Index: src/s390/disasm-s390.cc |
diff --git a/src/s390/disasm-s390.cc b/src/s390/disasm-s390.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5617fa07e13aa317557b913feeaf5934b6355267 |
--- /dev/null |
+++ b/src/s390/disasm-s390.cc |
@@ -0,0 +1,1396 @@ |
+// Copyright 2014 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+// A Disassembler object is used to disassemble a block of code instruction by |
+// instruction. The default implementation of the NameConverter object can be |
+// overriden to modify register names or to do symbol lookup on addresses. |
+// |
+// The example below will disassemble a block of code and print it to stdout. |
+// |
+// NameConverter converter; |
+// Disassembler d(converter); |
+// for (byte* pc = begin; pc < end;) { |
+// v8::internal::EmbeddedVector<char, 256> buffer; |
+// byte* prev_pc = pc; |
+// pc += d.InstructionDecode(buffer, pc); |
+// printf("%p %08x %s\n", |
+// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer); |
+// } |
+// |
+// The Disassembler class also has a convenience method to disassemble a block |
+// of code into a FILE*, meaning that the above functionality could also be |
+// achieved by just calling Disassembler::Disassemble(stdout, begin, end); |
+ |
+#include <assert.h> |
+#include <stdarg.h> |
+#include <stdio.h> |
+#include <string.h> |
+ |
+#if V8_TARGET_ARCH_S390 |
+ |
+#include "src/base/platform/platform.h" |
+#include "src/disasm.h" |
+#include "src/macro-assembler.h" |
+#include "src/s390/constants-s390.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+//------------------------------------------------------------------------------ |
+ |
+// Decoder decodes and disassembles instructions into an output buffer. |
+// It uses the converter to convert register names and call destinations into |
+// more informative description. |
+class Decoder { |
+ public: |
+ Decoder(const disasm::NameConverter& converter, Vector<char> out_buffer) |
+ : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) { |
+ out_buffer_[out_buffer_pos_] = '\0'; |
+ } |
+ |
+ ~Decoder() {} |
+ |
+ // Writes one disassembled instruction into 'buffer' (0-terminated). |
+ // Returns the length of the disassembled machine instruction in bytes. |
+ int InstructionDecode(byte* instruction); |
+ |
+ private: |
+ // Bottleneck functions to print into the out_buffer. |
+ void PrintChar(const char ch); |
+ void Print(const char* str); |
+ |
+ // Printing of common values. |
+ void PrintRegister(int reg); |
+ void PrintDRegister(int reg); |
+ void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); |
+ |
+ // Handle formatting of instructions and their options. |
+ int FormatRegister(Instruction* instr, const char* option); |
+ int FormatFloatingRegister(Instruction* instr, const char* option); |
+ int FormatMask(Instruction* instr, const char* option); |
+ int FormatDisplacement(Instruction* instr, const char* option); |
+ int FormatImmediate(Instruction* instr, const char* option); |
+ int FormatOption(Instruction* instr, const char* option); |
+ void Format(Instruction* instr, const char* format); |
+ void Unknown(Instruction* instr); |
+ void UnknownFormat(Instruction* instr, const char* opcname); |
+ |
+ bool DecodeTwoByte(Instruction* instr); |
+ bool DecodeFourByte(Instruction* instr); |
+ bool DecodeSixByte(Instruction* instr); |
+ |
+ const disasm::NameConverter& converter_; |
+ Vector<char> out_buffer_; |
+ int out_buffer_pos_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(Decoder); |
+}; |
+ |
+// Support for assertions in the Decoder formatting functions. |
+#define STRING_STARTS_WITH(string, compare_string) \ |
+ (strncmp(string, compare_string, strlen(compare_string)) == 0) |
+ |
+// Append the ch to the output buffer. |
+void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; } |
+ |
+// Append the str to the output buffer. |
+void Decoder::Print(const char* str) { |
+ char cur = *str++; |
+ while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
+ PrintChar(cur); |
+ cur = *str++; |
+ } |
+ out_buffer_[out_buffer_pos_] = 0; |
+} |
+ |
+// Print the register name according to the active name converter. |
+void Decoder::PrintRegister(int reg) { |
+ Print(converter_.NameOfCPURegister(reg)); |
+} |
+ |
+// Print the double FP register name according to the active name converter. |
+void Decoder::PrintDRegister(int reg) { |
+ Print(DoubleRegister::from_code(reg).ToString()); |
+} |
+ |
+// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of |
+// the FormatOption method. |
+void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { |
+ switch (svc) { |
+ case kCallRtRedirected: |
+ Print("call rt redirected"); |
+ return; |
+ case kBreakpoint: |
+ Print("breakpoint"); |
+ return; |
+ default: |
+ if (svc >= kStopCode) { |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x", |
+ svc & kStopCodeMask, svc & kStopCodeMask); |
