Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkLinearBitmapPipeline.h" | 8 #include "SkLinearBitmapPipeline.h" |
| 9 #include "SkPM4f.h" | 9 #include "SkPM4f.h" |
| 10 | 10 |
| 11 #include <algorithm> | 11 #include <algorithm> |
| 12 #include <cmath> | 12 #include <cmath> |
| 13 #include <limits> | 13 #include <limits> |
| 14 #include "SkColor.h" | 14 #include "SkColor.h" |
| 15 #include "SkSize.h" | 15 #include "SkSize.h" |
| 16 | 16 |
| 17 // Tweak ABI of functions that pass Sk4f by value to pass them via registers. | 17 // Tweak ABI of functions that pass Sk4f by value to pass them via registers. |
| 18 #if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 | 18 #if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
|
mtklein
2016/02/23 23:49:57
Seems like it's all the other lines that are wrong
herb_g
2016/02/24 18:16:06
Done.
| |
| 19 #define VECTORCALL __vectorcall | 19 #define VECTORCALL __vectorcall |
| 20 #elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON) | 20 #elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON) |
| 21 #define VECTORCALL __attribute__((pcs("aapcs-vfp"))) | 21 #define VECTORCALL __attribute__((pcs("aapcs-vfp"))) |
| 22 #else | 22 #else |
| 23 #define VECTORCALL | 23 #define VECTORCALL |
| 24 #endif | 24 #endif |
| 25 | 25 |
| 26 class SkLinearBitmapPipeline::PointProcessorInterface { | 26 class SkLinearBitmapPipeline::PointProcessorInterface { |
| 27 public: | 27 public: |
| 28 virtual ~PointProcessorInterface() { } | 28 virtual ~PointProcessorInterface() { } |
| 29 virtual void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) = 0; | 29 virtual void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0; |
| 30 virtual void VECTORCALL pointList4(Sk4f xs, Sk4f ys) = 0; | 30 virtual void VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0; |
| 31 | 31 |
| 32 // The pointSpan method efficiently process horizontal spans of pixels. | 32 // The pointSpan method efficiently process horizontal spans of pixels. |
| 33 // * start - the point where to start the span. | 33 // * start - the point where to start the span. |
| 34 // * length - the number of pixels to traverse in source space. | 34 // * length - the number of pixels to traverse in source space. |
| 35 // * count - the number of pixels to produce in destination space. | 35 // * count - the number of pixels to produce in destination space. |
| 36 // Both start and length are mapped through the inversion matrix to produce values in source | 36 // Both start and length are mapped through the inversion matrix to produce values in source |
| 37 // space. After the matrix operation, the tilers may break the spans up into smaller spans. | 37 // space. After the matrix operation, the tilers may break the spans up into smaller spans. |
| 38 // The tilers can produce spans that seem nonsensical. | 38 // The tilers can produce spans that seem nonsensical. |
| 39 // * The clamp tiler can create spans with length of 0. This indicates to co py an edge pixel out | 39 // * The clamp tiler can create spans with length of 0. This indicates to co py an edge pixel out |
| 40 // to the edge of the destination scan. | 40 // to the edge of the destination scan. |
| (...skipping 10 matching lines...) Expand all Loading... | |
| 51 // | | | | 51 // | | | |
| 52 // | px00 | px10 | | 52 // | px00 | px10 | |
| 53 // | 0 | 1 | | 53 // | 0 | 1 | |
| 54 // +--------+--------+ | 54 // +--------+--------+ |
| 55 // | | | | 55 // | | | |
| 56 // | px01 | px11 | | 56 // | px01 | px11 | |
| 57 // | 2 | 3 | | 57 // | 2 | 3 | |
| 58 // +--------+--------+ | 58 // +--------+--------+ |
| 59 // These pixels coordinates are arranged in the following order in xs and ys : | 59 // These pixels coordinates are arranged in the following order in xs and ys : |
| 60 // px00 px10 px01 px11 | 60 // px00 px10 px01 px11 |
| 61 virtual void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) = 0; | 61 virtual void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) = 0; |
| 62 }; | 62 }; |
| 63 | 63 |
| 64 class SkLinearBitmapPipeline::PixelPlacerInterface { | 64 class SkLinearBitmapPipeline::PixelPlacerInterface { |
| 65 public: | 65 public: |
| 66 virtual ~PixelPlacerInterface() { } | 66 virtual ~PixelPlacerInterface() { } |
| 67 virtual void setDestination(SkPM4f* dst) = 0; | 67 virtual void setDestination(SkPM4f* dst) = 0; |
| 68 virtual void VECTORCALL placePixel(Sk4f pixel0) = 0; | 68 virtual void VECTORCALL placePixel(Sk4f pixel0) = 0; |
| 69 virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0 ; | 69 virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0 ; |
| 70 }; | 70 }; |
| 71 | 71 |
| 72 namespace { | 72 namespace { |
| 73 | 73 |
| 74 struct X { | 74 struct X { |
| 75 explicit X(SkScalar val) : fVal{val} { } | 75 explicit X(SkScalar val) : fVal{val} { } |
| 76 explicit X(SkPoint pt) : fVal{pt.fX} { } | 76 explicit X(SkPoint pt) : fVal{pt.fX} { } |
| 77 explicit X(SkSize s) : fVal{s.fWidth} { } | 77 explicit X(SkSize s) : fVal{s.fWidth} { } |
| 78 explicit X(SkISize s) : fVal(s.fWidth) { } | 78 explicit X(SkISize s) : fVal(s.fWidth) { } |
| 79 operator float () const {return fVal;} | 79 operator SkScalar () const {return fVal;} |
| 80 private: | 80 private: |
| 81 float fVal; | 81 float fVal; |
|
mtklein
2016/02/23 23:49:57
SkScalar
herb_g
2016/02/24 18:16:06
Done.
