Index: src/core/SkLinearBitmapPipeline.cpp |
diff --git a/src/core/SkLinearBitmapPipeline.cpp b/src/core/SkLinearBitmapPipeline.cpp |
index 02a4bd39f3df869a5d6a75284da472bb636646e2..dda00c560d067ce461ec1a980fda4f2fc476a4b8 100644 |
--- a/src/core/SkLinearBitmapPipeline.cpp |
+++ b/src/core/SkLinearBitmapPipeline.cpp |
@@ -15,7 +15,7 @@ |
#include "SkSize.h" |
// Tweak ABI of functions that pass Sk4f by value to pass them via registers. |
-#if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
+ #if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
mtklein
2016/02/23 23:49:57
Seems like it's all the other lines that are wrong
herb_g
2016/02/24 18:16:06
Done.
|
#define VECTORCALL __vectorcall |
#elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON) |
#define VECTORCALL __attribute__((pcs("aapcs-vfp"))) |
@@ -26,8 +26,8 @@ |
class SkLinearBitmapPipeline::PointProcessorInterface { |
public: |
virtual ~PointProcessorInterface() { } |
- virtual void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) = 0; |
- virtual void VECTORCALL pointList4(Sk4f xs, Sk4f ys) = 0; |
+ virtual void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0; |
+ virtual void VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0; |
// The pointSpan method efficiently process horizontal spans of pixels. |
// * start - the point where to start the span. |
@@ -58,7 +58,7 @@ public: |
// +--------+--------+ |
// These pixels coordinates are arranged in the following order in xs and ys: |
// px00 px10 px01 px11 |
- virtual void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) = 0; |
+ virtual void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) = 0; |
}; |
class SkLinearBitmapPipeline::PixelPlacerInterface { |
@@ -76,7 +76,7 @@ struct X { |
explicit X(SkPoint pt) : fVal{pt.fX} { } |
explicit X(SkSize s) : fVal{s.fWidth} { } |
explicit X(SkISize s) : fVal(s.fWidth) { } |
- operator float () const {return fVal;} |
+ operator SkScalar () const {return fVal;} |
private: |
float fVal; |
mtklein
2016/02/23 23:49:57
SkScalar
herb_g
2016/02/24 18:16:06
Done.
|
}; |
@@ -86,20 +86,20 @@ struct Y { |
explicit Y(SkPoint pt) : fVal{pt.fY} { } |
explicit Y(SkSize s) : fVal{s.fHeight} { } |
explicit Y(SkISize s) : fVal(s.fHeight) { } |
- operator float () const {return fVal;} |
+ operator SkScalar () const {return fVal;} |
private: |
float fVal; |
}; |
template <typename Stage> |
void span_fallback(SkPoint start, SkScalar length, int count, Stage* stage) { |
- // If count == 1 use PointListFew instead. |
- SkASSERT(count > 1); |
- |
float dx = length / (count - 1); |
mtklein
2016/02/23 23:49:57
Let's do a careful search for all 'float' in here.
herb_g
2016/02/24 18:16:06
Done.
|
- Sk4f Xs = Sk4f(X(start)) + Sk4f{0.0f, 1.0f, 2.0f, 3.0f} * Sk4f{dx}; |
- Sk4f Ys{Y(start)}; |
- Sk4f fourDx = {4.0f * dx}; |
+ // Xs must be calculated in the following manner instead of dx * {0.0, 1.0, 2.0, 3.0} because |
mtklein
2016/02/23 23:49:57
Seems fine to branch on count too, if that makes t
herb_g
2016/02/24 18:16:06
Done.