+ } else { |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc); |
+ } |
+ return; |
+ } |
+} |
+ |
+// Handle all register based formatting in this function to reduce the |
+// complexity of FormatOption. |
+int Decoder::FormatRegister(Instruction* instr, const char* format) { |
+ DCHECK(format[0] == 'r'); |
+ |
+ if (format[1] == '1') { // 'r1: register resides in bit 8-11 |
+ RRInstruction* rrinstr = reinterpret_cast<RRInstruction*>(instr); |
+ int reg = rrinstr->R1Value(); |
+ PrintRegister(reg); |
+ return 2; |
+ } else if (format[1] == '2') { // 'r2: register resides in bit 12-15 |
+ RRInstruction* rrinstr = reinterpret_cast<RRInstruction*>(instr); |
+ int reg = rrinstr->R2Value(); |
+ // indicating it is a r0 for displacement, in which case the offset |
+ // should be 0. |
+ if (format[2] == 'd') { |
+ if (reg == 0) return 4; |
+ PrintRegister(reg); |
+ return 3; |
+ } else { |
+ PrintRegister(reg); |
+ return 2; |
+ } |
+ } else if (format[1] == '3') { // 'r3: register resides in bit 16-19 |
+ RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr); |
+ int reg = rsinstr->B2Value(); |
+ PrintRegister(reg); |
+ return 2; |
+ } else if (format[1] == '4') { // 'r4: register resides in bit 20-23 |
+ RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr); |
+ int reg = rsinstr->B2Value(); |
+ PrintRegister(reg); |
+ return 2; |
+ } else if (format[1] == '5') { // 'r5: register resides in bit 24-28 |
+ RREInstruction* rreinstr = reinterpret_cast<RREInstruction*>(instr); |
+ int reg = rreinstr->R1Value(); |
+ PrintRegister(reg); |
+ return 2; |
+ } else if (format[1] == '6') { // 'r6: register resides in bit 29-32 |
+ RREInstruction* rreinstr = reinterpret_cast<RREInstruction*>(instr); |
+ int reg = rreinstr->R2Value(); |
+ PrintRegister(reg); |
+ return 2; |
+ } else if (format[1] == '7') { // 'r6: register resides in bit 32-35 |
+ SSInstruction* ssinstr = reinterpret_cast<SSInstruction*>(instr); |
+ int reg = ssinstr->B2Value(); |
+ PrintRegister(reg); |
+ return 2; |
+ } |
+ |
+ UNREACHABLE(); |
+ return -1; |
+} |
+ |
+int Decoder::FormatFloatingRegister(Instruction* instr, const char* format) { |
+ DCHECK(format[0] == 'f'); |
+ |
+ // reuse 1, 5 and 6 because it is coresponding |
+ if (format[1] == '1') { // 'r1: register resides in bit 8-11 |
+ RRInstruction* rrinstr = reinterpret_cast<RRInstruction*>(instr); |
+ int reg = rrinstr->R1Value(); |
+ PrintDRegister(reg); |
+ return 2; |
+ } else if (format[1] == '2') { // 'f2: register resides in bit 12-15 |
+ RRInstruction* rrinstr = reinterpret_cast<RRInstruction*>(instr); |
+ int reg = rrinstr->R2Value(); |
+ PrintDRegister(reg); |
+ return 2; |
+ } else if (format[1] == '3') { // 'f3: register resides in bit 16-19 |
+ RRDInstruction* rrdinstr = reinterpret_cast<RRDInstruction*>(instr); |
+ int reg = rrdinstr->R1Value(); |
+ PrintDRegister(reg); |
+ return 2; |
+ } else if (format[1] == '5') { // 'f5: register resides in bit 24-28 |
+ RREInstruction* rreinstr = reinterpret_cast<RREInstruction*>(instr); |
+ int reg = rreinstr->R1Value(); |
+ PrintDRegister(reg); |
+ return 2; |
+ } else if (format[1] == '6') { // 'f6: register resides in bit 29-32 |
+ RREInstruction* rreinstr = reinterpret_cast<RREInstruction*>(instr); |
+ int reg = rreinstr->R2Value(); |
+ PrintDRegister(reg); |
+ return 2; |
+ } |
+ UNREACHABLE(); |
+ return -1; |
+} |
+ |
+// FormatOption takes a formatting string and interprets it based on |
+// the current instructions. The format string points to the first |
+// character of the option string (the option escape has already been |
+// consumed by the caller.) FormatOption returns the number of |
+// characters that were consumed from the formatting string. |
+int Decoder::FormatOption(Instruction* instr, const char* format) { |
+ switch (format[0]) { |
+ case 'o': { |
+ if (instr->Bit(10) == 1) { |
+ Print("o"); |
+ } |
+ return 1; |
+ } |
+ case '.': { |
+ if (instr->Bit(0) == 1) { |
+ Print("."); |
+ } else { |
+ Print(" "); // ensure consistent spacing |
+ } |
+ return 1; |
+ } |
+ case 'r': { |
+ return FormatRegister(instr, format); |
+ } |
+ case 'f': { |
+ return FormatFloatingRegister(instr, format); |
+ } |
+ case 'i': { // int16 |
+ return FormatImmediate(instr, format); |
+ } |
+ case 'u': { // uint16 |
+ int32_t value = instr->Bits(15, 0); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 6; |
+ } |
+ case 'l': { |
+ // Link (LK) Bit 0 |
+ if (instr->Bit(0) == 1) { |
+ Print("l"); |
+ } |
+ return 1; |
+ } |
+ case 'a': { |
+ // Absolute Address Bit 1 |
+ if (instr->Bit(1) == 1) { |
+ Print("a"); |
+ } |
+ return 1; |
+ } |
+ case 't': { // 'target: target of branch instructions |
+ // target26 or target16 |
+ DCHECK(STRING_STARTS_WITH(format, "target")); |
+ if ((format[6] == '2') && (format[7] == '6')) { |
+ int off = ((instr->Bits(25, 2)) << 8) >> 6; |
+ out_buffer_pos_ += SNPrintF( |
+ out_buffer_ + out_buffer_pos_, "%+d -> %s", off, |
+ converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); |
+ return 8; |
+ } else if ((format[6] == '1') && (format[7] == '6')) { |
+ int off = ((instr->Bits(15, 2)) << 18) >> 16; |
+ out_buffer_pos_ += SNPrintF( |
+ out_buffer_ + out_buffer_pos_, "%+d -> %s", off, |
+ converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); |
+ return 8; |
+ } |
+ case 'm': { |
+ return FormatMask(instr, format); |
+ } |
+ } |
+ case 'd': { // ds value for offset |
+ return FormatDisplacement(instr, format); |
+ } |
+ default: { |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+ return -1; |
+} |
+ |
+int Decoder::FormatMask(Instruction* instr, const char* format) { |
+ DCHECK(format[0] == 'm'); |
+ int32_t value = 0; |
+ if ((format[1] == '1')) { // prints the mask format in bit 8-12 |
+ value = reinterpret_cast<RRInstruction*>(instr)->R1Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", value); |
+ return 2; |
+ } else if (format[1] == '2') { // mask format in bit 16 - 19 |
+ value = reinterpret_cast<RXInstruction*>(instr)->B2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", value); |
+ return 2; |
+ } |
+ |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+} |
+ |
+int Decoder::FormatDisplacement(Instruction* instr, const char* format) { |
+ DCHECK(format[0] == 'd'); |
+ |
+ if (format[1] == '1') { // displacement in 20-31 |
+ RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr); |
+ uint16_t value = rsinstr->D2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ |
+ return 2; |
+ } else if (format[1] == '2') { // displacement in 20-39 |
+ RXYInstruction* rxyinstr = reinterpret_cast<RXYInstruction*>(instr); |
+ int32_t value = rxyinstr->D2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '4') { // SS displacement 2 36-47 |
+ SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr); |
+ uint16_t value = ssInstr->D2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '3') { // SS displacement 1 20 - 32 |
+ SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr); |
+ uint16_t value = ssInstr->D1Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else { // s390 specific |
+ int32_t value = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 1; |
+ } |
+} |
+ |
+int Decoder::FormatImmediate(Instruction* instr, const char* format) { |
+ DCHECK(format[0] == 'i'); |
+ |
+ if (format[1] == '1') { // immediate in 16-31 |
+ RIInstruction* riinstr = reinterpret_cast<RIInstruction*>(instr); |
+ int16_t value = riinstr->I2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '2') { // immediate in 16-48 |
+ RILInstruction* rilinstr = reinterpret_cast<RILInstruction*>(instr); |
+ int32_t value = rilinstr->I2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '3') { // immediate in I format |
+ IInstruction* iinstr = reinterpret_cast<IInstruction*>(instr); |
+ int8_t value = iinstr->IValue(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '4') { // immediate in 16-31, but outputs as offset |
+ RIInstruction* riinstr = reinterpret_cast<RIInstruction*>(instr); |
+ int16_t value = riinstr->I2Value() * 2; |
+ if (value >= 0) |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "*+"); |
+ else |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "*"); |
+ |
+ out_buffer_pos_ += SNPrintF( |
+ out_buffer_ + out_buffer_pos_, "%d -> %s", value, |
+ converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + value)); |
+ return 2; |
+ } else if (format[1] == '5') { // immediate in 16-31, but outputs as offset |
+ RILInstruction* rilinstr = reinterpret_cast<RILInstruction*>(instr); |
+ int32_t value = rilinstr->I2Value() * 2; |
+ if (value >= 0) |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "*+"); |
+ else |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "*"); |
+ |
+ out_buffer_pos_ += SNPrintF( |
+ out_buffer_ + out_buffer_pos_, "%d -> %s", value, |
+ converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + value)); |
+ return 2; |
+ } else if (format[1] == '6') { // unsigned immediate in 16-31 |
+ RIInstruction* riinstr = reinterpret_cast<RIInstruction*>(instr); |
+ uint16_t value = riinstr->I2UnsignedValue(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '7') { // unsigned immediate in 16-47 |
+ RILInstruction* rilinstr = reinterpret_cast<RILInstruction*>(instr); |
+ uint32_t value = rilinstr->I2UnsignedValue(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '8') { // unsigned immediate in 8-15 |
+ SSInstruction* ssinstr = reinterpret_cast<SSInstruction*>(instr); |
+ uint8_t value = ssinstr->Length(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == '9') { // unsigned immediate in 16-23 |
+ RIEInstruction* rie_instr = reinterpret_cast<RIEInstruction*>(instr); |
+ uint8_t value = rie_instr->I3Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == 'a') { // unsigned immediate in 24-31 |
+ RIEInstruction* rie_instr = reinterpret_cast<RIEInstruction*>(instr); |
