Chromium Code Reviews| Index: src/IceBitVector.h |
| diff --git a/src/IceBitVector.h b/src/IceBitVector.h |
| index 9c99e8aebd9d801d65961329faef612a0af5aae0..68e30c6289ed82421590a1d12f616b64241a8792 100644 |
| --- a/src/IceBitVector.h |
| +++ b/src/IceBitVector.h |
| @@ -17,15 +17,19 @@ |
| #ifndef SUBZERO_SRC_ICEBITVECTOR_H |
| #define SUBZERO_SRC_ICEBITVECTOR_H |
| -#include "IceDefs.h" |
| +#include "IceMemory.h" |
| #include "IceOperand.h" |
| +#include "llvm/Support/Compiler.h" |
|
Jim Stichnoth
2016/02/26 02:08:29
Can all 3 of these includes be removed? (I'm not
John
2016/02/26 15:15:50
yes, but stuff in MathExtras is used here. code sh
Jim Stichnoth
2016/02/26 15:18:23
Sounds good, thanks.
|
| +#include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| +#include <cassert> |
| #include <climits> |
| #include <memory> |
| #include <type_traits> |
| +#include <utility> |
| namespace Ice { |
| class SmallBitVector { |
| @@ -240,6 +244,566 @@ private: |
| } |
| }; |
| +class BitVector { |
| + typedef unsigned long BitWord; |
| + using Allocator = CfgLocalAllocator<BitWord>; |
| + |
| + enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
| + |
| + static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
| + "Unsupported word size"); |
| + |
| + BitWord *Bits; // Actual bits. |
| + unsigned Size; // Size of bitvector in bits. |
| + unsigned Capacity; // Size of allocated memory in BitWord. |
| + Allocator Alloc; |
| + |
| +public: |
| + typedef unsigned size_type; |
| + // Encapsulation of a single bit. |
| + class reference { |
| + friend class BitVector; |
| + |
| + BitWord *WordRef; |
| + unsigned BitPos; |
| + |
| + reference(); // Undefined |
| + |
| + public: |
| + reference(BitVector &b, unsigned Idx) { |
| + WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
| + BitPos = Idx % BITWORD_SIZE; |
| + } |
| + |
| + reference(const reference &) = default; |
| + |
| + reference &operator=(reference t) { |
| + *this = bool(t); |
| + return *this; |
| + } |
| + |
| + reference &operator=(bool t) { |
| + if (t) |
| + *WordRef |= BitWord(1) << BitPos; |
| + else |
| + *WordRef &= ~(BitWord(1) << BitPos); |
| + return *this; |
| + } |
| + |
| + operator bool() const { |
| + return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; |
| + } |
| + }; |
| + |
| + /// BitVector default ctor - Creates an empty bitvector. |
| + BitVector(Allocator A = Allocator()) |
| + : Size(0), Capacity(0), Alloc(std::move(A)) { |
| + Bits = nullptr; |
| + } |
| + |
| + /// BitVector ctor - Creates a bitvector of specified number of bits. All |
| + /// bits are initialized to the specified value. |
| + explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator()) |
| + : Size(s), Alloc(std::move(A)) { |
| + Capacity = NumBitWords(s); |
| + Bits = Alloc.allocate(Capacity * sizeof(BitWord)); |
| + init_words(Bits, Capacity, t); |
| + if (t) |
| + clear_unused_bits(); |
| + } |
| + |
| + /// BitVector copy ctor. |
| + BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { |
| + if (Size == 0) { |
| + Bits = nullptr; |
| + Capacity = 0; |
| + return; |
| + } |
| + |
| + Capacity = NumBitWords(RHS.size()); |
| + Bits = Alloc.allocate(Capacity * sizeof(BitWord)); |
| + std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); |
| + } |
| + |
| + BitVector(BitVector &&RHS) |
| + : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), |
| + Alloc(std::move(RHS.Alloc)) { |
| + RHS.Bits = nullptr; |
| + } |
| + |
| + ~BitVector() { |
| + if (Bits != nullptr) { |
| + Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); |
| + } |
| + } |
| + |
| + /// empty - Tests whether there are no bits in this bitvector. |
| + bool empty() const { return Size == 0; } |
| + |
| + /// size - Returns the number of bits in this bitvector. |
| + size_type size() const { return Size; } |
| + |
| + /// count - Returns the number of bits which are set. |
| + size_type count() const { |
| + unsigned NumBits = 0; |
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| + NumBits += llvm::countPopulation(Bits[i]); |
| + return NumBits; |
| + } |
| + |
| + /// any - Returns true if any bit is set. |
| + bool any() const { |
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| + if (Bits[i] != 0) |
| + return true; |
| + return false; |
| + } |
| + |
| + /// all - Returns true if all bits are set. |
| + bool all() const { |
| + for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) |
| + if (Bits[i] != ~0UL) |
| + return false; |
| + |
| + // If bits remain check that they are ones. The unused bits are always zero. |
| + if (unsigned Remainder = Size % BITWORD_SIZE) |