| |
| 82 }; | 82 }; |
| 83 | 83 |
| 84 struct Y { | 84 struct Y { |
| 85 explicit Y(SkScalar val) : fVal{val} { } | 85 explicit Y(SkScalar val) : fVal{val} { } |
| 86 explicit Y(SkPoint pt) : fVal{pt.fY} { } | 86 explicit Y(SkPoint pt) : fVal{pt.fY} { } |
| 87 explicit Y(SkSize s) : fVal{s.fHeight} { } | 87 explicit Y(SkSize s) : fVal{s.fHeight} { } |
| 88 explicit Y(SkISize s) : fVal(s.fHeight) { } | 88 explicit Y(SkISize s) : fVal(s.fHeight) { } |
| 89 operator float () const {return fVal;} | 89 operator SkScalar () const {return fVal;} |
| 90 private: | 90 private: |
| 91 float fVal; | 91 float fVal; |
| 92 }; | 92 }; |
| 93 | 93 |
| 94 template <typename Stage> | 94 template <typename Stage> |
| 95 void span_fallback(SkPoint start, SkScalar length, int count, Stage* stage) { | 95 void span_fallback(SkPoint start, SkScalar length, int count, Stage* stage) { |
| 96 // If count == 1 use PointListFew instead. | |
| 97 SkASSERT(count > 1); | |
| 98 | |
| 99 float dx = length / (count - 1); | 96 float dx = length / (count - 1); |
|
mtklein
2016/02/23 23:49:57
Let's do a careful search for all 'float' in here.
herb_g
2016/02/24 18:16:06
Done.
| |
| 100 Sk4f Xs = Sk4f(X(start)) + Sk4f{0.0f, 1.0f, 2.0f, 3.0f} * Sk4f{dx}; | 97 // Xs must be calculated in the following manner instead of dx * {0.0, 1.0, 2.0, 3.0} because |
|
mtklein
2016/02/23 23:49:57
Seems fine to branch on count too, if that makes t
herb_g
2016/02/24 18:16:06
Done.
| |
| 101 Sk4f Ys{Y(start)}; | 98 // dx may be nan (in the case where length and count - 1 are zero). The foll owing produces a |
| 102 Sk4f fourDx = {4.0f * dx}; | 99 // 0.0f in lane 0 which is required for handling the length = 0 and count = 1 case. |
| 100 Sk4s Xs = Sk4s(X(start)) + Sk4s{0.0f, dx, 2.0f * dx, 3.0f * dx}; | |
| 101 Sk4s Ys{Y(start)}; | |
| 102 Sk4s fourDx = {4.0f * dx}; | |
| 103 | 103 |
| 104 while (count >= 4) { | 104 while (count >= 4) { |
| 105 stage->pointList4(Xs, Ys); | 105 stage->pointList4(Xs, Ys); |
| 106 Xs = Xs + fourDx; | 106 Xs = Xs + fourDx; |
| 107 count -= 4; | 107 count -= 4; |
| 108 } | 108 } |
| 109 if (count > 0) { | 109 if (count > 0) { |
| 110 stage->pointListFew(count, Xs, Ys); | 110 stage->pointListFew(count, Xs, Ys); |
| 111 } | 111 } |
| 112 } | 112 } |
| (...skipping 12 matching lines...) Expand all Loading... | |
| 125 // maybeProcessSpan - returns false if it can not process the span and needs t o fallback to | 125 // maybeProcessSpan - returns false if it can not process the span and needs t o fallback to |
| 126 // point lists for processing. | 126 // point lists for processing. |
| 127 template<typename Strategy, typename Next> | 127 template<typename Strategy, typename Next> |
| 128 class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterf ace { | 128 class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterf ace { |
| 129 public: | 129 public: |
| 130 template <typename... Args> | 130 template <typename... Args> |
| 131 PointProcessor(Next* next, Args&&... args) | 131 PointProcessor(Next* next, Args&&... args) |
| 132 : fNext{next} | 132 : fNext{next} |
| 133 , fStrategy{std::forward<Args>(args)...}{ } | 133 , fStrategy{std::forward<Args>(args)...}{ } |
| 134 | 134 |
| 135 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 135 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| 136 fStrategy.processPoints(&xs, &ys); | 136 fStrategy.processPoints(&xs, &ys); |
| 137 fNext->pointListFew(n, xs, ys); | 137 fNext->pointListFew(n, xs, ys); |
| 138 } | 138 } |
| 139 | 139 |
| 140 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 140 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
| 141 fStrategy.processPoints(&xs, &ys); | 141 fStrategy.processPoints(&xs, &ys); |
| 142 fNext->pointList4(xs, ys); | 142 fNext->pointList4(xs, ys); |
| 143 } | 143 } |
| 144 | 144 |
| 145 void pointSpan(SkPoint start, SkScalar length, int count) override { | 145 void pointSpan(SkPoint start, SkScalar length, int count) override { |
| 146 if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) { | 146 if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) { |
| 147 span_fallback(start, length, count, this); | 147 span_fallback(start, length, count, this); |
| 148 } | 148 } |
| 149 } | 149 } |
| 150 | 150 |
| 151 private: | 151 private: |
| 152 Next* const fNext; | 152 Next* const fNext; |
| 153 Strategy fStrategy; | 153 Strategy fStrategy; |
| 154 }; | 154 }; |
| 155 | 155 |
| 156 // See PointProcessor for responsibilities of Strategy. | 156 // See PointProcessor for responsibilities of Strategy. |
| 157 template<typename Strategy, typename Next> | 157 template<typename Strategy, typename Next> |
| 158 class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInte rface { | 158 class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInte rface { |
| 159 public: | 159 public: |
| 160 template <typename... Args> | 160 template <typename... Args> |
| 161 BilerpProcessor(Next* next, Args&&... args) | 161 BilerpProcessor(Next* next, Args&&... args) |
| 162 : fNext{next} | 162 : fNext{next} |
| 163 , fStrategy{std::forward<Args>(args)...}{ } | 163 , fStrategy{std::forward<Args>(args)...}{ } |