+ uint8_t value = rie_instr->I4Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == 'b') { // unsigned immediate in 32-39 |
+ RIEInstruction* rie_instr = reinterpret_cast<RIEInstruction*>(instr); |
+ uint8_t value = rie_instr->I5Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == 'c') { // signed immediate in 8-15 |
+ SSInstruction* ssinstr = reinterpret_cast<SSInstruction*>(instr); |
+ int8_t value = ssinstr->Length(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == 'd') { // signed immediate in 32-47 |
+ SILInstruction* silinstr = reinterpret_cast<SILInstruction*>(instr); |
+ int16_t value = silinstr->I2Value(); |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
+ return 2; |
+ } else if (format[1] == 'e') { // immediate in 16-47, but outputs as offset |
+ RILInstruction* rilinstr = reinterpret_cast<RILInstruction*>(instr); |
+ int32_t value = rilinstr->I2Value() * 2; |
+ if (value >= 0) |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "*+"); |
+ else |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "*"); |
+ |
+ out_buffer_pos_ += SNPrintF( |
+ out_buffer_ + out_buffer_pos_, "%d -> %s", value, |
+ converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + value)); |
+ return 2; |
+ } |
+ |
+ UNREACHABLE(); |
+ return -1; |
+} |
+ |
+// Format takes a formatting string for a whole instruction and prints it into |
+// the output buffer. All escaped options are handed to FormatOption to be |
+// parsed further. |
+void Decoder::Format(Instruction* instr, const char* format) { |
+ char cur = *format++; |
+ while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
+ if (cur == '\'') { // Single quote is used as the formatting escape. |
+ format += FormatOption(instr, format); |
+ } else { |
+ out_buffer_[out_buffer_pos_++] = cur; |
+ } |
+ cur = *format++; |
+ } |
+ out_buffer_[out_buffer_pos_] = '\0'; |
+} |
+ |
+// The disassembler may end up decoding data inlined in the code. We do not want |
+// it to crash if the data does not ressemble any known instruction. |
+#define VERIFY(condition) \ |
+ if (!(condition)) { \ |
+ Unknown(instr); \ |
+ return; \ |
+ } |
+ |
+// For currently unimplemented decodings the disassembler calls Unknown(instr) |
+// which will just print "unknown" of the instruction bits. |
+void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); } |
+ |
+// For currently unimplemented decodings the disassembler calls |
+// UnknownFormat(instr) which will just print opcode name of the |
+// instruction bits. |
+void Decoder::UnknownFormat(Instruction* instr, const char* name) { |
+ char buffer[100]; |
+ snprintf(buffer, sizeof(buffer), "%s (unknown-format)", name); |
+ Format(instr, buffer); |
+} |
+ |
+// Disassembles Two Byte S390 Instructions |
+// @return true if successfully decoded |
+bool Decoder::DecodeTwoByte(Instruction* instr) { |
+ // Print the Instruction bits. |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%04x ", |
+ instr->InstructionBits<TwoByteInstr>()); |
+ |
+ Opcode opcode = instr->S390OpcodeValue(); |
+ switch (opcode) { |
+ case AR: |
+ Format(instr, "ar\t'r1,'r2"); |
+ break; |
+ case SR: |
+ Format(instr, "sr\t'r1,'r2"); |
+ break; |
+ case MR: |
+ Format(instr, "mr\t'r1,'r2"); |
+ break; |
+ case DR: |
+ Format(instr, "dr\t'r1,'r2"); |
+ break; |
+ case OR: |
+ Format(instr, "or\t'r1,'r2"); |
+ break; |
+ case NR: |
+ Format(instr, "nr\t'r1,'r2"); |
+ break; |
+ case XR: |
+ Format(instr, "xr\t'r1,'r2"); |
+ break; |
+ case LR: |
+ Format(instr, "lr\t'r1,'r2"); |
+ break; |
+ case CR: |
+ Format(instr, "cr\t'r1,'r2"); |
+ break; |
+ case CLR: |
+ Format(instr, "clr\t'r1,'r2"); |
+ break; |
+ case BCR: |
+ Format(instr, "bcr\t'm1,'r2"); |
+ break; |
+ case LTR: |
+ Format(instr, "ltr\t'r1,'r2"); |
+ break; |
+ case ALR: |
+ Format(instr, "alr\t'r1,'r2"); |
+ break; |
+ case SLR: |
+ Format(instr, "slr\t'r1,'r2"); |
+ break; |
+ case LNR: |
+ Format(instr, "lnr\t'r1,'r2"); |
+ break; |
+ case LCR: |
+ Format(instr, "lcr\t'r1,'r2"); |
+ break; |
+ case BASR: |
+ Format(instr, "basr\t'r1,'r2"); |
+ break; |
+ case LDR: |
+ Format(instr, "ldr\t'f1,'f2"); |
+ break; |
+ case BKPT: |
+ Format(instr, "bkpt"); |
+ break; |
+ default: |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+// Disassembles Four Byte S390 Instructions |
+// @return true if successfully decoded |
+bool Decoder::DecodeFourByte(Instruction* instr) { |
+ // Print the Instruction bits. |
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ", |
+ instr->InstructionBits<FourByteInstr>()); |
+ |
+ Opcode opcode = instr->S390OpcodeValue(); |
+ switch (opcode) { |
+ case AHI: |
+ Format(instr, "ahi\t'r1,'i1"); |
+ break; |
+ case AGHI: |
+ Format(instr, "aghi\t'r1,'i1"); |
+ break; |
+ case LHI: |
+ Format(instr, "lhi\t'r1,'i1"); |
+ break; |
+ case LGHI: |
+ Format(instr, "lghi\t'r1,'i1"); |
+ break; |
+ case MHI: |
+ Format(instr, "mhi\t'r1,'i1"); |
+ break; |
