OLD | NEW |
---|---|
1 //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// | 1 //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 /// | 9 /// |
10 /// \file | 10 /// \file |
11 /// \brief Defines and implements a bit vector with inline storage. It is a drop | 11 /// \brief Defines and implements a bit vector with inline storage. It is a drop |
12 /// in replacement for llvm::SmallBitVector in subzero -- i.e., not all of | 12 /// in replacement for llvm::SmallBitVector in subzero -- i.e., not all of |
Jim Stichnoth
2016/02/26 02:08:29
capitalize Subzero
John
2016/02/26 15:15:50
Done.
| |
13 /// llvm::SmallBitVector interface is implemented. | 13 /// llvm::SmallBitVector interface is implemented. |
14 /// | 14 /// |
Jim Stichnoth
2016/02/26 02:08:29
Also add a blurb about where BitVector comes from.
John
2016/02/26 15:15:50
Done.
| |
15 //===----------------------------------------------------------------------===// | 15 //===----------------------------------------------------------------------===// |
16 | 16 |
17 #ifndef SUBZERO_SRC_ICEBITVECTOR_H | 17 #ifndef SUBZERO_SRC_ICEBITVECTOR_H |
18 #define SUBZERO_SRC_ICEBITVECTOR_H | 18 #define SUBZERO_SRC_ICEBITVECTOR_H |
19 | 19 |
20 #include "IceDefs.h" | 20 #include "IceMemory.h" |
21 #include "IceOperand.h" | 21 #include "IceOperand.h" |
22 | 22 |
23 #include "llvm/Support/Compiler.h" | |
Jim Stichnoth
2016/02/26 02:08:29
Can all 3 of these includes be removed? (I'm not
John
2016/02/26 15:15:50
yes, but stuff in MathExtras is used here. code sh
Jim Stichnoth
2016/02/26 15:18:23
Sounds good, thanks.
| |
24 #include "llvm/Support/ErrorHandling.h" | |
23 #include "llvm/Support/MathExtras.h" | 25 #include "llvm/Support/MathExtras.h" |
24 | 26 |
25 #include <algorithm> | 27 #include <algorithm> |
28 #include <cassert> | |
26 #include <climits> | 29 #include <climits> |
27 #include <memory> | 30 #include <memory> |
28 #include <type_traits> | 31 #include <type_traits> |
32 #include <utility> | |
29 | 33 |
30 namespace Ice { | 34 namespace Ice { |
31 class SmallBitVector { | 35 class SmallBitVector { |
32 public: | 36 public: |
33 using ElementType = uint64_t; | 37 using ElementType = uint64_t; |
34 static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); | 38 static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); |
35 static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; | 39 static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; |
36 static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); | 40 static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); |
37 | 41 |
38 SmallBitVector(const SmallBitVector &BV) { *this = BV; } | 42 SmallBitVector(const SmallBitVector &BV) { *this = BV; } |
(...skipping 194 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
233 Bits[Pos] ^= ~ElementType(0); | 237 Bits[Pos] ^= ~ElementType(0); |
234 } else { | 238 } else { |
235 const ElementType Mask = | 239 const ElementType Mask = |
236 (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; | 240 (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; |
237 Bits[Pos] ^= Mask; | 241 Bits[Pos] ^= Mask; |
238 } | 242 } |
239 invert<Pos + 1>(); | 243 invert<Pos + 1>(); |
240 } | 244 } |
241 }; | 245 }; |
242 | 246 |
247 class BitVector { | |
248 typedef unsigned long BitWord; | |
249 using Allocator = CfgLocalAllocator<BitWord>; | |
250 | |
251 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; | |
252 | |
253 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, | |
254 "Unsupported word size"); | |
255 | |
256 BitWord *Bits; // Actual bits. | |
257 unsigned Size; // Size of bitvector in bits. | |
258 unsigned Capacity; // Size of allocated memory in BitWord. | |