| 164 | 164 |
| 165 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 165 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| 166 fStrategy.processPoints(&xs, &ys); | 166 fStrategy.processPoints(&xs, &ys); |
| 167 fNext->pointListFew(n, xs, ys); | 167 fNext->pointListFew(n, xs, ys); |
| 168 } | 168 } |
| 169 | 169 |
| 170 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 170 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
| 171 fStrategy.processPoints(&xs, &ys); | 171 fStrategy.processPoints(&xs, &ys); |
| 172 fNext->pointList4(xs, ys); | 172 fNext->pointList4(xs, ys); |
| 173 } | 173 } |
| 174 | 174 |
| 175 void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { | 175 void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
| 176 fStrategy.processPoints(&xs, &ys); | 176 fStrategy.processPoints(&xs, &ys); |
| 177 fNext->bilerpList(xs, ys); | 177 fNext->bilerpList(xs, ys); |
| 178 } | 178 } |
| 179 | 179 |
| 180 void pointSpan(SkPoint start, SkScalar length, int count) override { | 180 void pointSpan(SkPoint start, SkScalar length, int count) override { |
| 181 if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) { | 181 if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) { |
| 182 span_fallback(start, length, count, this); | 182 span_fallback(start, length, count, this); |
| 183 } | 183 } |
| 184 } | 184 } |
| 185 | 185 |
| 186 private: | 186 private: |
| 187 Next* const fNext; | 187 Next* const fNext; |
| 188 Strategy fStrategy; | 188 Strategy fStrategy; |
| 189 }; | 189 }; |
| 190 | 190 |
| 191 class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterfa ce { | 191 class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterfa ce { |
| 192 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 192 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| 193 SkFAIL("Skipped stage."); | 193 SkFAIL("Skipped stage."); |
| 194 } | 194 } |
| 195 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 195 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
| 196 SkFAIL("Skipped stage."); | 196 SkFAIL("Skipped stage."); |
| 197 } | 197 } |
| 198 void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { | 198 void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
| 199 SkFAIL("Skipped stage."); | 199 SkFAIL("Skipped stage."); |
| 200 } | 200 } |
| 201 void pointSpan(SkPoint start, SkScalar length, int count) override { | 201 void pointSpan(SkPoint start, SkScalar length, int count) override { |
| 202 SkFAIL("Skipped stage."); | 202 SkFAIL("Skipped stage."); |
| 203 } | 203 } |
| 204 }; | 204 }; |
| 205 | 205 |
| 206 class TranslateMatrixStrategy { | 206 class TranslateMatrixStrategy { |
| 207 public: | 207 public: |
| 208 TranslateMatrixStrategy(SkVector offset) | 208 TranslateMatrixStrategy(SkVector offset) |
| 209 : fXOffset{X(offset)} | 209 : fXOffset{X(offset)} |
| 210 , fYOffset{Y(offset)} { } | 210 , fYOffset{Y(offset)} { } |
| 211 | 211 |
| 212 void processPoints(Sk4f* xs, Sk4f* ys) { | 212 void processPoints(Sk4s* xs, Sk4s* ys) { |
| 213 *xs = *xs + fXOffset; | 213 *xs = *xs + fXOffset; |
| 214 *ys = *ys + fYOffset; | 214 *ys = *ys + fYOffset; |
| 215 } | 215 } |
| 216 | 216 |
| 217 template <typename Next> | 217 template <typename Next> |
| 218 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 218 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
| 219 next->pointSpan(start + SkPoint{fXOffset[0], fYOffset[0]}, length, count ); | 219 next->pointSpan(start + SkPoint{fXOffset[0], fYOffset[0]}, length, count ); |
| 220 return true; | 220 return true; |
| 221 } | 221 } |
| 222 | 222 |
| 223 private: | 223 private: |
| 224 const Sk4f fXOffset, fYOffset; | 224 const Sk4s fXOffset, fYOffset; |
| 225 }; | 225 }; |
| 226 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> | 226 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
| 227 using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>; | 227 using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>; |
| 228 | 228 |
| 229 class ScaleMatrixStrategy { | 229 class ScaleMatrixStrategy { |
| 230 public: | 230 public: |
| 231 ScaleMatrixStrategy(SkVector offset, SkVector scale) | 231 ScaleMatrixStrategy(SkVector offset, SkVector scale) |
| 232 : fXOffset{X(offset)}, fYOffset{Y(offset)} | 232 : fXOffset{X(offset)}, fYOffset{Y(offset)} |
| 233 , fXScale{X(scale)}, fYScale{Y(scale)} { } | 233 , fXScale{X(scale)}, fYScale{Y(scale)} { } |
| 234 void processPoints(Sk4f* xs, Sk4f* ys) { | 234 void processPoints(Sk4s* xs, Sk4s* ys) { |
| 235 *xs = *xs * fXScale + fXOffset; | 235 *xs = *xs * fXScale + fXOffset; |
| 236 *ys = *ys * fYScale + fYOffset; | 236 *ys = *ys * fYScale + fYOffset; |
| 237 } | 237 } |
| 238 | 238 |
| 239 template <typename Next> | 239 template <typename Next> |
| 240 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 240 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
| 241 SkPoint newStart = | 241 SkPoint newStart = |
| 242 SkPoint{X(start) * fXScale[0] + fXOffset[0], Y(start) * fYScale[0] + fYOffset[0]}; | 242 SkPoint{X(start) * fXScale[0] + fXOffset[0], Y(start) * fYScale[0] + fYOffset[0]}; |
