
| +}
|
| +
|
| +void GaloisHash::Finish(void* output, size_t len) {
|
| + DCHECK(state_ != kComplete);
|
| +
|
| + if (buf_used_ > 0) {
|
| + // If there's any remaining data (additional data or ciphertext), it's zero
|
| + // padded to the next full block.
|
| + memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_);
|
| + UpdateBlocks(buf_, 1);
|
| + buf_used_ = 0;
|
| + }
|
| +
|
| + state_ = kComplete;
|
| +
|
| + // The lengths of the additional data and ciphertext are included as the last
|
| + // block. The lengths are the number of bits.
|
| + y_.low ^= additional_bytes_*8;
|
| + y_.hi ^= ciphertext_bytes_*8;
|
| + MulAfterPrecomputation(product_table_, &y_);
|
| +
|
| + uint8 *result, result_tmp[16];
|
| + if (len >= 16) {
|
| + result = reinterpret_cast<uint8*>(output);
|
| + } else {
|
| + result = result_tmp;
|
| + }
|
| +
|
| + Put64(result, y_.low);
|
| + Put64(result + 8, y_.hi);
|
| +
|
| + if (len < 16)
|
| + memcpy(output, result_tmp, len);
|
| +}
|
| +
|
| +// static
|
| +GaloisHash::FieldElement GaloisHash::Add(
|
| + const FieldElement& x,
|
| + const FieldElement& y) {
|
| + // Addition in a characteristic 2 field is just XOR.
|
| + FieldElement z = {x.low^y.low, x.hi^y.hi};
|
| + return z;
|
| +}
|
| +
|
| +// static
|
| +GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) {
|
| + const bool msb_set = x.hi & 1;
|
| +
|
| + FieldElement xx;
|
| + // Because of the bit-ordering, doubling is actually a right shift.
|
| + xx.hi = x.hi >> 1;
|
| + xx.hi |= x.low << 63;
|
| + xx.low = x.low >> 1;
|
| +
|
| + // If the most-significant bit was set before shifting then it, conceptually,
|
| + // becomes a term of x^128. This is greater than the irreducible polynomial
|
| + // so the result has to be reduced. The irreducible polynomial is
|
| + // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128
|
| + // which also means subtracting the other four terms. In characteristic 2
|
| + // fields, subtraction == addition == XOR.
|
| + if (msb_set)
|
| + xx.low ^= 0xe100000000000000ULL;
|
| +
|
| + return xx;
|
| +}
|
| +
|
| +void GaloisHash::MulAfterPrecomputation(const FieldElement* table,
|
| + FieldElement* x) {
|
| + FieldElement z = {0, 0};
|
| +
|
| + // In order to efficiently multiply, we use the precomputed table of i*key,
|
| + // for i in 0..15, to handle four bits at a time. We could obviously use
|
| + // larger tables for greater speedups but the next convenient table size is
|
| + // 4K, which is a little large.
|
| + //
|
| + // In other fields one would use bit positions spread out across the field in
|
| + // order to reduce the number of doublings required. However, in
|
| + // characteristic 2 fields, repeated doublings are exceptionally cheap and
|
| + // it's not worth spending more precomputation time to eliminate them.
|
| + for (unsigned i = 0; i < 2; i++) {
|
| + uint64 word;
|
| + if (i == 0) {
|
| + word = x->hi;
|
| + } else {
|
| + word = x->low;
|
| + }
|
| +
|
| + for (unsigned j = 0; j < 64; j += 4) {
|
| + Mul16(&z);
|
| + // the values in |table| are ordered for little-endian bit positions. See
|
| + // the comment in the constructor.
|
| + const FieldElement& t = table[word & 0xf];
|
| + z.low ^= t.low;
|
| + z.hi ^= t.hi;
|
| + word >>= 4;
|
| + }
|
| + }
|
| +
|
| + *x = z;
|
| +}
|
| +
|
| +// kReductionTable allows for rapid multiplications by 16. A multiplication by
|
| +// 16 is a right shift by four bits, which results in four bits at 2**128.
|
| +// These terms have to be eliminated by dividing by the irreducible polynomial.
|
| +// In GHASH, the polynomial is such that all the terms occur in the
|
| +// least-significant 8 bits, save for the term at x^128. Therefore we can
|
| +// precompute the value to be added to the field element for each of the 16 bit
|
| +// patterns at 2**128 and the values fit within 12 bits.
|
| +static const uint16 kReductionTable[16] = {
|
| + 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
|
| + 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
|
| +};
|
| +
|
| +// static
|
| +void GaloisHash::Mul16(FieldElement* x) {
|
| + const unsigned msw = x->hi & 0xf;
|
| + x->hi >>= 4;
|
| + x->hi |= x->low << 60;
|
| + x->low >>= 4;
|
| + x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48;
|
| +}
|
| +
|
| +void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) {
|
| + for (size_t i = 0; i < num_blocks; i++) {
|
| + y_.low ^= Get64(bytes);
|
| + bytes += 8;
|
| + y_.hi ^= Get64(bytes);
|
| + bytes += 8;
|
| + MulAfterPrecomputation(product_table_, &y_);
|
| + }
|
| +}
|
| +
|
| +void GaloisHash::Update(const uint8* data, size_t length) {
|
| + if (buf_used_ > 0) {
|
| + const size_t n = std::min(length, sizeof(buf_) - buf_used_);
|
| + memcpy(&buf_[buf_used_], data, n);
|
| + buf_used_ += n;
|
| + length -= n;
|
| + data += n;
|
| +
|
| + if (buf_used_ == sizeof(buf_)) {
|
| + UpdateBlocks(buf_, 1);
|
| + buf_used_ = 0;
|
| + }
|
| + }
|
| +
|
| + if (length >= 16) {
|
| + const size_t n = length / 16;
|
| + UpdateBlocks(data, n);
|
| + length -= n*16;
|
| + data += n*16;
|
| + }
|
| +
|
| + if (length > 0) {
|
| + memcpy(buf_, data, length);
|
| + buf_used_ = length;
|
| + }
|
| +}
|
| +
|
| +} // namespace crypto
|
|
|