259 Allocator Alloc; | |
260 | |
261 public: | |
262 typedef unsigned size_type; | |
263 // Encapsulation of a single bit. | |
264 class reference { | |
265 friend class BitVector; | |
266 | |
267 BitWord *WordRef; | |
268 unsigned BitPos; | |
269 | |
270 reference(); // Undefined | |
271 | |
272 public: | |
273 reference(BitVector &b, unsigned Idx) { | |
274 WordRef = &b.Bits[Idx / BITWORD_SIZE]; | |
275 BitPos = Idx % BITWORD_SIZE; | |
276 } | |
277 | |
278 reference(const reference &) = default; | |
279 | |
280 reference &operator=(reference t) { | |
281 *this = bool(t); | |
282 return *this; | |
283 } | |
284 | |
285 reference &operator=(bool t) { | |
286 if (t) | |
287 *WordRef |= BitWord(1) << BitPos; | |
288 else | |
289 *WordRef &= ~(BitWord(1) << BitPos); | |
290 return *this; | |
291 } | |
292 | |
293 operator bool() const { | |
294 return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; | |
295 } | |
296 }; | |
297 | |
298 /// BitVector default ctor - Creates an empty bitvector. | |
299 BitVector(Allocator A = Allocator()) | |
300 : Size(0), Capacity(0), Alloc(std::move(A)) { | |
301 Bits = nullptr; | |
302 } | |
303 | |
304 /// BitVector ctor - Creates a bitvector of specified number of bits. All | |
305 /// bits are initialized to the specified value. | |
306 explicit BitVector(unsigned s, bool t = false, Allocator A = Allocator()) | |
307 : Size(s), Alloc(std::move(A)) { | |
308 Capacity = NumBitWords(s); | |
309 Bits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
310 init_words(Bits, Capacity, t); | |
311 if (t) | |
312 clear_unused_bits(); | |
313 } | |
314 | |
315 /// BitVector copy ctor. | |
316 BitVector(const BitVector &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { | |
317 if (Size == 0) { | |
318 Bits = nullptr; | |
319 Capacity = 0; | |
320 return; | |
321 } | |
322 | |
323 Capacity = NumBitWords(RHS.size()); | |
324 Bits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
325 std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); | |
326 } | |
327 | |
328 BitVector(BitVector &&RHS) | |
329 : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), | |
330 Alloc(std::move(RHS.Alloc)) { | |
331 RHS.Bits = nullptr; | |
332 } | |
333 | |
334 ~BitVector() { | |
335 if (Bits != nullptr) { | |
336 Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); | |
337 } | |
338 } | |
339 | |
340 /// empty - Tests whether there are no bits in this bitvector. | |
341 bool empty() const { return Size == 0; } | |
342 | |
343 /// size - Returns the number of bits in this bitvector. | |
344 size_type size() const { return Size; } | |
345 | |
346 /// count - Returns the number of bits which are set. | |
347 size_type count() const { | |
348 unsigned NumBits = 0; | |
349 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
350 NumBits += llvm::countPopulation(Bits[i]); | |
351 return NumBits; | |
352 } | |
353 | |
354 /// any - Returns true if any bit is set. | |
355 bool any() const { | |
356 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
357 if (Bits[i] != 0) | |
358 return true; | |
359 return false; | |
360 } | |
361 | |
362 /// all - Returns true if all bits are set. | |
363 bool all() const { | |
364 for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) | |
365 if (Bits[i] != ~0UL) | |
366 return false; | |
367 | |
368 // If bits remain check that they are ones. The unused bits are always zero. | |
369 if (unsigned Remainder = Size % BITWORD_SIZE) | |
370 return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; | |
371 | |
372 return true; | |
373 } | |
374 | |
375 /// none - Returns true if none of the bits are set. | |
376 bool none() const { return !any(); } | |
377 | |
