OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "crypto/ghash.h" |
| 6 |
| 7 #include <algorithm> |
| 8 |
| 9 #include "base/logging.h" |
| 10 #include "base/sys_byteorder.h" |
| 11 |
| 12 namespace crypto { |
| 13 |
| 14 // GaloisHash is a polynomial authenticator that works in GF(2^128). |
| 15 // |
| 16 // Elements of the field are represented in `little-endian' order (which |
| 17 // matches the description in the paper[1]), thus the most significant bit is |
| 18 // the right-most bit. (This is backwards from the way that everybody else does |
| 19 // it.) |
| 20 // |
| 21 // We store field elements in a pair of such `little-endian' uint64s. So the |
| 22 // value one is represented by {low = 2**63, high = 0} and doubling a value |
| 23 // involves a *right* shift. |
| 24 // |
| 25 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gc
m-revised-spec.pdf |
| 26 |
| 27 namespace { |
| 28 |
| 29 // Get64 reads a 64-bit, big-endian number from |bytes|. |
| 30 uint64 Get64(const uint8 bytes[8]) { |
| 31 uint64 t; |
| 32 memcpy(&t, bytes, sizeof(t)); |
| 33 return base::NetToHost64(t); |
| 34 } |
| 35 |
| 36 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. |
| 37 void Put64(uint8 bytes[8], uint64 x) { |
| 38 x = base::HostToNet64(x); |
| 39 memcpy(bytes, &x, sizeof(x)); |
| 40 } |
| 41 |
| 42 // Reverse reverses the order of the bits of 4-bit number in |i|. |
| 43 int Reverse(int i) { |
| 44 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); |
| 45 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); |
| 46 return i; |
| 47 } |
| 48 |
| 49 } // namespace |
| 50 |
| 51 GaloisHash::GaloisHash(const uint8 key[16]) { |
| 52 Reset(); |
| 53 |
| 54 // We precompute 16 multiples of |key|. However, when we do lookups into this |
| 55 // table we'll be using bits from a field element and therefore the bits will |
| 56 // be in the reverse order. So normally one would expect, say, 4*key to be in |
| 57 // index 4 of the table but due to this bit ordering it will actually be in |
| 58 // index 0010 (base 2) = 2. |
| 59 FieldElement x = {Get64(key), Get64(key+8)}; |
| 60 product_table_[0].low = 0; |
| 61 product_table_[0].hi = 0; |
| 62 product_table_[Reverse(1)] = x; |
| 63 |
| 64 for (int i = 0; i < 16; i += 2) { |
| 65 product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); |
| 66 product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); |
| 67 } |
| 68 } |
| 69 |
| 70 void GaloisHash::Reset() { |
| 71 state_ = kHashingAdditionalData; |
| 72 additional_bytes_ = 0; |
| 73 ciphertext_bytes_ = 0; |
| 74 buf_used_ = 0; |
| 75 y_.low = 0; |
| 76 y_.hi = 0; |
| 77 } |
| 78 |
| 79 void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { |
| 80 DCHECK_EQ(state_, kHashingAdditionalData); |
| 81 additional_bytes_ += length; |
| 82 Update(data, length); |
| 83 } |
| 84 |
| 85 void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { |
| 86 if (state_ == kHashingAdditionalData) { |
| 87 // If there's any remaining additional data it's zero padded to the next |
| 88 // full block. |
| 89 if (buf_used_ > 0) { |
| 90 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); |
| 91 UpdateBlocks(buf_, 1); |
| 92 buf_used_ = 0; |
| 93 } |
| 94 state_ = kHashingCiphertext; |
| 95 } |
| 96 |
| 97 DCHECK_EQ(state_, kHashingCiphertext); |
| 98 ciphertext_bytes_ += length; |
| 99 Update(data, length); |
| 100 } |
| 101 |
| 102 void GaloisHash::Finish(void* output, size_t len) { |
| 103 DCHECK(state_ != kComplete); |
| 104 |
| 105 if (buf_used_ > 0) { |
| 106 // If there's any remaining data (additional data or ciphertext), it's zero |
| 107 // padded to the next full block. |
| 108 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); |
| 109 UpdateBlocks(buf_, 1); |
| 110 buf_used_ = 0; |
| 111 } |
| 112 |
| 113 state_ = kComplete; |
| 114 |
| 115 // The lengths of the additional data and ciphertext are included as the last |
| 116 // block. The lengths are the number of bits. |
| 117 y_.low ^= additional_bytes_*8; |
| 118 y_.hi ^= ciphertext_bytes_*8; |
| 119 MulAfterPrecomputation(product_table_, &y_); |
| 120 |
| 121 uint8 *result, result_tmp[16]; |
| 122 if (len >= 16) { |
| 123 result = reinterpret_cast<uint8*>(output); |
| 124 } else { |
| 125 result = result_tmp; |
| 126 } |
| 127 |
| 128 Put64(result, y_.low); |
| 129 Put64(result + 8, y_.hi); |
| 130 |
| 131 if (len < 16) |
| 132 memcpy(output, result_tmp, len); |
| 133 } |
| 134 |
| 135 // static |