+ case MGHI: |
+ Format(instr, "mghi\t'r1,'i1"); |
+ break; |
+ case CHI: |
+ Format(instr, "chi\t'r1,'i1"); |
+ break; |
+ case CGHI: |
+ Format(instr, "cghi\t'r1,'i1"); |
+ break; |
+ case BRAS: |
+ Format(instr, "bras\t'r1,'i1"); |
+ break; |
+ case BRC: |
+ Format(instr, "brc\t'm1,'i4"); |
+ break; |
+ case BRCT: |
+ Format(instr, "brct\t'r1,'i4"); |
+ break; |
+ case BRCTG: |
+ Format(instr, "brctg\t'r1,'i4"); |
+ break; |
+ case IIHH: |
+ Format(instr, "iihh\t'r1,'i1"); |
+ break; |
+ case IIHL: |
+ Format(instr, "iihl\t'r1,'i1"); |
+ break; |
+ case IILH: |
+ Format(instr, "iilh\t'r1,'i1"); |
+ break; |
+ case IILL: |
+ Format(instr, "iill\t'r1,'i1"); |
+ break; |
+ case OILL: |
+ Format(instr, "oill\t'r1,'i1"); |
+ break; |
+ case TMLL: |
+ Format(instr, "tmll\t'r1,'i1"); |
+ break; |
+ case STM: |
+ Format(instr, "stm\t'r1,'r2,'d1('r3)"); |
+ break; |
+ case LM: |
+ Format(instr, "lm\t'r1,'r2,'d1('r3)"); |
+ break; |
+ case SLL: |
+ Format(instr, "sll\t'r1,'d1('r3)"); |
+ break; |
+ case SRL: |
+ Format(instr, "srl\t'r1,'d1('r3)"); |
+ break; |
+ case SLA: |
+ Format(instr, "sla\t'r1,'d1('r3)"); |
+ break; |
+ case SRA: |
+ Format(instr, "sra\t'r1,'d1('r3)"); |
+ break; |
+ case AGR: |
+ Format(instr, "agr\t'r5,'r6"); |
+ break; |
+ case AGFR: |
+ Format(instr, "agfr\t'r5,'r6"); |
+ break; |
+ case ARK: |
+ Format(instr, "ark\t'r5,'r6,'r3"); |
+ break; |
+ case AGRK: |
+ Format(instr, "agrk\t'r5,'r6,'r3"); |
+ break; |
+ case SGR: |
+ Format(instr, "sgr\t'r5,'r6"); |
+ break; |
+ case SGFR: |
+ Format(instr, "sgfr\t'r5,'r6"); |
+ break; |
+ case SRK: |
+ Format(instr, "srk\t'r5,'r6,'r3"); |
+ break; |
+ case SGRK: |
+ Format(instr, "sgrk\t'r5,'r6,'r3"); |
+ break; |
+ case NGR: |
+ Format(instr, "ngr\t'r5,'r6"); |
+ break; |
+ case NRK: |
+ Format(instr, "nrk\t'r5,'r6,'r3"); |
+ break; |
+ case NGRK: |
+ Format(instr, "ngrk\t'r5,'r6,'r3"); |
+ break; |
+ case NILL: |
+ Format(instr, "nill\t'r1,'i1"); |
+ break; |
+ case NILH: |
+ Format(instr, "nilh\t'r1,'i1"); |
+ break; |
+ case OGR: |
+ Format(instr, "ogr\t'r5,'r6"); |
+ break; |
+ case ORK: |
+ Format(instr, "ork\t'r5,'r6,'r3"); |
+ break; |
+ case OGRK: |
+ Format(instr, "ogrk\t'r5,'r6,'r3"); |
+ break; |
+ case XGR: |
+ Format(instr, "xgr\t'r5,'r6"); |
+ break; |
+ case XRK: |
+ Format(instr, "xrk\t'r5,'r6,'r3"); |
+ break; |
+ case XGRK: |
+ Format(instr, "xgrk\t'r5,'r6,'r3"); |
+ break; |
+ case CGR: |
+ Format(instr, "cgr\t'r5,'r6"); |
+ break; |
+ case CLGR: |
+ Format(instr, "clgr\t'r5,'r6"); |
+ break; |
+ case LLGFR: |
+ Format(instr, "llgfr\t'r5,'r6"); |
+ break; |
+ case LBR: |
+ Format(instr, "lbr\t'r5,'r6"); |
+ break; |
+ case LEDBR: |
+ Format(instr, "ledbr\t'f5,'f6"); |
+ break; |
+ case LDEBR: |
+ Format(instr, "ldebr\t'f5,'f6"); |
+ break; |
+ case LTGR: |
+ Format(instr, "ltgr\t'r5,'r6"); |
+ break; |
+ case LTDBR: |
+ Format(instr, "ltdbr\t'f5,'f6"); |
+ break; |
+ case LTEBR: |
+ Format(instr, "ltebr\t'f5,'f6"); |
+ break; |
+ case LGR: |
+ Format(instr, "lgr\t'r5,'r6"); |
+ break; |
+ case LGDR: |
+ Format(instr, "lgdr\t'r5,'f6"); |
+ break; |
+ case LGFR: |
+ Format(instr, "lgfr\t'r5,'r6"); |
+ break; |
+ case LTGFR: |
+ Format(instr, "ltgfr\t'r5,'r6"); |
+ break; |
+ case LCGR: |
+ Format(instr, "lcgr\t'r5,'r6"); |
+ break; |
+ case MSR: |
+ Format(instr, "msr\t'r5,'r6"); |
+ break; |
+ case LGBR: |
+ Format(instr, "lgbr\t'r5,'r6"); |
+ break; |
+ case LGHR: |
+ Format(instr, "lghr\t'r5,'r6"); |
+ break; |
+ case MSGR: |
+ Format(instr, "msgr\t'r5,'r6"); |
+ break; |
+ case DSGR: |
+ Format(instr, "dsgr\t'r5,'r6"); |
+ break; |
+ case LZDR: |
+ Format(instr, "lzdr\t'f5"); |
+ break; |
+ case MLR: |
+ Format(instr, "mlr\t'r5,'r6"); |
+ break; |
+ case MLGR: |
+ Format(instr, "mlgr\t'r5,'r6"); |
+ break; |
+ case ALGR: |
+ Format(instr, "algr\t'r5,'r6"); |
+ break; |
+ case ALRK: |
+ Format(instr, "alrk\t'r5,'r6,'r3"); |
+ break; |
+ case ALGRK: |
+ Format(instr, "algrk\t'r5,'r6,'r3"); |
+ break; |
+ case SLGR: |
+ Format(instr, "slgr\t'r5,'r6"); |
+ break; |
+ case DLR: |
+ Format(instr, "dlr\t'r1,'r2"); |
+ break; |
+ case DLGR: |
+ Format(instr, "dlgr\t'r5,'r6"); |
+ break; |
+ case SLRK: |
+ Format(instr, "slrk\t'r5,'r6,'r3"); |
+ break; |
+ case SLGRK: |
+ Format(instr, "slgrk\t'r5,'r6,'r3"); |
+ break; |
+ case LHR: |
+ Format(instr, "lhr\t'r5,'r6"); |
+ break; |
+ case LLHR: |
+ Format(instr, "llhr\t'r5,'r6"); |
+ break; |
+ case LLGHR: |
+ Format(instr, "llghr\t'r5,'r6"); |
+ break; |
+ case LNGR: |
+ Format(instr, "lngr\t'r5,'r6"); |
+ break; |
+ case A: |
+ Format(instr, "a\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case S: |
+ Format(instr, "s\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case M: |
+ Format(instr, "m\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case D: |
+ Format(instr, "d\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case O: |