378 /// find_first - Returns the index of the first set bit, -1 if none | |
379 /// of the bits are set. | |
380 int find_first() const { | |
381 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
382 if (Bits[i] != 0) | |
383 return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | |
384 return -1; | |
385 } | |
386 | |
387 /// find_next - Returns the index of the next set bit following the | |
388 /// "Prev" bit. Returns -1 if the next set bit is not found. | |
389 int find_next(unsigned Prev) const { | |
390 ++Prev; | |
391 if (Prev >= Size) | |
392 return -1; | |
393 | |
394 unsigned WordPos = Prev / BITWORD_SIZE; | |
395 unsigned BitPos = Prev % BITWORD_SIZE; | |
396 BitWord Copy = Bits[WordPos]; | |
397 // Mask off previous bits. | |
398 Copy &= ~0UL << BitPos; | |
399 | |
400 if (Copy != 0) | |
401 return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); | |
402 | |
403 // Check subsequent words. | |
404 for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) | |
405 if (Bits[i] != 0) | |
406 return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | |
407 return -1; | |
408 } | |
409 | |
410 /// clear - Clear all bits. | |
411 void clear() { Size = 0; } | |
412 | |
413 /// resize - Grow or shrink the bitvector. | |
414 void resize(unsigned N, bool t = false) { | |
415 if (N > Capacity * BITWORD_SIZE) { | |
416 unsigned OldCapacity = Capacity; | |
417 grow(N); | |
418 init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); | |
419 } | |
420 | |
421 // Set any old unused bits that are now included in the BitVector. This | |
422 // may set bits that are not included in the new vector, but we will clear | |
423 // them back out below. | |
424 if (N > Size) | |
425 set_unused_bits(t); | |
426 | |
427 // Update the size, and clear out any bits that are now unused | |
428 unsigned OldSize = Size; | |
429 Size = N; | |
430 if (t || N < OldSize) | |
431 clear_unused_bits(); | |
432 } | |
433 | |
434 void reserve(unsigned N) { | |
435 if (N > Capacity * BITWORD_SIZE) | |
436 grow(N); | |
437 } | |
438 | |
439 // Set, reset, flip | |
440 BitVector &set() { | |
441 init_words(Bits, Capacity, true); | |
442 clear_unused_bits(); | |
443 return *this; | |
444 } | |
445 | |
446 BitVector &set(unsigned Idx) { | |
447 assert(Bits && "Bits never allocated"); | |
448 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); | |
449 return *this; | |
450 } | |
451 | |
452 /// set - Efficiently set a range of bits in [I, E) | |
453 BitVector &set(unsigned I, unsigned E) { | |
454 assert(I <= E && "Attempted to set backwards range!"); | |
455 assert(E <= size() && "Attempted to set out-of-bounds range!"); | |
456 | |
457 if (I == E) | |
458 return *this; | |
459 | |
460 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | |
461 BitWord EMask = 1UL << (E % BITWORD_SIZE); | |
462 BitWord IMask = 1UL << (I % BITWORD_SIZE); | |
463 BitWord Mask = EMask - IMask; | |
464 Bits[I / BITWORD_SIZE] |= Mask; | |
465 return *this; | |
466 } | |
467 | |
468 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | |
469 Bits[I / BITWORD_SIZE] |= PrefixMask; | |
470 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | |
471 | |
472 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | |
473 Bits[I / BITWORD_SIZE] = ~0UL; | |
474 | |
475 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | |
476 if (I < E) | |
477 Bits[I / BITWORD_SIZE] |= PostfixMask; | |
478 | |
479 return *this; | |
480 } | |
481 | |
482 BitVector &reset() { | |
483 init_words(Bits, Capacity, false); | |
484 return *this; | |
485 } | |
486 | |
487 BitVector &reset(unsigned Idx) { | |
488 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); | |
489 return *this; | |