| 243 SkScalar newLength = length * fXScale[0]; | 243 SkScalar newLength = length * fXScale[0]; |
| 244 next->pointSpan(newStart, newLength, count); | 244 next->pointSpan(newStart, newLength, count); |
| 245 return true; | 245 return true; |
| 246 } | 246 } |
| 247 | 247 |
| 248 private: | 248 private: |
| 249 const Sk4f fXOffset, fYOffset; | 249 const Sk4s fXOffset, fYOffset; |
| 250 const Sk4f fXScale, fYScale; | 250 const Sk4s fXScale, fYScale; |
| 251 }; | 251 }; |
| 252 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> | 252 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
| 253 using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>; | 253 using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>; |
| 254 | 254 |
| 255 class AffineMatrixStrategy { | 255 class AffineMatrixStrategy { |
| 256 public: | 256 public: |
| 257 AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew) | 257 AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew) |
| 258 : fXOffset{X(offset)}, fYOffset{Y(offset)} | 258 : fXOffset{X(offset)}, fYOffset{Y(offset)} |
| 259 , fXScale{X(scale)}, fYScale{Y(scale)} | 259 , fXScale{X(scale)}, fYScale{Y(scale)} |
| 260 , fXSkew{X(skew)}, fYSkew{Y(skew)} { } | 260 , fXSkew{X(skew)}, fYSkew{Y(skew)} { } |
| 261 void processPoints(Sk4f* xs, Sk4f* ys) { | 261 void processPoints(Sk4s* xs, Sk4s* ys) { |
| 262 Sk4f newXs = fXScale * *xs + fXSkew * *ys + fXOffset; | 262 Sk4s newXs = fXScale * *xs + fXSkew * *ys + fXOffset; |
| 263 Sk4f newYs = fYSkew * *xs + fYScale * *ys + fYOffset; | 263 Sk4s newYs = fYSkew * *xs + fYScale * *ys + fYOffset; |
| 264 | 264 |
| 265 *xs = newXs; | 265 *xs = newXs; |
| 266 *ys = newYs; | 266 *ys = newYs; |
| 267 } | 267 } |
| 268 | 268 |
| 269 template <typename Next> | 269 template <typename Next> |
| 270 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 270 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
| 271 return false; | 271 return false; |
| 272 } | 272 } |
| 273 | 273 |
| 274 private: | 274 private: |
| 275 const Sk4f fXOffset, fYOffset; | 275 const Sk4s fXOffset, fYOffset; |
| 276 const Sk4f fXScale, fYScale; | 276 const Sk4s fXScale, fYScale; |
| 277 const Sk4f fXSkew, fYSkew; | 277 const Sk4s fXSkew, fYSkew; |
| 278 }; | 278 }; |
| 279 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> | 279 template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface> |
| 280 using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>; | 280 using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>; |
| 281 | 281 |
| 282 static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix( | 282 static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix( |
| 283 SkLinearBitmapPipeline::PointProcessorInterface* next, | 283 SkLinearBitmapPipeline::PointProcessorInterface* next, |
| 284 const SkMatrix& inverse, | 284 const SkMatrix& inverse, |
| 285 SkLinearBitmapPipeline::MatrixStage* matrixProc) { | 285 SkLinearBitmapPipeline::MatrixStage* matrixProc) { |
| 286 if (inverse.hasPerspective()) { | 286 if (inverse.hasPerspective()) { |
| 287 SkFAIL("Not implemented."); | 287 SkFAIL("Not implemented."); |
| (...skipping 17 matching lines...) Expand all Loading... | |
| 305 return next; | 305 return next; |
| 306 } | 306 } |
| 307 return matrixProc->get(); | 307 return matrixProc->get(); |
| 308 } | 308 } |
| 309 | 309 |
| 310 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> | 310 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
| 311 class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterfac e { | 311 class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterfac e { |
| 312 public: | 312 public: |
| 313 ExpandBilerp(Next* next) : fNext{next} { } | 313 ExpandBilerp(Next* next) : fNext{next} { } |
| 314 | 314 |
| 315 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 315 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| 316 SkASSERT(0 < n && n < 4); | 316 SkASSERT(0 < n && n < 4); |
| 317 // px00 px10 px01 px11 | 317 // px00 px10 px01 px11 |
| 318 const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, | 318 const Sk4s kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
| 319 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; | 319 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; |
| 320 if (n >= 1) fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYO ffsets); | 320 if (n >= 1) fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYO ffsets); |
| 321 if (n >= 2) fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYO ffsets); | 321 if (n >= 2) fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYO ffsets); |
| 322 if (n >= 3) fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYO ffsets); | 322 if (n >= 3) fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYO ffsets); |
| 323 } | 323 } |
| 324 | 324 |
| 325 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 325 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { |
| 326 // px00 px10 px01 px11 | 326 // px00 px10 px01 px11 |