| 136 GaloisHash::FieldElement GaloisHash::Add( |
| 137 const FieldElement& x, |
| 138 const FieldElement& y) { |
| 139 // Addition in a characteristic 2 field is just XOR. |
| 140 FieldElement z = {x.low^y.low, x.hi^y.hi}; |
| 141 return z; |
| 142 } |
| 143 |
| 144 // static |
| 145 GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { |
| 146 const bool msb_set = x.hi & 1; |
| 147 |
| 148 FieldElement xx; |
| 149 // Because of the bit-ordering, doubling is actually a right shift. |
| 150 xx.hi = x.hi >> 1; |
| 151 xx.hi |= x.low << 63; |
| 152 xx.low = x.low >> 1; |
| 153 |
| 154 // If the most-significant bit was set before shifting then it, conceptually, |
| 155 // becomes a term of x^128. This is greater than the irreducible polynomial |
| 156 // so the result has to be reduced. The irreducible polynomial is |
| 157 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 |
| 158 // which also means subtracting the other four terms. In characteristic 2 |
| 159 // fields, subtraction == addition == XOR. |
| 160 if (msb_set) |
| 161 xx.low ^= 0xe100000000000000ULL; |
| 162 |
| 163 return xx; |
| 164 } |
| 165 |
| 166 void GaloisHash::MulAfterPrecomputation(const FieldElement* table, |
| 167 FieldElement* x) { |
| 168 FieldElement z = {0, 0}; |
| 169 |
| 170 // In order to efficiently multiply, we use the precomputed table of i*key, |
| 171 // for i in 0..15, to handle four bits at a time. We could obviously use |
| 172 // larger tables for greater speedups but the next convenient table size is |
| 173 // 4K, which is a little large. |
| 174 // |
| 175 // In other fields one would use bit positions spread out across the field in |
| 176 // order to reduce the number of doublings required. However, in |
| 177 // characteristic 2 fields, repeated doublings are exceptionally cheap and |
| 178 // it's not worth spending more precomputation time to eliminate them. |
| 179 for (unsigned i = 0; i < 2; i++) { |
| 180 uint64 word; |
| 181 if (i == 0) { |
| 182 word = x->hi; |
| 183 } else { |
| 184 word = x->low; |
| 185 } |
| 186 |
| 187 for (unsigned j = 0; j < 64; j += 4) { |
| 188 Mul16(&z); |
| 189 // the values in |table| are ordered for little-endian bit positions. See |
| 190 // the comment in the constructor. |
| 191 const FieldElement& t = table[word & 0xf]; |
| 192 z.low ^= t.low; |
| 193 z.hi ^= t.hi; |
| 194 word >>= 4; |
| 195 } |
| 196 } |
| 197 |
| 198 *x = z; |
| 199 } |
| 200 |
| 201 // kReductionTable allows for rapid multiplications by 16. A multiplication by |
| 202 // 16 is a right shift by four bits, which results in four bits at 2**128. |
| 203 // These terms have to be eliminated by dividing by the irreducible polynomial. |
| 204 // In GHASH, the polynomial is such that all the terms occur in the |
| 205 // least-significant 8 bits, save for the term at x^128. Therefore we can |
| 206 // precompute the value to be added to the field element for each of the 16 bit |
| 207 // patterns at 2**128 and the values fit within 12 bits. |
| 208 static const uint16 kReductionTable[16] = { |
| 209 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, |
| 210 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, |
| 211 }; |
| 212 |
| 213 // static |
| 214 void GaloisHash::Mul16(FieldElement* x) { |
| 215 const unsigned msw = x->hi & 0xf; |
| 216 x->hi >>= 4; |
| 217 x->hi |= x->low << 60; |
| 218 x->low >>= 4; |
| 219 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; |
| 220 } |
| 221 |
| 222 void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { |
| 223 for (size_t i = 0; i < num_blocks; i++) { |
| 224 y_.low ^= Get64(bytes); |
| 225 bytes += 8; |
| 226 y_.hi ^= Get64(bytes); |
| 227 bytes += 8; |
| 228 MulAfterPrecomputation(product_table_, &y_); |
| 229 } |
| 230 } |
| 231 |
| 232 void GaloisHash::Update(const uint8* data, size_t length) { |
| 233 if (buf_used_ > 0) { |
| 234 const size_t n = std::min(length, sizeof(buf_) - buf_used_); |
| 235 memcpy(&buf_[buf_used_], data, n); |
| 236 buf_used_ += n; |
| 237 length -= n; |
| 238 data += n; |
| 239 |
| 240 if (buf_used_ == sizeof(buf_)) { |
| 241 UpdateBlocks(buf_, 1); |
| 242 buf_used_ = 0; |
| 243 } |
| 244 } |
| 245 |
| 246 if (length >= 16) { |
| 247 const size_t n = length / 16; |
| 248 UpdateBlocks(data, n); |
| 249 length -= n*16; |
| 250 data += n*16; |
| 251 } |
| 252 |
| 253 if (length > 0) { |
| 254 memcpy(buf_, data, length); |
| 255 buf_used_ = length; |
| 256 } |
| 257 } |
| 258 |
| 259 } // namespace crypto |
OLD | NEW |