| + return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; |
| + |
| + return true; |
| + } |
| + |
| + /// none - Returns true if none of the bits are set. |
| + bool none() const { return !any(); } |
| + |
| + /// find_first - Returns the index of the first set bit, -1 if none |
| + /// of the bits are set. |
| + int find_first() const { |
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| + if (Bits[i] != 0) |
| + return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); |
| + return -1; |
| + } |
| + |
| + /// find_next - Returns the index of the next set bit following the |
| + /// "Prev" bit. Returns -1 if the next set bit is not found. |
| + int find_next(unsigned Prev) const { |
| + ++Prev; |
| + if (Prev >= Size) |
| + return -1; |
| + |
| + unsigned WordPos = Prev / BITWORD_SIZE; |
| + unsigned BitPos = Prev % BITWORD_SIZE; |
| + BitWord Copy = Bits[WordPos]; |
| + // Mask off previous bits. |
| + Copy &= ~0UL << BitPos; |
| + |
| + if (Copy != 0) |
| + return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); |
| + |
| + // Check subsequent words. |
| + for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) |
| + if (Bits[i] != 0) |
| + return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); |
| + return -1; |
| + } |
| + |
| + /// clear - Clear all bits. |
| + void clear() { Size = 0; } |
| + |
| + /// resize - Grow or shrink the bitvector. |
| + void resize(unsigned N, bool t = false) { |
| + if (N > Capacity * BITWORD_SIZE) { |
| + unsigned OldCapacity = Capacity; |
| + grow(N); |
| + init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); |
| + } |
| + |
| + // Set any old unused bits that are now included in the BitVector. This |
| + // may set bits that are not included in the new vector, but we will clear |
| + // them back out below. |
| + if (N > Size) |
| + set_unused_bits(t); |
| + |
| + // Update the size, and clear out any bits that are now unused |
| + unsigned OldSize = Size; |
| + Size = N; |
| + if (t || N < OldSize) |
| + clear_unused_bits(); |
| + } |
| + |
| + void reserve(unsigned N) { |
| + if (N > Capacity * BITWORD_SIZE) |
| + grow(N); |
| + } |
| + |
| + // Set, reset, flip |
| + BitVector &set() { |
| + init_words(Bits, Capacity, true); |
| + clear_unused_bits(); |
| + return *this; |
| + } |
| + |
| + BitVector &set(unsigned Idx) { |
| + assert(Bits && "Bits never allocated"); |
| + Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
| + return *this; |
| + } |
| + |
| + /// set - Efficiently set a range of bits in [I, E) |
| + BitVector &set(unsigned I, unsigned E) { |
| + assert(I <= E && "Attempted to set backwards range!"); |
| + assert(E <= size() && "Attempted to set out-of-bounds range!"); |
| + |
| + if (I == E) |
| + return *this; |
| + |
| + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| + BitWord EMask = 1UL << (E % BITWORD_SIZE); |
| + BitWord IMask = 1UL << (I % BITWORD_SIZE); |
| + BitWord Mask = EMask - IMask; |
| + Bits[I / BITWORD_SIZE] |= Mask; |
| + return *this; |
| + } |
| + |
| + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
| + Bits[I / BITWORD_SIZE] |= PrefixMask; |
| + I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); |
| + |
| + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| + Bits[I / BITWORD_SIZE] = ~0UL; |
| + |
| + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
| + if (I < E) |
| + Bits[I / BITWORD_SIZE] |= PostfixMask; |
| + |
| + return *this; |
| + } |
| + |
| + BitVector &reset() { |
| + init_words(Bits, Capacity, false); |
| + return *this; |
| + } |
| + |
| + BitVector &reset(unsigned Idx) { |
| + Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
| + return *this; |
| + } |
| + |
| + /// reset - Efficiently reset a range of bits in [I, E) |
| + BitVector &reset(unsigned I, unsigned E) { |
| + assert(I <= E && "Attempted to reset backwards range!"); |
| + assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
| + |
| + if (I == E) |
| + return *this; |
| + |
| + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| + BitWord EMask = 1UL << (E % BITWORD_SIZE); |
| + BitWord IMask = 1UL << (I % BITWORD_SIZE); |
| + BitWord Mask = EMask - IMask; |
| + Bits[I / BITWORD_SIZE] &= ~Mask; |
| + return *this; |
| + } |
| + |
| + BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); |
| + Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
| + I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); |
| + |
| + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| + Bits[I / BITWORD_SIZE] = 0UL; |
| + |
| + BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; |
| + if (I < E) |
| + Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
| + |
| + return *this; |