| 327 const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, | 327 const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f}, |
| 328 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; | 328 kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f}; |
| 329 fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYOffsets); | 329 fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets); |
| 330 fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYOffsets); | 330 fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets); |
| 331 fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets); | 331 fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets); |
| 332 fNext->bilerpList(Sk4f{xs[3]} + kXOffsets, Sk4f{ys[3]} + kYOffsets); | 332 fNext->bilerpList(Sk4s{xs[3]} + kXOffsets, Sk4s{ys[3]} + kYOffsets); |
| 333 } | 333 } |
| 334 | 334 |
| 335 void pointSpan(SkPoint start, SkScalar length, int count) override { | 335 void pointSpan(SkPoint start, SkScalar length, int count) override { |
| 336 span_fallback(start, length, count, this); | 336 span_fallback(start, length, count, this); |
| 337 } | 337 } |
| 338 | 338 |
| 339 private: | 339 private: |
| 340 Next* const fNext; | 340 Next* const fNext; |
| 341 }; | 341 }; |
| 342 | 342 |
| (...skipping 17 matching lines...) Expand all Loading... | |
| 360 , fXMax{max - 1.0f} { } | 360 , fXMax{max - 1.0f} { } |
| 361 ClampStrategy(Y max) | 361 ClampStrategy(Y max) |
| 362 : fYMin{0.0f} | 362 : fYMin{0.0f} |
| 363 , fYMax{max - 1.0f} { } | 363 , fYMax{max - 1.0f} { } |
| 364 ClampStrategy(SkSize max) | 364 ClampStrategy(SkSize max) |
| 365 : fXMin{0.0f} | 365 : fXMin{0.0f} |
| 366 , fYMin{0.0f} | 366 , fYMin{0.0f} |
| 367 , fXMax{X(max) - 1.0f} | 367 , fXMax{X(max) - 1.0f} |
| 368 , fYMax{Y(max) - 1.0f} { } | 368 , fYMax{Y(max) - 1.0f} { } |
| 369 | 369 |
| 370 void processPoints(Sk4f* xs, Sk4f* ys) { | 370 void processPoints(Sk4s* xs, Sk4s* ys) { |
| 371 *xs = Sk4f::Min(Sk4f::Max(*xs, fXMin), fXMax); | 371 *xs = Sk4s::Min(Sk4s::Max(*xs, fXMin), fXMax); |
| 372 *ys = Sk4f::Min(Sk4f::Max(*ys, fYMin), fYMax); | 372 *ys = Sk4s::Min(Sk4s::Max(*ys, fYMin), fYMax); |
| 373 } | 373 } |
| 374 | 374 |
| 375 template <typename Next> | 375 template <typename Next> |
| 376 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 376 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
| 377 return false; | 377 SkScalar xMin = fXMin[0]; |
| 378 SkScalar xMax = fXMax[0]; | |
| 379 SkScalar yMin = fYMin[0]; | |
| 380 SkScalar yMax = fYMax[0]; | |
| 381 SkScalar x = X(start); | |
| 382 SkScalar y = std::min(std::max<float>(yMin, Y(start)), yMax); | |
| 383 | |
| 384 bool under = x < xMin; | |
| 385 | |
| 386 if (!under && x + length < xMax) { | |
| 387 next->pointSpan(start, length, count); | |
| 388 return true; | |
| 389 } | |
| 390 | |
| 391 SkScalar dx = length / (count - 1); | |
| 392 | |
| 393 // A B C | |
| 394 // +-------+-------+-------++-------+-------+-------+ +-------+----- --++------ | |
| 395 // | *---*|---*---|*---*--||-*---*-|---*---|*---...| |--*---*|---*- --||*---*.... | |
| 396 // | | | || | | | ... | | || | |
| 397 // | | | || | | | | | || | |
| 398 // +-------+-------+-------++-------+-------+-------+ +-------+----- --++------ | |
| 399 // ^ ^ | |
| 400 // | xMin xMax- 1 | xMax | |
| 401 // | |
| 402 // *---*---*---... - track of samples. * = sample | |
| 403 // | |
| 404 // +-+ || | |
| 405 // | | - pixels in source space. || - tile border. | |
| 406 // +-+ || | |
| 407 // | |
| 408 // The length from A to B is the length in source space or 4 * dx ((coun t - 1) * dx) | |
|
mtklein
2016/02/23 23:49:57
4 * dx ((count - 1) * dx) reads like one expressio
herb_g
2016/02/24 18:16:06
Done.
| |
| 409 // where dx is the distance between samples. There are 5 pixels specifie d in the A, B | |
|
mtklein
2016/02/23 23:49:57
There are 5 destination pixels ... ? Or 5 samples
herb_g
2016/02/24 18:16:06
Add explanation.
| |
| 410 // span. The distance from A to the next span starting at C is 5 * dx, s o count * dx. | |
| 411 // Overall Strategy: | |
| 412 // * Under - for portions of the span < xMin, take the color at pixel {x Min, y} and use it | |
| 413 // to fill in the 5 pixel sampled from A to B. | |
| 414 // * Middle - for the portion of the span between xMin and xMax sample n ormally. | |
| 415 // * Over - for the portion of the span > xMax, take the color at pixel {xMax-1, y} and | |
| 416 // use it to fill in the rest of the destination pixels. | |
| 417 if (under) { | |
| 418 // It could be that the entire span is off the left edge of the tile . | |
| 419 SkScalar EdgeOrXEnd = std::min(xMin, x + length + 1.0f); | |
| 420 int underCount = SkScalarFloorToInt((EdgeOrXEnd - x) / dx) + 1; | |
| 421 if (underCount > 0) { | |
| 422 // Use the pixel on the edge of the bitmap as the color for the entire span. | |
| 423 // Using a length of 0 causes x not to move in the sampler resul ting in the same | |
| 424 // pixel being used for the entire span. | |
| 425 next->pointSpan({xMin, y}, 0.0f, underCount); | |
| 426 | |
| 427 // The length is not the distance to xMin, but to the next start ing sample. | |
| 428 SkScalar lengthToNextStart = dx * underCount; | |