490 } | |
491 | |
492 /// reset - Efficiently reset a range of bits in [I, E) | |
493 BitVector &reset(unsigned I, unsigned E) { | |
494 assert(I <= E && "Attempted to reset backwards range!"); | |
495 assert(E <= size() && "Attempted to reset out-of-bounds range!"); | |
496 | |
497 if (I == E) | |
498 return *this; | |
499 | |
500 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | |
501 BitWord EMask = 1UL << (E % BITWORD_SIZE); | |
502 BitWord IMask = 1UL << (I % BITWORD_SIZE); | |
503 BitWord Mask = EMask - IMask; | |
504 Bits[I / BITWORD_SIZE] &= ~Mask; | |
505 return *this; | |
506 } | |
507 | |
508 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | |
509 Bits[I / BITWORD_SIZE] &= ~PrefixMask; | |
510 I = llvm::RoundUpToAlignment(I, BITWORD_SIZE); | |
511 | |
512 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | |
513 Bits[I / BITWORD_SIZE] = 0UL; | |
514 | |
515 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | |
516 if (I < E) | |
517 Bits[I / BITWORD_SIZE] &= ~PostfixMask; | |
518 | |
519 return *this; | |
520 } | |
521 | |
522 BitVector &flip() { | |
523 for (unsigned i = 0; i < NumBitWords(size()); ++i) | |
524 Bits[i] = ~Bits[i]; | |
525 clear_unused_bits(); | |
526 return *this; | |
527 } | |
528 | |
529 BitVector &flip(unsigned Idx) { | |
530 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); | |
531 return *this; | |
532 } | |
533 | |
534 // Indexing. | |
535 reference operator[](unsigned Idx) { | |
536 assert(Idx < Size && "Out-of-bounds Bit access."); | |
537 return reference(*this, Idx); | |
538 } | |
539 | |
540 bool operator[](unsigned Idx) const { | |
541 assert(Idx < Size && "Out-of-bounds Bit access."); | |
542 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); | |
543 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; | |
544 } | |
545 | |
546 bool test(unsigned Idx) const { return (*this)[Idx]; } | |
547 | |
548 /// Test if any common bits are set. | |
549 bool anyCommon(const BitVector &RHS) const { | |
550 unsigned ThisWords = NumBitWords(size()); | |
551 unsigned RHSWords = NumBitWords(RHS.size()); | |
552 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) | |
553 if (Bits[i] & RHS.Bits[i]) | |
554 return true; | |
555 return false; | |
556 } | |
557 | |
558 // Comparison operators. | |
559 bool operator==(const BitVector &RHS) const { | |
560 unsigned ThisWords = NumBitWords(size()); | |
561 unsigned RHSWords = NumBitWords(RHS.size()); | |
562 unsigned i; | |
563 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
564 if (Bits[i] != RHS.Bits[i]) | |
565 return false; | |
566 | |
567 // Verify that any extra words are all zeros. | |
568 if (i != ThisWords) { | |
569 for (; i != ThisWords; ++i) | |
570 if (Bits[i]) | |
571 return false; | |
572 } else if (i != RHSWords) { | |
573 for (; i != RHSWords; ++i) | |
574 if (RHS.Bits[i]) | |
575 return false; | |
576 } | |
577 return true; | |
578 } | |
579 | |
580 bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } | |
581 | |
582 /// Intersection, union, disjoint union. | |
583 BitVector &operator&=(const BitVector &RHS) { | |
584 unsigned ThisWords = NumBitWords(size()); | |
585 unsigned RHSWords = NumBitWords(RHS.size()); | |
586 unsigned i; | |
587 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
588 Bits[i] &= RHS.Bits[i]; | |
589 | |
590 // Any bits that are just in this bitvector become zero, because they aren't | |
591 // in the RHS bit vector. Any words only in RHS are ignored because they | |
592 // are already zero in the LHS. | |
593 for (; i != ThisWords; ++i) | |
594 Bits[i] = 0; | |
595 | |
596 return *this; | |
597 } | |
598 | |
599 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. | |