| + } |
| + |
| + BitVector &flip() { |
| + for (unsigned i = 0; i < NumBitWords(size()); ++i) |
| + Bits[i] = ~Bits[i]; |
| + clear_unused_bits(); |
| + return *this; |
| + } |
| + |
| + BitVector &flip(unsigned Idx) { |
| + Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
| + return *this; |
| + } |
| + |
| + // Indexing. |
| + reference operator[](unsigned Idx) { |
| + assert(Idx < Size && "Out-of-bounds Bit access."); |
| + return reference(*this, Idx); |
| + } |
| + |
| + bool operator[](unsigned Idx) const { |
| + assert(Idx < Size && "Out-of-bounds Bit access."); |
| + BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
| + return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
| + } |
| + |
| + bool test(unsigned Idx) const { return (*this)[Idx]; } |
| + |
| + /// Test if any common bits are set. |
| + bool anyCommon(const BitVector &RHS) const { |
| + unsigned ThisWords = NumBitWords(size()); |
| + unsigned RHSWords = NumBitWords(RHS.size()); |
| + for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) |
| + if (Bits[i] & RHS.Bits[i]) |
| + return true; |
| + return false; |
| + } |
| + |
| + // Comparison operators. |
| + bool operator==(const BitVector &RHS) const { |
| + unsigned ThisWords = NumBitWords(size()); |
| + unsigned RHSWords = NumBitWords(RHS.size()); |
| + unsigned i; |
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| + if (Bits[i] != RHS.Bits[i]) |
| + return false; |
| + |
| + // Verify that any extra words are all zeros. |
| + if (i != ThisWords) { |
| + for (; i != ThisWords; ++i) |
| + if (Bits[i]) |
| + return false; |
| + } else if (i != RHSWords) { |
| + for (; i != RHSWords; ++i) |
| + if (RHS.Bits[i]) |
| + return false; |
| + } |
| + return true; |
| + } |
| + |
| + bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } |
| + |
| + /// Intersection, union, disjoint union. |
| + BitVector &operator&=(const BitVector &RHS) { |
| + unsigned ThisWords = NumBitWords(size()); |
| + unsigned RHSWords = NumBitWords(RHS.size()); |
| + unsigned i; |
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| + Bits[i] &= RHS.Bits[i]; |
| + |
| + // Any bits that are just in this bitvector become zero, because they aren't |
| + // in the RHS bit vector. Any words only in RHS are ignored because they |
| + // are already zero in the LHS. |
| + for (; i != ThisWords; ++i) |
| + Bits[i] = 0; |
| + |
| + return *this; |
| + } |
| + |
| + /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
| + BitVector &reset(const BitVector &RHS) { |
| + unsigned ThisWords = NumBitWords(size()); |
| + unsigned RHSWords = NumBitWords(RHS.size()); |
| + unsigned i; |
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| + Bits[i] &= ~RHS.Bits[i]; |
| + return *this; |
| + } |
| + |
| + /// test - Check if (This - RHS) is zero. |
| + /// This is the same as reset(RHS) and any(). |
| + bool test(const BitVector &RHS) const { |
| + unsigned ThisWords = NumBitWords(size()); |
| + unsigned RHSWords = NumBitWords(RHS.size()); |
| + unsigned i; |
| + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) |
| + if ((Bits[i] & ~RHS.Bits[i]) != 0) |
| + return true; |
| + |
| + for (; i != ThisWords; ++i) |
| + if (Bits[i] != 0) |
| + return true; |
| + |
| + return false; |
| + } |
| + |
| + BitVector &operator|=(const BitVector &RHS) { |
| + if (size() < RHS.size()) |
| + resize(RHS.size()); |
| + for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| + Bits[i] |= RHS.Bits[i]; |
| + return *this; |
| + } |
| + |
| + BitVector &operator^=(const BitVector &RHS) { |
| + if (size() < RHS.size()) |
| + resize(RHS.size()); |
| + for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) |
| + Bits[i] ^= RHS.Bits[i]; |
| + return *this; |
| + } |
| + |
| + // Assignment operator. |
| + const BitVector &operator=(const BitVector &RHS) { |
| + if (this == &RHS) |
| + return *this; |
| + |
| + Size = RHS.size(); |
| + unsigned RHSWords = NumBitWords(Size); |
| + if (Size <= Capacity * BITWORD_SIZE) { |
| + if (Size) |
| + std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); |
| + clear_unused_bits(); |
| + return *this; |
| + } |
| + |
| + // Grow the bitvector to have enough elements. |
| + const auto OldCapacity = Capacity; |
| + Capacity = RHSWords; |
| + assert(Capacity > 0 && "negative capacity?"); |
| + BitWord *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); |
| + std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); |
| + |
| + // Destroy the old bits. |
| + Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); |
| + Bits = NewBits; |
| + |
| + return *this; |
| + } |
| + |
| + const BitVector &operator=(BitVector &&RHS) { |