| 429 count -= underCount; | |
| 430 length -= lengthToNextStart; | |
| 431 x += lengthToNextStart; | |
| 432 } | |
| 433 } | |
| 434 | |
| 435 // If there are more pixels needed, sample from the middle of the tile. | |
| 436 if (count > 0) { | |
| 437 // It could be that span continues off the edge of tile; use min for the limit. | |
| 438 SkScalar EdgeOrXEnd = std::min(xMax, x + length); | |
| 439 int middleCount = SkScalarFloorToInt((EdgeOrXEnd - x) / dx) + 1; | |
| 440 SkScalar middleLength = (middleCount - 1) * dx; | |
| 441 next->pointSpan({x, y}, middleLength, middleCount); | |
| 442 count -= middleCount; | |
| 443 } | |
| 444 | |
| 445 if (count > 0) { | |
| 446 // Use the pixel on the edge of the bitmap as the color for the enti re span. | |
| 447 // Using a length of 0 causes x not to move in the sampler resulting in the same | |
| 448 // pixel being used for the entire span. | |
| 449 next->pointSpan({xMax - 1.0f, y}, 0.0f, count); | |
| 450 } | |
| 451 | |
| 452 return true; | |
| 378 } | 453 } |
| 379 | 454 |
| 380 private: | 455 private: |
| 381 const Sk4f fXMin{SK_FloatNegativeInfinity}; | 456 const Sk4s fXMin{SK_FloatNegativeInfinity}; |
| 382 const Sk4f fYMin{SK_FloatNegativeInfinity}; | 457 const Sk4s fYMin{SK_FloatNegativeInfinity}; |
| 383 const Sk4f fXMax{SK_FloatInfinity}; | 458 const Sk4s fXMax{SK_FloatInfinity}; |
| 384 const Sk4f fYMax{SK_FloatInfinity}; | 459 const Sk4s fYMax{SK_FloatInfinity}; |
| 385 }; | 460 }; |
| 386 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> | 461 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
| 387 using Clamp = BilerpProcessor<ClampStrategy, Next>; | 462 using Clamp = BilerpProcessor<ClampStrategy, Next>; |
| 388 | 463 |
| 464 // It would be nice to use fmod, but it uses trunc based rounding where floor ro unding is needed. | |
| 465 static SkScalar tile_mod(SkScalar x, SkScalar base) { | |
| 466 return x - std::floor(x / base) * base; | |
| 467 } | |
| 468 | |
| 389 class RepeatStrategy { | 469 class RepeatStrategy { |
| 390 public: | 470 public: |
| 391 RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { } | 471 RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { } |
| 392 RepeatStrategy(Y max) : fYMax{max}, fYInvMax{1.0f/max} { } | 472 RepeatStrategy(Y max) : fYMax{max}, fYInvMax{1.0f/max} { } |
| 393 RepeatStrategy(SkSize max) | 473 RepeatStrategy(SkSize max) |
| 394 : fXMax{X(max)} | 474 : fXMax{X(max)} |
| 395 , fXInvMax{1.0f / X(max)} | 475 , fXInvMax{1.0f / X(max)} |
| 396 , fYMax{Y(max)} | 476 , fYMax{Y(max)} |
| 397 , fYInvMax{1.0f / Y(max)} { } | 477 , fYInvMax{1.0f / Y(max)} { } |
| 398 | 478 |
| 399 void processPoints(Sk4f* xs, Sk4f* ys) { | 479 void processPoints(Sk4s* xs, Sk4s* ys) { |
| 400 Sk4f divX = (*xs * fXInvMax).floor(); | 480 Sk4s divX = (*xs * fXInvMax).floor(); |
| 401 Sk4f divY = (*ys * fYInvMax).floor(); | 481 Sk4s divY = (*ys * fYInvMax).floor(); |
| 402 Sk4f baseX = (divX * fXMax); | 482 Sk4s baseX = (divX * fXMax); |
| 403 Sk4f baseY = (divY * fYMax); | 483 Sk4s baseY = (divY * fYMax); |
| 404 *xs = *xs - baseX; | 484 *xs = *xs - baseX; |
| 405 *ys = *ys - baseY; | 485 *ys = *ys - baseY; |
| 406 } | 486 } |
| 407 | 487 |
| 408 template <typename Next> | 488 template <typename Next> |
| 409 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { | 489 bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) { |
| 410 return false; | 490 // Make x and y in range on the tile. |
| 491 SkScalar x = tile_mod(X(start), fXMax[0]); | |
| 492 SkScalar y = tile_mod(Y(start), fYMax[0]); | |
| 493 SkScalar xMax = fXMax[0]; | |
| 494 SkScalar dx = length / (count - 1); | |
| 495 | |
| 496 // A B C D Z | |
| 497 // +-------+-------+-------++-------+-------+-------++ +-------+---- ---++------ | |
| 498 // | | *---|*---*--||-*---*-|---*---|*---*--|| |--*---*| || | |
| 499 // | | | || | | || ... | | || | |
| 500 // | | | || | | || | | || | |
| 501 // +-------+-------+-------++-------+-------+-------++ +-------+---- ---++------ | |
| 502 // ^^ ^^ ^^ | |
| 503 // xMax || xMin xMax || xMin xM ax || xMin | |
| 504 // | |
| 505 // *---*---*---... - track of samples. * = sample | |
| 506 // | |
| 507 // +-+ || | |
| 508 // | | - pixels in source space. || - tile border. | |
| 509 // +-+ || | |
| 510 // | |
| 511 // | |
| 512 // The given span starts at A and continues on through several tiles to sample point Z. | |
| 513 // The idea is to break this into several spans one on each tile the ent ire span | |
| 514 // intersects. The A to B span only covers a partial tile and has a coun t of 3 and the | |
| 515 // distance from A to B is (count - 1) * dx or 2 * dx. The distance from A to the start of | |
| 516 // the next span is count * dx or 3 * dx. Span C to D covers an entire t ile has a count | |
| 517 // of 5 and a length of 4 * dx. | |
| 518 // | |
| 519 // Overall Strategy: | |
| 520 // While the span hangs over the edge of the tile. Draw the span coverin g the tile then | |
|
mtklein
2016/02/23 23:49:57
While the span hangs over the edge of the tile.
?
herb_g
2016/02/24 18:16:06
Fixed sentence fragment.