+ Format(instr, "o\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case N: |
+ Format(instr, "n\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case L: |
+ Format(instr, "l\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case C: |
+ Format(instr, "c\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case AH: |
+ Format(instr, "ah\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case SH: |
+ Format(instr, "sh\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case MH: |
+ Format(instr, "mh\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case AL: |
+ Format(instr, "al\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case SL: |
+ Format(instr, "sl\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case LA: |
+ Format(instr, "la\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case CH: |
+ Format(instr, "ch\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case CL: |
+ Format(instr, "cl\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case CLI: |
+ Format(instr, "cli\t'd1('r3),'i8"); |
+ break; |
+ case TM: |
+ Format(instr, "tm\t'd1('r3),'i8"); |
+ break; |
+ case BC: |
+ Format(instr, "bc\t'm1,'d1('r2d,'r3)"); |
+ break; |
+ case BCT: |
+ Format(instr, "bct\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case ST: |
+ Format(instr, "st\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case STC: |
+ Format(instr, "stc\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case IC_z: |
+ Format(instr, "ic\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case LD: |
+ Format(instr, "ld\t'f1,'d1('r2d,'r3)"); |
+ break; |
+ case LE: |
+ Format(instr, "le\t'f1,'d1('r2d,'r3)"); |
+ break; |
+ case LDGR: |
+ Format(instr, "ldgr\t'f5,'r6"); |
+ break; |
+ case STE: |
+ Format(instr, "ste\t'f1,'d1('r2d,'r3)"); |
+ break; |
+ case STD: |
+ Format(instr, "std\t'f1,'d1('r2d,'r3)"); |
+ break; |
+ case CFDBR: |
+ Format(instr, "cfdbr\t'r5,'m2,'f6"); |
+ break; |
+ case CDFBR: |
+ Format(instr, "cdfbr\t'f5,'m2,'r6"); |
+ break; |
+ case CFEBR: |
+ Format(instr, "cfebr\t'r5,'m2,'f6"); |
+ break; |
+ case CEFBR: |
+ Format(instr, "cefbr\t'f5,'m2,'r6"); |
+ break; |
+ case CGEBR: |
+ Format(instr, "cgebr\t'r5,'m2,'f6"); |
+ break; |
+ case CGDBR: |
+ Format(instr, "cgdbr\t'r5,'m2,'f6"); |
+ break; |
+ case CEGBR: |
+ Format(instr, "cegbr\t'f5,'m2,'r6"); |
+ break; |
+ case CDGBR: |
+ Format(instr, "cdgbr\t'f5,'m2,'r6"); |
+ break; |
+ case CDLFBR: |
+ Format(instr, "cdlfbr\t'f5,'m2,'r6"); |
+ break; |
+ case CDLGBR: |
+ Format(instr, "cdlgbr\t'f5,'m2,'r6"); |
+ break; |
+ case CELGBR: |
+ Format(instr, "celgbr\t'f5,'m2,'r6"); |
+ break; |
+ case CLFDBR: |
+ Format(instr, "clfdbr\t'r5,'m2,'f6"); |
+ break; |
+ case CLGDBR: |
+ Format(instr, "clgdbr\t'r5,'m2,'f6"); |
+ break; |
+ case AEBR: |
+ Format(instr, "aebr\t'f5,'f6"); |
+ break; |
+ case SEBR: |
+ Format(instr, "sebr\t'f5,'f6"); |
+ break; |
+ case MEEBR: |
+ Format(instr, "meebr\t'f5,'f6"); |
+ break; |
+ case DEBR: |
+ Format(instr, "debr\t'f5,'f6"); |
+ break; |
+ case ADBR: |
+ Format(instr, "adbr\t'f5,'f6"); |
+ break; |
+ case SDBR: |
+ Format(instr, "sdbr\t'f5,'f6"); |
+ break; |
+ case MDBR: |
+ Format(instr, "mdbr\t'f5,'f6"); |
+ break; |
+ case DDBR: |
+ Format(instr, "ddbr\t'f5,'f6"); |
+ break; |
+ case CDBR: |
+ Format(instr, "cdbr\t'f5,'f6"); |
+ break; |
+ case SQDBR: |
+ Format(instr, "sqdbr\t'f5,'f6"); |
+ break; |
+ case LCDBR: |
+ Format(instr, "lcdbr\t'f5,'f6"); |
+ break; |
+ case STH: |
+ Format(instr, "sth\t'r1,'d1('r2d,'r3)"); |
+ break; |
+ case SRDA: |
+ Format(instr, "srda\t'r1,'d1"); |
+ break; |
+ case SRDL: |
+ Format(instr, "srdl\t'r1,'d1"); |
+ break; |
+ case MADBR: |
+ Format(instr, "madbr\t'f3,'f5,'f6"); |
+ break; |
+ case MSDBR: |
+ Format(instr, "msdbr\t'f3,'f5,'f6"); |
+ break; |
+ case FLOGR: |
+ Format(instr, "flogr\t'r5,'r6"); |
+ break; |
+ // TRAP4 is used in calling to native function. it will not be generated |
+ // in native code. |
+ case TRAP4: { |
+ Format(instr, "trap4"); |
+ break; |
+ } |
+ default: |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+// Disassembles Six Byte S390 Instructions |
+// @return true if successfully decoded |
+bool Decoder::DecodeSixByte(Instruction* instr) { |
+ // Print the Instruction bits. |
+ out_buffer_pos_ += |
+ SNPrintF(out_buffer_ + out_buffer_pos_, "%012" PRIx64 " ", |
+ instr->InstructionBits<SixByteInstr>()); |
+ |
+ Opcode opcode = instr->S390OpcodeValue(); |
+ switch (opcode) { |
+ case LLILF: |
+ Format(instr, "llilf\t'r1,'i7"); |
+ break; |
+ case LLIHF: |
+ Format(instr, "llihf\t'r1,'i7"); |
+ break; |
+ case AFI: |
+ Format(instr, "afi\t'r1,'i7"); |
+ break; |
+ case ASI: |
+ Format(instr, "asi\t'd2('r3),'ic"); |
+ break; |
+ case AGSI: |
+ Format(instr, "agsi\t'd2('r3),'ic"); |
+ break; |
+ case ALFI: |
+ Format(instr, "alfi\t'r1,'i7"); |
+ break; |
+ case AHIK: |
+ Format(instr, "ahik\t'r1,'r2,'i1"); |
+ break; |
+ case AGHIK: |
+ Format(instr, "aghik\t'r1,'r2,'i1"); |