|
+ // dx may be nan (in the case where length and count - 1 are zero). The following produces a |
+ // 0.0f in lane 0 which is required for handling the length = 0 and count = 1 case. |
+ Sk4s Xs = Sk4s(X(start)) + Sk4s{0.0f, dx, 2.0f * dx, 3.0f * dx}; |
+ Sk4s Ys{Y(start)}; |
+ Sk4s fourDx = {4.0f * dx}; |
while (count >= 4) { |
stage->pointList4(Xs, Ys); |
@@ -132,12 +132,12 @@ public: |
: fNext{next} |
, fStrategy{std::forward<Args>(args)...}{ } |
- void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
fStrategy.processPoints(&xs, &ys); |
fNext->pointListFew(n, xs, ys); |
} |
- void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
fStrategy.processPoints(&xs, &ys); |
fNext->pointList4(xs, ys); |
} |
@@ -162,17 +162,17 @@ public: |
: fNext{next} |
, fStrategy{std::forward<Args>(args)...}{ } |
- void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
fStrategy.processPoints(&xs, &ys); |
fNext->pointListFew(n, xs, ys); |
} |
- void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
fStrategy.processPoints(&xs, &ys); |
fNext->pointList4(xs, ys); |
} |
- void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
fStrategy.processPoints(&xs, &ys); |
fNext->bilerpList(xs, ys); |
} |
@@ -189,13 +189,13 @@ private: |
}; |
class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterface { |
- void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
SkFAIL("Skipped stage."); |
} |
- void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
SkFAIL("Skipped stage."); |
} |
- void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
SkFAIL("Skipped stage."); |
} |
void pointSpan(SkPoint start, SkScalar length, int count) override { |
@@ -209,7 +209,7 @@ public: |
: fXOffset{X(offset)} |
, fYOffset{Y(offset)} { } |
- void processPoints(Sk4f* xs, Sk4f* ys) { |
+ void processPoints(Sk4s* xs, Sk4s* ys) { |
*xs = *xs + fXOffset; |
*ys = *ys + fYOffset; |
} |
@@ -221,7 +221,7 @@ public: |
} |
private: |
- const Sk4f fXOffset, fYOffset; |
+ const Sk4s fXOffset, fYOffset; |
}; |
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>; |
@@ -231,7 +231,7 @@ public: |
ScaleMatrixStrategy(SkVector offset, SkVector scale) |
: fXOffset{X(offset)}, fYOffset{Y(offset)} |
, fXScale{X(scale)}, fYScale{Y(scale)} { } |
- void processPoints(Sk4f* xs, Sk4f* ys) { |
+ void processPoints(Sk4s* xs, Sk4s* ys) { |
*xs = *xs * fXScale + fXOffset; |
*ys = *ys * fYScale + fYOffset; |
} |
@@ -246,8 +246,8 @@ public: |
} |
private: |
- const Sk4f fXOffset, fYOffset; |
- const Sk4f fXScale, fYScale; |
+ const Sk4s fXOffset, fYOffset; |
+ const Sk4s fXScale, fYScale; |
}; |
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>; |
@@ -258,9 +258,9 @@ public: |
: fXOffset{X(offset)}, fYOffset{Y(offset)} |
, fXScale{X(scale)}, fYScale{Y(scale)} |
, fXSkew{X(skew)}, fYSkew{Y(skew)} { } |
- void processPoints(Sk4f* xs, Sk4f* ys) { |
- Sk4f newXs = fXScale * *xs + fXSkew * *ys + fXOffset; |
- Sk4f newYs = fYSkew * *xs + fYScale * *ys + fYOffset; |
+ void processPoints(Sk4s* xs, Sk4s* ys) { |
+ Sk4s newXs = fXScale * *xs + fXSkew * *ys + fXOffset; |
+ Sk4s newYs = fYSkew * *xs + fYScale * *ys + fYOffset; |
*xs = newXs; |
*ys = newYs; |
@@ -272,9 +272,9 @@ public: |
} |
private: |
- const Sk4f fXOffset, fYOffset; |
- const Sk4f fXScale, fYScale; |
- const Sk4f fXSkew, fYSkew; |
+ const Sk4s fXOffset, fYOffset; |
+ const Sk4s fXScale, fYScale; |
+ const Sk4s fXSkew, fYSkew; |
}; |
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>; |
@@ -312,24 +312,24 @@ class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterfac |
public: |
ExpandBilerp(Next* next) : fNext{next} { } |
- void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
SkASSERT(0 < n && n < 4); |
// px00 px10 px01 px11 |
- const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
+ const Sk4s kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; |
- if (n >= 1) fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYOffsets); |