| + if (this == &RHS) |
| + return *this; |
| + |
| + Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); |
| + Bits = RHS.Bits; |
| + Size = RHS.Size; |
| + Capacity = RHS.Capacity; |
| + |
| + RHS.Bits = nullptr; |
| + |
| + return *this; |
| + } |
| + |
| + void swap(BitVector &RHS) { |
| + std::swap(Bits, RHS.Bits); |
| + std::swap(Size, RHS.Size); |
| + std::swap(Capacity, RHS.Capacity); |
| + } |
| + |
| + //===--------------------------------------------------------------------===// |
| + // Portable bit mask operations. |
| + //===--------------------------------------------------------------------===// |
| + // |
| + // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
| + // fixed word size makes it easier to work with literal bit vector constants |
| + // in portable code. |
| + // |
| + // The LSB in each word is the lowest numbered bit. The size of a portable |
| + // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
| + // given, the bit mask is assumed to cover the entire BitVector. |
| + |
| + /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
| + /// This computes "*this |= Mask". |
| + void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| + applyMask<true, false>(Mask, MaskWords); |
| + } |
| + |
| + /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
| + /// Don't resize. This computes "*this &= ~Mask". |
| + void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| + applyMask<false, false>(Mask, MaskWords); |
| + } |
| + |
| + /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. |
| + /// Don't resize. This computes "*this |= ~Mask". |
| + void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| + applyMask<true, true>(Mask, MaskWords); |
| + } |
| + |
| + /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. |
| + /// Don't resize. This computes "*this &= Mask". |
| + void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| + applyMask<false, true>(Mask, MaskWords); |
| + } |
| + |
| +private: |
| + unsigned NumBitWords(unsigned S) const { |
| + return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; |
| + } |
| + |
| + // Set the unused bits in the high words. |
| + void set_unused_bits(bool t = true) { |
| + // Set high words first. |
| + unsigned UsedWords = NumBitWords(Size); |
| + if (Capacity > UsedWords) |
| + init_words(&Bits[UsedWords], (Capacity - UsedWords), t); |
| + |
| + // Then set any stray high bits of the last used word. |
| + unsigned ExtraBits = Size % BITWORD_SIZE; |
| + if (ExtraBits) { |
| + BitWord ExtraBitMask = ~0UL << ExtraBits; |
| + if (t) |
| + Bits[UsedWords - 1] |= ExtraBitMask; |
| + else |
| + Bits[UsedWords - 1] &= ~ExtraBitMask; |
| + } |
| + } |
| + |
| + // Clear the unused bits in the high words. |
| + void clear_unused_bits() { set_unused_bits(false); } |
| + |
| + void grow(unsigned NewSize) { |
| + const auto OldCapacity = Capacity; |
| + Capacity = std::max(NumBitWords(NewSize), Capacity * 2); |
| + assert(Capacity > 0 && "realloc-ing zero space"); |
| + auto *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); |
| + std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); |
| + Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); |
| + Bits = NewBits; |
| + |
| + clear_unused_bits(); |
| + } |
| + |
| + void init_words(BitWord *B, unsigned NumWords, bool t) { |
| + memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); |
| + } |
| + |
| + template <bool AddBits, bool InvertMask> |
| + void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
| + static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); |
| + MaskWords = std::min(MaskWords, (size() + 31) / 32); |
| + const unsigned Scale = BITWORD_SIZE / 32; |
| + unsigned i; |
| + for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { |
| + BitWord BW = Bits[i]; |
| + // This inner loop should unroll completely when BITWORD_SIZE > 32. |
| + for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { |
| + uint32_t M = *Mask++; |
| + if (InvertMask) |
| + M = ~M; |
| + if (AddBits) |
| + BW |= BitWord(M) << b; |
| + else |
| + BW &= ~(BitWord(M) << b); |
| + } |
| + Bits[i] = BW; |
| + } |
| + for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { |
| + uint32_t M = *Mask++; |
| + if (InvertMask) |
| + M = ~M; |
| + if (AddBits) |
| + Bits[i] |= BitWord(M) << b; |
| + else |
| + Bits[i] &= ~(BitWord(M) << b); |
| + } |
| + if (AddBits) |
| + clear_unused_bits(); |
| + } |
| +}; |
| + |
| } // end of namespace Ice |
| +namespace std { |
| +/// Implement std::swap in terms of BitVector swap. |
| +inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); } |
| +} |
| + |
| #endif // SUBZERO_SRC_ICEBITVECTOR_H |