+ break; |
+ case CLGFI: |
+ Format(instr, "clgfi\t'r1,'i7"); |
+ break; |
+ case CLFI: |
+ Format(instr, "clfi\t'r1,'i7"); |
+ break; |
+ case CFI: |
+ Format(instr, "cfi\t'r1,'i2"); |
+ break; |
+ case CGFI: |
+ Format(instr, "cgfi\t'r1,'i2"); |
+ break; |
+ case BRASL: |
+ Format(instr, "brasl\t'r1,'ie"); |
+ break; |
+ case BRCL: |
+ Format(instr, "brcl\t'm1,'i5"); |
+ break; |
+ case IIHF: |
+ Format(instr, "iihf\t'r1,'i7"); |
+ break; |
+ case IILF: |
+ Format(instr, "iilf\t'r1,'i7"); |
+ break; |
+ case XIHF: |
+ Format(instr, "xihf\t'r1,'i7"); |
+ break; |
+ case XILF: |
+ Format(instr, "xilf\t'r1,'i7"); |
+ break; |
+ case SLLK: |
+ Format(instr, "sllk\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SLLG: |
+ Format(instr, "sllg\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case RLL: |
+ Format(instr, "rll\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case RLLG: |
+ Format(instr, "rllg\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SRLK: |
+ Format(instr, "srlk\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SRLG: |
+ Format(instr, "srlg\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SLAK: |
+ Format(instr, "slak\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SLAG: |
+ Format(instr, "slag\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SRAK: |
+ Format(instr, "srak\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case SRAG: |
+ Format(instr, "srag\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case RISBG: |
+ Format(instr, "risbg\t'r1,'r2,'i9,'ia,'ib"); |
+ break; |
+ case RISBGN: |
+ Format(instr, "risbgn\t'r1,'r2,'i9,'ia,'ib"); |
+ break; |
+ case LMY: |
+ Format(instr, "lmy\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case LMG: |
+ Format(instr, "lmg\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case STMY: |
+ Format(instr, "stmy\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case STMG: |
+ Format(instr, "stmg\t'r1,'r2,'d2('r3)"); |
+ break; |
+ case LT: |
+ Format(instr, "lt\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LTG: |
+ Format(instr, "ltg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case ML: |
+ Format(instr, "ml\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case AY: |
+ Format(instr, "ay\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case SY: |
+ Format(instr, "sy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case NY: |
+ Format(instr, "ny\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case OY: |
+ Format(instr, "oy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case XY: |
+ Format(instr, "xy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case CY: |
+ Format(instr, "cy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case AHY: |
+ Format(instr, "ahy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case SHY: |
+ Format(instr, "shy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LGH: |
+ Format(instr, "lgh\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case AG: |
+ Format(instr, "ag\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case AGF: |
+ Format(instr, "agf\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case SG: |
+ Format(instr, "sg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case NG: |
+ Format(instr, "ng\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case OG: |
+ Format(instr, "og\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case XG: |
+ Format(instr, "xg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case CG: |
+ Format(instr, "cg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LB: |
+ Format(instr, "lb\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LG: |
+ Format(instr, "lg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LGF: |
+ Format(instr, "lgf\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LLGF: |
+ Format(instr, "llgf\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LY: |
+ Format(instr, "ly\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case ALY: |
+ Format(instr, "aly\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case ALG: |
+ Format(instr, "alg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case SLG: |
+ Format(instr, "slg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case SGF: |
+ Format(instr, "sgf\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case SLY: |
+ Format(instr, "sly\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LLH: |
+ Format(instr, "llh\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LLGH: |
+ Format(instr, "llgh\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LLC: |
+ Format(instr, "llc\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LLGC: |
+ Format(instr, "llgc\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LDEB: |
+ Format(instr, "ldeb\t'f1,'d2('r2d,'r3)"); |
+ break; |
+ case LAY: |
+ Format(instr, "lay\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case LARL: |