- if (n >= 2) fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYOffsets); |
- if (n >= 3) fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets); |
+ if (n >= 1) fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets); |
+ if (n >= 2) fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets); |
+ if (n >= 3) fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets); |
} |
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
// px00 px10 px01 px11 |
const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; |
- fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYOffsets); |
- fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYOffsets); |
- fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets); |
- fNext->bilerpList(Sk4f{xs[3]} + kXOffsets, Sk4f{ys[3]} + kYOffsets); |
+ fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets); |
+ fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets); |
+ fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets); |
+ fNext->bilerpList(Sk4s{xs[3]} + kXOffsets, Sk4s{ys[3]} + kYOffsets); |
} |
void pointSpan(SkPoint start, SkScalar length, int count) override { |
@@ -367,25 +367,105 @@ public: |
, fXMax{X(max) - 1.0f} |
, fYMax{Y(max) - 1.0f} { } |
- void processPoints(Sk4f* xs, Sk4f* ys) { |
- *xs = Sk4f::Min(Sk4f::Max(*xs, fXMin), fXMax); |
- *ys = Sk4f::Min(Sk4f::Max(*ys, fYMin), fYMax); |
+ void processPoints(Sk4s* xs, Sk4s* ys) { |
+ *xs = Sk4s::Min(Sk4s::Max(*xs, fXMin), fXMax); |
+ *ys = Sk4s::Min(Sk4s::Max(*ys, fYMin), fYMax); |
} |
template <typename Next> |
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
- return false; |
+ SkScalar xMin = fXMin[0]; |
+ SkScalar xMax = fXMax[0]; |
+ SkScalar yMin = fYMin[0]; |
+ SkScalar yMax = fYMax[0]; |
+ SkScalar x = X(start); |
+ SkScalar y = std::min(std::max<float>(yMin, Y(start)), yMax); |
+ |
+ bool under = x < xMin; |
+ |
+ if (!under && x + length < xMax) { |
+ next->pointSpan(start, length, count); |
+ return true; |
+ } |
+ |
+ SkScalar dx = length / (count - 1); |
+ |
+ // A B C |
+ // +-------+-------+-------++-------+-------+-------+ +-------+-------++------ |
+ // | *---*|---*---|*---*--||-*---*-|---*---|*---...| |--*---*|---*---||*---*.... |
+ // | | | || | | | ... | | || |
+ // | | | || | | | | | || |
+ // +-------+-------+-------++-------+-------+-------+ +-------+-------++------ |
+ // ^ ^ |
+ // | xMin xMax-1 | xMax |
+ // |
+ // *---*---*---... - track of samples. * = sample |
+ // |
+ // +-+ || |
+ // | | - pixels in source space. || - tile border. |
+ // +-+ || |
+ // |
+ // The length from A to B is the length in source space or 4 * dx ((count - 1) * dx) |
mtklein
2016/02/23 23:49:57
4 * dx ((count - 1) * dx) reads like one expressio
herb_g
2016/02/24 18:16:06
Done.
|
+ // where dx is the distance between samples. There are 5 pixels specified in the A, B |
mtklein
2016/02/23 23:49:57
There are 5 destination pixels ... ? Or 5 samples
herb_g
2016/02/24 18:16:06
Add explanation.
|
+ // span. The distance from A to the next span starting at C is 5 * dx, so count * dx. |
+ // Overall Strategy: |
+ // * Under - for portions of the span < xMin, take the color at pixel {xMin, y} and use it |
+ // to fill in the 5 pixel sampled from A to B. |
+ // * Middle - for the portion of the span between xMin and xMax sample normally. |
+ // * Over - for the portion of the span > xMax, take the color at pixel {xMax-1, y} and |
+ // use it to fill in the rest of the destination pixels. |
+ if (under) { |
+ // It could be that the entire span is off the left edge of the tile. |
+ SkScalar EdgeOrXEnd = std::min(xMin, x + length + 1.0f); |
+ int underCount = SkScalarFloorToInt((EdgeOrXEnd - x) / dx) + 1; |
+ if (underCount > 0) { |
+ // Use the pixel on the edge of the bitmap as the color for the entire span. |
+ // Using a length of 0 causes x not to move in the sampler resulting in the same |
+ // pixel being used for the entire span. |