| |
| 521 // slide the span over to the next tile. | |
| 522 | |
| 523 // The guard could have been count > 0, but then a bunch of math would b e done in the | |
| 524 // common case. | |
| 525 while (x + length > xMax) { | |
| 526 // The number of samples that intersect this tile. | |
| 527 int countForTile = SkScalarFloorToInt((xMax - x) / dx) + 1; | |
| 528 // The distance between the first and last sample. | |
| 529 SkScalar lengthForSpanOnTile = (countForTile - 1) * dx; | |
| 530 // Span the samples. | |
| 531 next->pointSpan({x, y}, lengthForSpanOnTile, countForTile); | |
| 532 // Add one more dx to get to the first sample on the next tile. | |
| 533 SkScalar lengthToNextStart = lengthForSpanOnTile + dx; | |
| 534 // slide over to the next tile. | |
| 535 length -= lengthToNextStart; | |
| 536 count -= countForTile; | |
| 537 x += lengthToNextStart - xMax; | |
| 538 } | |
| 539 // All on a single tile. | |
| 540 if (count > 0) { | |
| 541 next->pointSpan({x, y}, length, count); | |
| 542 } | |
| 543 | |
| 544 return true; | |
| 411 } | 545 } |
| 412 | 546 |
| 413 private: | 547 private: |
| 414 const Sk4f fXMax{0.0f}; | 548 const Sk4s fXMax{0.0f}; |
| 415 const Sk4f fXInvMax{0.0f}; | 549 const Sk4s fXInvMax{0.0f}; |
| 416 const Sk4f fYMax{0.0f}; | 550 const Sk4s fYMax{0.0f}; |
| 417 const Sk4f fYInvMax{0.0f}; | 551 const Sk4s fYInvMax{0.0f}; |
| 418 }; | 552 }; |
| 419 | 553 |
| 420 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> | 554 template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface> |
| 421 using Repeat = BilerpProcessor<RepeatStrategy, Next>; | 555 using Repeat = BilerpProcessor<RepeatStrategy, Next>; |
| 422 | 556 |
| 423 static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler( | 557 static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler( |
| 424 SkLinearBitmapPipeline::BilerpProcessorInterface* next, | 558 SkLinearBitmapPipeline::BilerpProcessorInterface* next, |
| 425 SkSize dimensions, | 559 SkSize dimensions, |
| 426 SkShader::TileMode xMode, | 560 SkShader::TileMode xMode, |
| 427 SkShader::TileMode yMode, | 561 SkShader::TileMode yMode, |
| (...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 462 case SkShader::kMirror_TileMode: | 596 case SkShader::kMirror_TileMode: |
| 463 SkFAIL("Not implemented."); | 597 SkFAIL("Not implemented."); |
| 464 break; | 598 break; |
| 465 } | 599 } |
| 466 } | 600 } |
| 467 return tileProcXOrBoth->get(); | 601 return tileProcXOrBoth->get(); |
| 468 } | 602 } |
| 469 | 603 |
| 470 class sRGBFast { | 604 class sRGBFast { |
| 471 public: | 605 public: |
| 472 static Sk4f VECTORCALL sRGBToLinear(Sk4f pixel) { | 606 static Sk4s VECTORCALL sRGBToLinear(Sk4s pixel) { |
| 473 Sk4f l = pixel * pixel; | 607 Sk4s l = pixel * pixel; |
| 474 return Sk4f{l[0], l[1], l[2], pixel[3]}; | 608 return Sk4s{l[0], l[1], l[2], pixel[3]}; |
| 475 } | 609 } |
| 476 }; | 610 }; |
| 477 | 611 |
| 478 template <SkColorProfileType colorProfile> | 612 template <SkColorProfileType colorProfile> |
| 479 class Passthrough8888 { | 613 class Passthrough8888 { |
| 480 public: | 614 public: |
| 481 Passthrough8888(int width, const uint32_t* src) | 615 Passthrough8888(int width, const uint32_t* src) |
| 482 : fSrc{src}, fWidth{width}{ } | 616 : fSrc{src}, fWidth{width}{ } |
| 483 | 617 |
| 484 void VECTORCALL getFewPixels(int n, Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) { | 618 void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) { |
| 485 Sk4i XIs = SkNx_cast<int, float>(xs); | 619 Sk4i XIs = SkNx_cast<int, float>(xs); |
| 486 Sk4i YIs = SkNx_cast<int, float>(ys); | 620 Sk4i YIs = SkNx_cast<int, float>(ys); |
| 487 Sk4i bufferLoc = YIs * fWidth + XIs; | 621 Sk4i bufferLoc = YIs * fWidth + XIs; |
| 488 switch (n) { | 622 switch (n) { |
| 489 case 3: | 623 case 3: |
| 490 *px2 = getPixel(fSrc, bufferLoc[2]); | 624 *px2 = getPixel(fSrc, bufferLoc[2]); |
| 491 case 2: | 625 case 2: |
| 492 *px1 = getPixel(fSrc, bufferLoc[1]); | 626 *px1 = getPixel(fSrc, bufferLoc[1]); |
| 493 case 1: | 627 case 1: |
| 494 *px0 = getPixel(fSrc, bufferLoc[0]); | 628 *px0 = getPixel(fSrc, bufferLoc[0]); |
| 495 default: | 629 default: |
| 496 break; | 630 break; |
| 497 } | 631 } |
| 498 } | 632 } |
| 499 | 633 |
| 500 void VECTORCALL get4Pixels(Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2 , Sk4f* px3) { | 634 void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2 , Sk4f* px3) { |
| 501 Sk4i XIs = SkNx_cast<int, float>(xs); | 635 Sk4i XIs = SkNx_cast<int, float>(xs); |
| 502 Sk4i YIs = SkNx_cast<int, float>(ys); | 636 Sk4i YIs = SkNx_cast<int, float>(ys); |
| 503 Sk4i bufferLoc = YIs * fWidth + XIs; | 637 Sk4i bufferLoc = YIs * fWidth + XIs; |
| 504 *px0 = getPixel(fSrc, bufferLoc[0]); | 638 *px0 = getPixel(fSrc, bufferLoc[0]); |
| 505 *px1 = getPixel(fSrc, bufferLoc[1]); | 639 *px1 = getPixel(fSrc, bufferLoc[1]); |
| 506 *px2 = getPixel(fSrc, bufferLoc[2]); | 640 *px2 = getPixel(fSrc, bufferLoc[2]); |
| 507 *px3 = getPixel(fSrc, bufferLoc[3]); | 641 *px3 = getPixel(fSrc, bufferLoc[3]); |
| 508 } | 642 } |
| 509 | 643 |
| 510 const uint32_t* row(int y) { return fSrc + y * fWidth[0]; } | 644 const uint32_t* row(int y) { return fSrc + y * fWidth[0]; } |
| (...skipping 25 matching lines...) Expand all Loading... | |
| 536 // +--------+--------+ | 670 // +--------+--------+ |
| 537 // | 671 // |
| 538 // | 672 // |
| 539 // Given a pixelxy each is multiplied by a different factor derived from the fra ctional part of x | 673 // Given a pixelxy each is multiplied by a different factor derived from the fra ctional part of x |
| 540 // and y: | 674 // and y: |
| 541 // * px00 -> (1 - x)(1 - y) = 1 - x - y + xy | 675 // * px00 -> (1 - x)(1 - y) = 1 - x - y + xy |
| 542 // * px10 -> x(1 - y) = x - xy | 676 // * px10 -> x(1 - y) = x - xy |
| 543 // * px01 -> (1 - x)y = y - xy | 677 // * px01 -> (1 - x)y = y - xy |
| 544 // * px11 -> xy | 678 // * px11 -> xy |