+ Format(instr, "larl\t'r1,'i5"); |
+ break; |
+ case LGB: |
+ Format(instr, "lgb\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case CHY: |
+ Format(instr, "chy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case CLY: |
+ Format(instr, "cly\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case CLIY: |
+ Format(instr, "cliy\t'd2('r3),'i8"); |
+ break; |
+ case TMY: |
+ Format(instr, "tmy\t'd2('r3),'i8"); |
+ break; |
+ case CLG: |
+ Format(instr, "clg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case BCTG: |
+ Format(instr, "bctg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case STY: |
+ Format(instr, "sty\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case STG: |
+ Format(instr, "stg\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case ICY: |
+ Format(instr, "icy\t'r1,'d2('r2d,'r3)"); |
+ break; |
+ case MVC: |
+ Format(instr, "mvc\t'd3('i8,'r3),'d4('r7)"); |
+ break; |
+ case MVHI: |
+ Format(instr, "mvhi\t'd3('r3),'id"); |
+ break; |
+ case MVGHI: |
+ Format(instr, "mvghi\t'd3('r3),'id"); |
+ break; |
+ case ALGFI: |
+ Format(instr, "algfi\t'r1,'i7"); |
+ break; |
+ case SLGFI: |
+ Format(instr, "slgfi\t'r1,'i7"); |
+ break; |
+ case SLFI: |
+ Format(instr, "slfi\t'r1,'i7"); |
+ break; |
+ case NIHF: |
+ Format(instr, "nihf\t'r1,'i7"); |
+ break; |
+ case NILF: |
+ Format(instr, "nilf\t'r1,'i7"); |
+ break; |
+ case OIHF: |
+ Format(instr, "oihf\t'r1,'i7"); |
+ break; |
+ case OILF: |
+ Format(instr, "oilf\t'r1,'i7"); |
+ break; |
+ case MSFI: |
+ Format(instr, "msfi\t'r1,'i7"); |
+ break; |
+ case MSGFI: |
+ Format(instr, "msgfi\t'r1,'i7"); |
+ break; |
+ case LDY: |
+ Format(instr, "ldy\t'f1,'d2('r2d,'r3)"); |
+ break; |
+ case LEY: |
+ Format(instr, "ley\t'f1,'d2('r2d,'r3)"); |
+ break; |
+ case STEY: |
+ Format(instr, "stey\t'f1,'d2('r2d,'r3)"); |
+ break; |
+ case STDY: |
+ Format(instr, "stdy\t'f1,'d2('r2d,'r3)"); |
+ break; |
+ case ADB: |
+ Format(instr, "adb\t'r1,'d1('r2d, 'r3)"); |
+ break; |
+ case SDB: |
+ Format(instr, "sdb\t'r1,'d1('r2d, 'r3)"); |
+ break; |
+ case MDB: |
+ Format(instr, "mdb\t'r1,'d1('r2d, 'r3)"); |
+ break; |
+ case DDB: |
+ Format(instr, "ddb\t'r1,'d1('r2d, 'r3)"); |
+ break; |
+ case SQDB: |
+ Format(instr, "sqdb\t'r1,'d1('r2d, 'r3)"); |
+ break; |
+ default: |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+#undef VERIFIY |
+ |
+// Disassemble the instruction at *instr_ptr into the output buffer. |
+int Decoder::InstructionDecode(byte* instr_ptr) { |
+ Instruction* instr = Instruction::At(instr_ptr); |
+ int instrLength = instr->InstructionLength(); |
+ |
+ if (2 == instrLength) |
+ DecodeTwoByte(instr); |
+ else if (4 == instrLength) |
+ DecodeFourByte(instr); |
+ else |
+ DecodeSixByte(instr); |
+ |
+ return instrLength; |
+} |
+ |
+} // namespace internal |
+} // namespace v8 |
+ |
+//------------------------------------------------------------------------------ |
+ |
+namespace disasm { |
+ |
+const char* NameConverter::NameOfAddress(byte* addr) const { |
+ v8::internal::SNPrintF(tmp_buffer_, "%p", addr); |
+ return tmp_buffer_.start(); |
+} |
+ |
+const char* NameConverter::NameOfConstant(byte* addr) const { |
+ return NameOfAddress(addr); |
+} |
+ |
+const char* NameConverter::NameOfCPURegister(int reg) const { |
+ return v8::internal::Register::from_code(reg).ToString(); |
+} |
+ |
+const char* NameConverter::NameOfByteCPURegister(int reg) const { |
+ UNREACHABLE(); // S390 does not have the concept of a byte register |
+ return "nobytereg"; |
+} |
+ |
+const char* NameConverter::NameOfXMMRegister(int reg) const { |
+ // S390 does not have XMM register |
+ // TODO(joransiu): Consider update this for Vector Regs |
+ UNREACHABLE(); |
+ return "noxmmreg"; |
+} |
+ |
+const char* NameConverter::NameInCode(byte* addr) const { |
+ // The default name converter is called for unknown code. So we will not try |
+ // to access any memory. |
+ return ""; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+Disassembler::Disassembler(const NameConverter& converter) |
+ : converter_(converter) {} |
+ |
+Disassembler::~Disassembler() {} |
+ |
+int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer, |
+ byte* instruction) { |
+ v8::internal::Decoder d(converter_, buffer); |
+ return d.InstructionDecode(instruction); |
+} |
+ |
+// The S390 assembler does not currently use constant pools. |
+int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; } |
+ |
+void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { |
+ NameConverter converter; |
+ Disassembler d(converter); |
+ for (byte* pc = begin; pc < end;) { |
+ v8::internal::EmbeddedVector<char, 128> buffer; |
+ buffer[0] = '\0'; |
+ byte* prev_pc = pc; |
+ pc += d.InstructionDecode(buffer, pc); |
+ v8::internal::PrintF(f, "%p %08x %s\n", prev_pc, |
+ *reinterpret_cast<int32_t*>(prev_pc), buffer.start()); |
+ } |
+} |
+ |
+} // namespace disasm |
+ |
+#endif // V8_TARGET_ARCH_S390 |