+ next->pointSpan({xMin, y}, 0.0f, underCount); |
+ |
+ // The length is not the distance to xMin, but to the next starting sample. |
+ SkScalar lengthToNextStart = dx * underCount; |
+ count -= underCount; |
+ length -= lengthToNextStart; |
+ x += lengthToNextStart; |
+ } |
+ } |
+ |
+ // If there are more pixels needed, sample from the middle of the tile. |
+ if (count > 0) { |
+ // It could be that span continues off the edge of tile; use min for the limit. |
+ SkScalar EdgeOrXEnd = std::min(xMax, x + length); |
+ int middleCount = SkScalarFloorToInt((EdgeOrXEnd - x) / dx) + 1; |
+ SkScalar middleLength = (middleCount - 1) * dx; |
+ next->pointSpan({x, y}, middleLength, middleCount); |
+ count -= middleCount; |
+ } |
+ |
+ if (count > 0) { |
+ // Use the pixel on the edge of the bitmap as the color for the entire span. |
+ // Using a length of 0 causes x not to move in the sampler resulting in the same |
+ // pixel being used for the entire span. |
+ next->pointSpan({xMax - 1.0f, y}, 0.0f, count); |
+ } |
+ |
+ return true; |
} |
private: |
- const Sk4f fXMin{SK_FloatNegativeInfinity}; |
- const Sk4f fYMin{SK_FloatNegativeInfinity}; |
- const Sk4f fXMax{SK_FloatInfinity}; |
- const Sk4f fYMax{SK_FloatInfinity}; |
+ const Sk4s fXMin{SK_FloatNegativeInfinity}; |
+ const Sk4s fYMin{SK_FloatNegativeInfinity}; |
+ const Sk4s fXMax{SK_FloatInfinity}; |
+ const Sk4s fYMax{SK_FloatInfinity}; |
}; |
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
using Clamp = BilerpProcessor<ClampStrategy, Next>; |
+// It would be nice to use fmod, but it uses trunc based rounding where floor rounding is needed. |
+static SkScalar tile_mod(SkScalar x, SkScalar base) { |
+ return x - std::floor(x / base) * base; |
+} |
+ |
class RepeatStrategy { |
public: |
RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { } |
@@ -396,25 +476,79 @@ public: |
, fYMax{Y(max)} |
, fYInvMax{1.0f / Y(max)} { } |
- void processPoints(Sk4f* xs, Sk4f* ys) { |
- Sk4f divX = (*xs * fXInvMax).floor(); |
- Sk4f divY = (*ys * fYInvMax).floor(); |
- Sk4f baseX = (divX * fXMax); |
- Sk4f baseY = (divY * fYMax); |
+ void processPoints(Sk4s* xs, Sk4s* ys) { |
+ Sk4s divX = (*xs * fXInvMax).floor(); |
+ Sk4s divY = (*ys * fYInvMax).floor(); |
+ Sk4s baseX = (divX * fXMax); |
+ Sk4s baseY = (divY * fYMax); |
*xs = *xs - baseX; |
*ys = *ys - baseY; |
} |
template <typename Next> |
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
- return false; |
+ // Make x and y in range on the tile. |
+ SkScalar x = tile_mod(X(start), fXMax[0]); |
+ SkScalar y = tile_mod(Y(start), fYMax[0]); |
+ SkScalar xMax = fXMax[0]; |
+ SkScalar dx = length / (count - 1); |
+ |
+ // A B C D Z |
+ // +-------+-------+-------++-------+-------+-------++ +-------+-------++------ |
+ // | | *---|*---*--||-*---*-|---*---|*---*--|| |--*---*| || |
+ // | | | || | | || ... | | || |
+ // | | | || | | || | | || |
+ // +-------+-------+-------++-------+-------+-------++ +-------+-------++------ |
+ // ^^ ^^ ^^ |
+ // xMax || xMin xMax || xMin xMax || xMin |
+ // |
+ // *---*---*---... - track of samples. * = sample |
+ // |
+ // +-+ || |
+ // | | - pixels in source space. || - tile border. |
+ // +-+ || |
+ // |
+ // |
+ // The given span starts at A and continues on through several tiles to sample point Z. |
+ // The idea is to break this into several spans one on each tile the entire span |
+ // intersects. The A to B span only covers a partial tile and has a count of 3 and the |
+ // distance from A to B is (count - 1) * dx or 2 * dx. The distance from A to the start of |
+ // the next span is count * dx or 3 * dx. Span C to D covers an entire tile has a count |
+ // of 5 and a length of 4 * dx. |
+ // |
+ // Overall Strategy: |
+ // While the span hangs over the edge of the tile. Draw the span covering the tile then |
mtklein
2016/02/23 23:49:57
While the span hangs over the edge of the tile.
?
herb_g
2016/02/24 18:16:06
Fixed sentence fragment.