| 545 // So x * y is calculated first and then used to calculate all the other factors . | 679 // So x * y is calculated first and then used to calculate all the other factors . |
| 546 static Sk4f VECTORCALL bilerp4(Sk4f xs, Sk4f ys, Sk4f px00, Sk4f px10, | 680 static Sk4s VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10, |
| 547 Sk4f px01, Sk4f px11) { | 681 Sk4f px01, Sk4f px11) { |
| 548 // Calculate fractional xs and ys. | 682 // Calculate fractional xs and ys. |
| 549 Sk4f fxs = xs - xs.floor(); | 683 Sk4s fxs = xs - xs.floor(); |
| 550 Sk4f fys = ys - ys.floor(); | 684 Sk4s fys = ys - ys.floor(); |
| 551 Sk4f fxys{fxs * fys}; | 685 Sk4s fxys{fxs * fys}; |
| 552 Sk4f sum = px11 * fxys; | 686 Sk4f sum = px11 * fxys; |
| 553 sum = sum + px01 * (fys - fxys); | 687 sum = sum + px01 * (fys - fxys); |
| 554 sum = sum + px10 * (fxs - fxys); | 688 sum = sum + px10 * (fxs - fxys); |
| 555 sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys); | 689 sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys); |
| 556 return sum; | 690 return sum; |
| 557 } | 691 } |
| 558 | 692 |
| 559 template <typename SourceStrategy> | 693 template <typename SourceStrategy> |
| 560 class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface { | 694 class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface { |
| 561 public: | 695 public: |
| 562 template <typename... Args> | 696 template <typename... Args> |
| 563 Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args) | 697 Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args) |
| 564 : fNext{next} | 698 : fNext{next} |
| 565 , fStrategy{std::forward<Args>(args)...} { } | 699 , fStrategy{std::forward<Args>(args)...} { } |
| 566 | 700 |
| 567 void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override { | 701 void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override { |
| 568 SkASSERT(0 < n && n < 4); | 702 SkASSERT(0 < n && n < 4); |
| 569 Sk4f px0, px1, px2; | 703 Sk4f px0, px1, px2; |
| 570 fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2); | 704 fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2); |
| 571 if (n >= 1) fNext->placePixel(px0); | 705 if (n >= 1) fNext->placePixel(px0); |
| 572 if (n >= 2) fNext->placePixel(px1); | 706 if (n >= 2) fNext->placePixel(px1); |
| 573 if (n >= 3) fNext->placePixel(px2); | 707 if (n >= 3) fNext->placePixel(px2); |
| 574 } | 708 } |
| 575 | 709 |
| 576 void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override { | 710 void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override { |
| 577 Sk4f px0, px1, px2, px3; | 711 Sk4f px0, px1, px2, px3; |
| 578 fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3); | 712 fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3); |
| 579 fNext->place4Pixels(px0, px1, px2, px3); | 713 fNext->place4Pixels(px0, px1, px2, px3); |
| 580 } | 714 } |
| 581 | 715 |
| 582 void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override { | 716 void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override { |
| 583 Sk4f px00, px10, px01, px11; | 717 Sk4f px00, px10, px01, px11; |
| 584 fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11); | 718 fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11); |
| 585 Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11); | 719 Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11); |
| 586 fNext->placePixel(pixel); | 720 fNext->placePixel(pixel); |
| 587 } | 721 } |
| 588 | 722 |
| 589 void pointSpan(SkPoint start, SkScalar length, int count) override { | 723 void pointSpan(SkPoint start, SkScalar length, int count) override { |
| 590 span_fallback(start, length, count, this); | 724 span_fallback(start, length, count, this); |
| 591 } | 725 } |
| 592 | 726 |
| (...skipping 97 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 690 auto samplerStage = choose_pixel_sampler(placementStage, srcPixmap, &fSamp leStage); | 824 auto samplerStage = choose_pixel_sampler(placementStage, srcPixmap, &fSamp leStage); |
| 691 auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileX OrBothStage, | 825 auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileX OrBothStage, |
| 692 &fTileYStage); | 826 &fTileYStage); |
| 693 auto filterStage = choose_filter(tilerStage, filterQuality, &fFilterStage ); | 827 auto filterStage = choose_filter(tilerStage, filterQuality, &fFilterStage ); |
| 694 fFirstStage = choose_matrix(filterStage, inverse, &fMatrixStage); | 828 fFirstStage = choose_matrix(filterStage, inverse, &fMatrixStage); |
| 695 } | 829 } |
| 696 | 830 |
| 697 void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) { | 831 void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) { |
| 698 SkASSERT(count > 0); | 832 SkASSERT(count > 0); |
| 699 fPixelStage->setDestination(dst); | 833 fPixelStage->setDestination(dst); |
| 700 // Adjust points by 0.5, 0.5 to sample from the center of the pixels. | 834 // The count and length arguments start out in a precise relation in order t o keep the |
| 701 if (count == 1) { | 835 // math correct through the different stages. Count is the number of pixel t o produce. |
| 702 fFirstStage->pointListFew(1, Sk4f{x + 0.5f}, Sk4f{y + 0.5f}); | 836 // Since the code samples at pixel centers, length is the distance from the center of the |
| 703 } else { | 837 // first pixel to the center of the last pixel. This implies that length is count-1. |
| 704 // The count and length arguments start out in a precise relation in ord er to keep the | 838 fFirstStage->pointSpan(SkPoint{x + 0.5f, y + 0.5f}, count - 1, count); |
| 705 // math correct through the different stages. Count is the number of pix el to produce. | |
| 706 // Since the code samples at pixel centers, length is the distance from the center of the | |
| 707 // first pixel to the center of the last pixel. This implies that length is count-1. | |
| 708 fFirstStage->pointSpan(SkPoint{x + 0.5f, y + 0.5f}, count - 1, count); | |
| 709 } | |
| 710 } | 839 } |
| OLD | NEW |