600 BitVector &reset(const BitVector &RHS) { | |
601 unsigned ThisWords = NumBitWords(size()); | |
602 unsigned RHSWords = NumBitWords(RHS.size()); | |
603 unsigned i; | |
604 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
605 Bits[i] &= ~RHS.Bits[i]; | |
606 return *this; | |
607 } | |
608 | |
609 /// test - Check if (This - RHS) is zero. | |
610 /// This is the same as reset(RHS) and any(). | |
611 bool test(const BitVector &RHS) const { | |
612 unsigned ThisWords = NumBitWords(size()); | |
613 unsigned RHSWords = NumBitWords(RHS.size()); | |
614 unsigned i; | |
615 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | |
616 if ((Bits[i] & ~RHS.Bits[i]) != 0) | |
617 return true; | |
618 | |
619 for (; i != ThisWords; ++i) | |
620 if (Bits[i] != 0) | |
621 return true; | |
622 | |
623 return false; | |
624 } | |
625 | |
626 BitVector &operator|=(const BitVector &RHS) { | |
627 if (size() < RHS.size()) | |
628 resize(RHS.size()); | |
629 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | |
630 Bits[i] |= RHS.Bits[i]; | |
631 return *this; | |
632 } | |
633 | |
634 BitVector &operator^=(const BitVector &RHS) { | |
635 if (size() < RHS.size()) | |
636 resize(RHS.size()); | |
637 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | |
638 Bits[i] ^= RHS.Bits[i]; | |
639 return *this; | |
640 } | |
641 | |
642 // Assignment operator. | |
643 const BitVector &operator=(const BitVector &RHS) { | |
644 if (this == &RHS) | |
645 return *this; | |
646 | |
647 Size = RHS.size(); | |
648 unsigned RHSWords = NumBitWords(Size); | |
649 if (Size <= Capacity * BITWORD_SIZE) { | |
650 if (Size) | |
651 std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); | |
652 clear_unused_bits(); | |
653 return *this; | |
654 } | |
655 | |
656 // Grow the bitvector to have enough elements. | |
657 const auto OldCapacity = Capacity; | |
658 Capacity = RHSWords; | |
659 assert(Capacity > 0 && "negative capacity?"); | |
660 BitWord *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
661 std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); | |
662 | |
663 // Destroy the old bits. | |
664 Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); | |
665 Bits = NewBits; | |
666 | |
667 return *this; | |
668 } | |
669 | |
670 const BitVector &operator=(BitVector &&RHS) { | |
671 if (this == &RHS) | |
672 return *this; | |
673 | |
674 Alloc.deallocate(Bits, Capacity * sizeof(BitWord)); | |
675 Bits = RHS.Bits; | |
676 Size = RHS.Size; | |
677 Capacity = RHS.Capacity; | |
678 | |
679 RHS.Bits = nullptr; | |
680 | |
681 return *this; | |
682 } | |
683 | |
684 void swap(BitVector &RHS) { | |
685 std::swap(Bits, RHS.Bits); | |
686 std::swap(Size, RHS.Size); | |
687 std::swap(Capacity, RHS.Capacity); | |
688 } | |
689 | |
690 //===--------------------------------------------------------------------===// | |
691 // Portable bit mask operations. | |
692 //===--------------------------------------------------------------------===// | |
693 // | |
694 // These methods all operate on arrays of uint32_t, each holding 32 bits. The | |
695 // fixed word size makes it easier to work with literal bit vector constants | |
696 // in portable code. | |
697 // | |
698 // The LSB in each word is the lowest numbered bit. The size of a portable | |
699 // bit mask is always a whole multiple of 32 bits. If no bit mask size is | |
700 // given, the bit mask is assumed to cover the entire BitVector. | |
701 | |
702 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. | |
703 /// This computes "*this |= Mask". | |
704 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
705 applyMask<true, false>(Mask, MaskWords); | |
706 } | |
707 | |