|
+ // slide the span over to the next tile. |
+ |
+ // The guard could have been count > 0, but then a bunch of math would be done in the |
+ // common case. |
+ while (x + length > xMax) { |
+ // The number of samples that intersect this tile. |
+ int countForTile = SkScalarFloorToInt((xMax - x) / dx) + 1; |
+ // The distance between the first and last sample. |
+ SkScalar lengthForSpanOnTile = (countForTile - 1) * dx; |
+ // Span the samples. |
+ next->pointSpan({x, y}, lengthForSpanOnTile, countForTile); |
+ // Add one more dx to get to the first sample on the next tile. |
+ SkScalar lengthToNextStart = lengthForSpanOnTile + dx; |
+ // slide over to the next tile. |
+ length -= lengthToNextStart; |
+ count -= countForTile; |
+ x += lengthToNextStart - xMax; |
+ } |
+ // All on a single tile. |
+ if (count > 0) { |
+ next->pointSpan({x, y}, length, count); |
+ } |
+ |
+ return true; |
} |
private: |
- const Sk4f fXMax{0.0f}; |
- const Sk4f fXInvMax{0.0f}; |
- const Sk4f fYMax{0.0f}; |
- const Sk4f fYInvMax{0.0f}; |
+ const Sk4s fXMax{0.0f}; |
+ const Sk4s fXInvMax{0.0f}; |
+ const Sk4s fYMax{0.0f}; |
+ const Sk4s fYInvMax{0.0f}; |
}; |
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
@@ -469,9 +603,9 @@ static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler( |
class sRGBFast { |
public: |
- static Sk4f VECTORCALL sRGBToLinear(Sk4f pixel) { |
- Sk4f l = pixel * pixel; |
- return Sk4f{l[0], l[1], l[2], pixel[3]}; |
+ static Sk4s VECTORCALL sRGBToLinear(Sk4s pixel) { |
+ Sk4s l = pixel * pixel; |
+ return Sk4s{l[0], l[1], l[2], pixel[3]}; |
} |
}; |
@@ -481,7 +615,7 @@ public: |
Passthrough8888(int width, const uint32_t* src) |
: fSrc{src}, fWidth{width}{ } |
- void VECTORCALL getFewPixels(int n, Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) { |
+ void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) { |
Sk4i XIs = SkNx_cast<int, float>(xs); |
Sk4i YIs = SkNx_cast<int, float>(ys); |
Sk4i bufferLoc = YIs * fWidth + XIs; |
@@ -497,7 +631,7 @@ public: |
} |
} |
- void VECTORCALL get4Pixels(Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) { |
+ void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) { |
Sk4i XIs = SkNx_cast<int, float>(xs); |
Sk4i YIs = SkNx_cast<int, float>(ys); |
Sk4i bufferLoc = YIs * fWidth + XIs; |
@@ -543,12 +677,12 @@ private: |
// * px01 -> (1 - x)y = y - xy |
// * px11 -> xy |
// So x * y is calculated first and then used to calculate all the other factors. |
-static Sk4f VECTORCALL bilerp4(Sk4f xs, Sk4f ys, Sk4f px00, Sk4f px10, |
+static Sk4s VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10, |
Sk4f px01, Sk4f px11) { |
// Calculate fractional xs and ys. |
- Sk4f fxs = xs - xs.floor(); |
- Sk4f fys = ys - ys.floor(); |
- Sk4f fxys{fxs * fys}; |
+ Sk4s fxs = xs - xs.floor(); |
+ Sk4s fys = ys - ys.floor(); |
+ Sk4s fxys{fxs * fys}; |
Sk4f sum = px11 * fxys; |
sum = sum + px01 * (fys - fxys); |
sum = sum + px10 * (fxs - fxys); |
@@ -564,7 +698,7 @@ public: |
: fNext{next} |
, fStrategy{std::forward<Args>(args)...} { } |
- void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
SkASSERT(0 < n && n < 4); |
Sk4f px0, px1, px2; |
fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2); |
@@ -573,13 +707,13 @@ public: |
if (n >= 3) fNext->placePixel(px2); |
} |
- void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
Sk4f px0, px1, px2, px3; |
fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3); |
fNext->place4Pixels(px0, px1, px2, px3); |
} |
- void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { |
+ void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
Sk4f px00, px10, px01, px11; |
fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11); |
Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11); |
@@ -697,14 +831,9 @@ SkLinearBitmapPipeline::SkLinearBitmapPipeline( |
void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) { |
SkASSERT(count > 0); |
fPixelStage->setDestination(dst); |
- // Adjust points by 0.5, 0.5 to sample from the center of the pixels. |
- if (count == 1) { |
- fFirstStage->pointListFew(1, Sk4f{x + 0.5f}, Sk4f{y + 0.5f}); |
- } else { |
- // The count and length arguments start out in a precise relation in order to keep the |
- // math correct through the different stages. Count is the number of pixel to produce. |
- // Since the code samples at pixel centers, length is the distance from the center of the |
- // first pixel to the center of the last pixel. This implies that length is count-1. |
- fFirstStage->pointSpan(SkPoint{x + 0.5f, y + 0.5f}, count - 1, count); |
- } |
+ // The count and length arguments start out in a precise relation in order to keep the |
+ // math correct through the different stages. Count is the number of pixel to produce. |
+ // Since the code samples at pixel centers, length is the distance from the center of the |
+ // first pixel to the center of the last pixel. This implies that length is count-1. |
+ fFirstStage->pointSpan(SkPoint{x + 0.5f, y + 0.5f}, count - 1, count); |
} |