Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(144)

Unified Diff: crypto/p224_spake.h

Issue 1841863002: Update monet. (Closed) Base URL: https://github.com/domokit/monet.git@master
Patch Set: Created 4 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « crypto/p224.cc ('k') | crypto/p224_spake.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: crypto/p224_spake.h
diff --git a/crypto/p224_spake.h b/crypto/p224_spake.h
new file mode 100644
index 0000000000000000000000000000000000000000..556b15cd09f7d6f006770e9d5fd955d0646207c5
--- /dev/null
+++ b/crypto/p224_spake.h
@@ -0,0 +1,126 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef CRYPTO_P224_SPAKE_H_
+#define CRYPTO_P224_SPAKE_H_
+
+#include <base/gtest_prod_util.h>
+#include <base/strings/string_piece.h>
+#include <crypto/p224.h>
+#include <crypto/sha2.h>
+
+namespace crypto {
+
+// P224EncryptedKeyExchange implements SPAKE2, a variant of Encrypted
+// Key Exchange. It allows two parties that have a secret common
+// password to establish a common secure key by exchanging messages
+// over an insecure channel without disclosing the password.
+//
+// The password can be low entropy as authenticating with an attacker only
+// gives the attacker a one-shot password oracle. No other information about
+// the password is leaked. (However, you must be sure to limit the number of
+// permitted authentication attempts otherwise they get many one-shot oracles.)
+//
+// The protocol requires several RTTs (actually two, but you shouldn't assume
+// that.) To use the object, call GetNextMessage() and pass that message to the
+// peer. Get a message from the peer and feed it into ProcessMessage. Then
+// examine the return value of ProcessMessage:
+// kResultPending: Another round is required. Call GetNextMessage and repeat.
+// kResultFailed: The authentication has failed. You can get a human readable
+// error message by calling error().
+// kResultSuccess: The authentication was successful.
+//
+// In each exchange, each peer always sends a message.
+class CRYPTO_EXPORT P224EncryptedKeyExchange {
+ public:
+ enum Result {
+ kResultPending,
+ kResultFailed,
+ kResultSuccess,
+ };
+
+ // PeerType's values are named client and server due to convention. But
+ // they could be called "A" and "B" as far as the protocol is concerned so
+ // long as the two parties don't both get the same label.
+ enum PeerType {
+ kPeerTypeClient,
+ kPeerTypeServer,
+ };
+
+ // peer_type: the type of the local authentication party.
+ // password: secret session password. Both parties to the
+ // authentication must pass the same value. For the case of a
+ // TLS connection, see RFC 5705.
+ P224EncryptedKeyExchange(PeerType peer_type,
+ const base::StringPiece& password);
+
+ // GetNextMessage returns a byte string which must be passed to the other
+ // party in the authentication.
+ const std::string& GetNextMessage();
+
+ // ProcessMessage processes a message which must have been generated by a
+ // call to GetNextMessage() by the other party.
+ Result ProcessMessage(const base::StringPiece& message);
+
+ // In the event that ProcessMessage() returns kResultFailed, error will
+ // return a human readable error message.
+ const std::string& error() const;
+
+ // The key established as result of the key exchange. Must be called
+ // at then end after ProcessMessage() returns kResultSuccess.
+ const std::string& GetKey() const;
+
+ // The key established as result of the key exchange. Can be called after
+ // the first ProcessMessage()
+ const std::string& GetUnverifiedKey() const;
+
+ private:
+ // The authentication state machine is very simple and each party proceeds
+ // through each of these states, in order.
+ enum State {
+ kStateInitial,
+ kStateRecvDH,
+ kStateSendHash,
+ kStateRecvHash,
+ kStateDone,
+ };
+
+ FRIEND_TEST_ALL_PREFIXES(MutualAuth, ExpectedValues);
+
+ void Init();
+
+ // Sets internal random scalar. Should be used by tests only.
+ void SetXForTesting(const std::string& x);
+
+ State state_;
+ const bool is_server_;
+ // next_message_ contains a value for GetNextMessage() to return.
+ std::string next_message_;
+ std::string error_;
+
+ // CalculateHash computes the verification hash for the given peer and writes
+ // |kSHA256Length| bytes at |out_digest|.
+ void CalculateHash(
+ PeerType peer_type,
+ const std::string& client_masked_dh,
+ const std::string& server_masked_dh,
+ const std::string& k,
+ uint8* out_digest);
+
+ // x_ is the secret Diffie-Hellman exponent (see paper referenced in .cc
+ // file).
+ uint8 x_[p224::kScalarBytes];
+ // pw_ is SHA256(P(password), P(session))[:28] where P() prepends a uint32,
+ // big-endian length prefix (see paper referenced in .cc file).
+ uint8 pw_[p224::kScalarBytes];
+ // expected_authenticator_ is used to store the hash value expected from the
+ // other party.
+ uint8 expected_authenticator_[kSHA256Length];
+
+ std::string key_;
+};
+
+} // namespace crypto
+
+#endif // CRYPTO_P224_SPAKE_H_
« no previous file with comments | « crypto/p224.cc ('k') | crypto/p224_spake.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698