OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #ifndef CRYPTO_P224_SPAKE_H_ |
| 6 #define CRYPTO_P224_SPAKE_H_ |
| 7 |
| 8 #include <base/gtest_prod_util.h> |
| 9 #include <base/strings/string_piece.h> |
| 10 #include <crypto/p224.h> |
| 11 #include <crypto/sha2.h> |
| 12 |
| 13 namespace crypto { |
| 14 |
| 15 // P224EncryptedKeyExchange implements SPAKE2, a variant of Encrypted |
| 16 // Key Exchange. It allows two parties that have a secret common |
| 17 // password to establish a common secure key by exchanging messages |
| 18 // over an insecure channel without disclosing the password. |
| 19 // |
| 20 // The password can be low entropy as authenticating with an attacker only |
| 21 // gives the attacker a one-shot password oracle. No other information about |
| 22 // the password is leaked. (However, you must be sure to limit the number of |
| 23 // permitted authentication attempts otherwise they get many one-shot oracles.) |
| 24 // |
| 25 // The protocol requires several RTTs (actually two, but you shouldn't assume |
| 26 // that.) To use the object, call GetNextMessage() and pass that message to the |
| 27 // peer. Get a message from the peer and feed it into ProcessMessage. Then |
| 28 // examine the return value of ProcessMessage: |
| 29 // kResultPending: Another round is required. Call GetNextMessage and repeat. |
| 30 // kResultFailed: The authentication has failed. You can get a human readable |
| 31 // error message by calling error(). |
| 32 // kResultSuccess: The authentication was successful. |
| 33 // |
| 34 // In each exchange, each peer always sends a message. |
| 35 class CRYPTO_EXPORT P224EncryptedKeyExchange { |
| 36 public: |
| 37 enum Result { |
| 38 kResultPending, |
| 39 kResultFailed, |
| 40 kResultSuccess, |
| 41 }; |
| 42 |
| 43 // PeerType's values are named client and server due to convention. But |
| 44 // they could be called "A" and "B" as far as the protocol is concerned so |
| 45 // long as the two parties don't both get the same label. |
| 46 enum PeerType { |
| 47 kPeerTypeClient, |
| 48 kPeerTypeServer, |
| 49 }; |
| 50 |
| 51 // peer_type: the type of the local authentication party. |
| 52 // password: secret session password. Both parties to the |
| 53 // authentication must pass the same value. For the case of a |
| 54 // TLS connection, see RFC 5705. |
| 55 P224EncryptedKeyExchange(PeerType peer_type, |
| 56 const base::StringPiece& password); |
| 57 |
| 58 // GetNextMessage returns a byte string which must be passed to the other |
| 59 // party in the authentication. |
| 60 const std::string& GetNextMessage(); |
| 61 |
| 62 // ProcessMessage processes a message which must have been generated by a |
| 63 // call to GetNextMessage() by the other party. |
| 64 Result ProcessMessage(const base::StringPiece& message); |
| 65 |
| 66 // In the event that ProcessMessage() returns kResultFailed, error will |
| 67 // return a human readable error message. |
| 68 const std::string& error() const; |
| 69 |
| 70 // The key established as result of the key exchange. Must be called |
| 71 // at then end after ProcessMessage() returns kResultSuccess. |
| 72 const std::string& GetKey() const; |
| 73 |
| 74 // The key established as result of the key exchange. Can be called after |
| 75 // the first ProcessMessage() |
| 76 const std::string& GetUnverifiedKey() const; |
| 77 |
| 78 private: |
| 79 // The authentication state machine is very simple and each party proceeds |
| 80 // through each of these states, in order. |
| 81 enum State { |
| 82 kStateInitial, |
| 83 kStateRecvDH, |
| 84 kStateSendHash, |
| 85 kStateRecvHash, |
| 86 kStateDone, |
| 87 }; |
| 88 |
| 89 FRIEND_TEST_ALL_PREFIXES(MutualAuth, ExpectedValues); |
| 90 |
| 91 void Init(); |
| 92 |
| 93 // Sets internal random scalar. Should be used by tests only. |
| 94 void SetXForTesting(const std::string& x); |
| 95 |
| 96 State state_; |
| 97 const bool is_server_; |
| 98 // next_message_ contains a value for GetNextMessage() to return. |
| 99 std::string next_message_; |
| 100 std::string error_; |
| 101 |
| 102 // CalculateHash computes the verification hash for the given peer and writes |
| 103 // |kSHA256Length| bytes at |out_digest|. |
| 104 void CalculateHash( |
| 105 PeerType peer_type, |
| 106 const std::string& client_masked_dh, |
| 107 const std::string& server_masked_dh, |
| 108 const std::string& k, |
| 109 uint8* out_digest); |
| 110 |
| 111 // x_ is the secret Diffie-Hellman exponent (see paper referenced in .cc |
| 112 // file). |
| 113 uint8 x_[p224::kScalarBytes]; |
| 114 // pw_ is SHA256(P(password), P(session))[:28] where P() prepends a uint32, |
| 115 // big-endian length prefix (see paper referenced in .cc file). |
| 116 uint8 pw_[p224::kScalarBytes]; |
| 117 // expected_authenticator_ is used to store the hash value expected from the |
| 118 // other party. |
| 119 uint8 expected_authenticator_[kSHA256Length]; |
| 120 |
| 121 std::string key_; |
| 122 }; |
| 123 |
| 124 } // namespace crypto |
| 125 |
| 126 #endif // CRYPTO_P224_SPAKE_H_ |
OLD | NEW |