708 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. | |
709 /// Don't resize. This computes "*this &= ~Mask". | |
710 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
711 applyMask<false, false>(Mask, MaskWords); | |
712 } | |
713 | |
714 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. | |
715 /// Don't resize. This computes "*this |= ~Mask". | |
716 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
717 applyMask<true, true>(Mask, MaskWords); | |
718 } | |
719 | |
720 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. | |
721 /// Don't resize. This computes "*this &= Mask". | |
722 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | |
723 applyMask<false, true>(Mask, MaskWords); | |
724 } | |
725 | |
726 private: | |
727 unsigned NumBitWords(unsigned S) const { | |
728 return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; | |
729 } | |
730 | |
731 // Set the unused bits in the high words. | |
732 void set_unused_bits(bool t = true) { | |
733 // Set high words first. | |
734 unsigned UsedWords = NumBitWords(Size); | |
735 if (Capacity > UsedWords) | |
736 init_words(&Bits[UsedWords], (Capacity - UsedWords), t); | |
737 | |
738 // Then set any stray high bits of the last used word. | |
739 unsigned ExtraBits = Size % BITWORD_SIZE; | |
740 if (ExtraBits) { | |
741 BitWord ExtraBitMask = ~0UL << ExtraBits; | |
742 if (t) | |
743 Bits[UsedWords - 1] |= ExtraBitMask; | |
744 else | |
745 Bits[UsedWords - 1] &= ~ExtraBitMask; | |
746 } | |
747 } | |
748 | |
749 // Clear the unused bits in the high words. | |
750 void clear_unused_bits() { set_unused_bits(false); } | |
751 | |
752 void grow(unsigned NewSize) { | |
753 const auto OldCapacity = Capacity; | |
754 Capacity = std::max(NumBitWords(NewSize), Capacity * 2); | |
755 assert(Capacity > 0 && "realloc-ing zero space"); | |
756 auto *NewBits = Alloc.allocate(Capacity * sizeof(BitWord)); | |
757 std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); | |
758 Alloc.deallocate(Bits, OldCapacity * sizeof(BitWord)); | |
759 Bits = NewBits; | |
760 | |
761 clear_unused_bits(); | |
762 } | |
763 | |
764 void init_words(BitWord *B, unsigned NumWords, bool t) { | |
765 memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); | |
766 } | |
767 | |
768 template <bool AddBits, bool InvertMask> | |
769 void applyMask(const uint32_t *Mask, unsigned MaskWords) { | |
770 static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); | |
771 MaskWords = std::min(MaskWords, (size() + 31) / 32); | |
772 const unsigned Scale = BITWORD_SIZE / 32; | |
773 unsigned i; | |
774 for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { | |
775 BitWord BW = Bits[i]; | |
776 // This inner loop should unroll completely when BITWORD_SIZE > 32. | |
777 for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { | |
778 uint32_t M = *Mask++; | |
779 if (InvertMask) | |
780 M = ~M; | |
781 if (AddBits) | |
782 BW |= BitWord(M) << b; | |
783 else | |
784 BW &= ~(BitWord(M) << b); | |
785 } | |
786 Bits[i] = BW; | |
787 } | |
788 for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { | |
789 uint32_t M = *Mask++; | |
790 if (InvertMask) | |
791 M = ~M; | |
792 if (AddBits) | |
793 Bits[i] |= BitWord(M) << b; | |
794 else | |
795 Bits[i] &= ~(BitWord(M) << b); | |
796 } | |
797 if (AddBits) | |
798 clear_unused_bits(); | |
799 } | |
800 }; | |
801 | |
243 } // end of namespace Ice | 802 } // end of namespace Ice |
244 | 803 |
804 namespace std { | |
805 /// Implement std::swap in terms of BitVector swap. | |
806 inline void swap(Ice::BitVector &LHS, Ice::BitVector &RHS) { LHS.swap(RHS); } | |
807 } | |
808 | |
245 #endif // SUBZERO_SRC_ICEBITVECTOR_H | 809 #endif // SUBZERO_SRC_ICEBITVECTOR_H |
OLD | NEW |